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Abstract 18 

By adding attributes of space and time to the spectral traits (ST) concept we developed a 19 

completely new way of quantifying and assessing land use intensity and the hemeroby of 20 

urban landscapes. Calculating spectral traits variations (STV) from remote sensing data and 21 

regressing STV against hemeroby, we show how to estimate human land use intensity and the 22 

degree of hemeroby for large spatial areas with a dense temporal resolution for an urban case 23 

study. We found a linear statistical significant relationship (p=0.01) between the annual 24 

amplitude in spectral trait variations and the degree of hemeroby. It was thereof possible to 25 

separate the different types of land use cover according to their degree of hemeroby and land 26 

use intensity, respectively. Moreover, since the concept of plant traits is a functional 27 

framework in which each trait can be assigned to one or more ecosystem functions, the 28 

assessment of STV is a promising step towards assessing the diversity of spectral traits in an 29 

ecosystem as a proxy of functional diversity.  30 
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Highlights 43 

 44 

 This paper presents spatio-temporal spectral traits as indicators for urban land use 45 

intensity assessment. 46 

 With spectral traits variations (STV) from remote-sensing (RS) data, we show how to 47 

estimate human land use intensity and the degree of hemeroby.  48 

 We could separate different types of land use cover according to their degree of 49 

hemeroby. 50 

 Each trait can be assigned to one or more ecosystem functions. 51 

 The use of remote sensing (RS) data opens up the opportunity of spatially continuous 52 

comparisons of entire landscapes over longer periods of time. 53 

 54 
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1. Introduction19 

The shape and surface of our cultural landscapes are driven by a multitude of factors and 20 

stressors, particularly urban areas representing a land use type with probably the highest 21 

density and intensity of multiple land uses (Elmqvist et al., 2013). Land use intensity is 22 

defined as the extent of land being used including the land used for growing crops, clearing 23 

land, planting trees, draining a wetland or sealing the surface (Haase, 2014). Land use 24 

intensity  is also an indication of the amount and degree of development of the land in an 25 

area, and a reflection of the effects and environmental impacts generated by that development 26 

(Boone et al., 2014). Both land use intensity and population density can vary greatly over 27 

time and are not stable patterns (Haase and Schwarz, 2015). Depending on the economic and 28 

demographic development of a region (or a city) they can dynamically grow, decline or 29 

experience regrowth again, which is what the literature refers to as ‘urban shrinkage’ and 30 

regrowth after shrinkage (Wolff et al., 2016). 31 

32 

Urban land use intensity and population density as expressions of urbanization and land 33 

development processes have a considerable impact on the environment (e.g. Knapp et al., 34 

2017). One consequence is that urban ecosystems largely vary in terms of naturalness (Haase, 35 

2014; Kowarik, 2011). A measure describing the impact and the degree of all human 36 

interventions on ecosystems is the hemeroby index (Jalas, 1953, 1955) . It is an index that is 37 

associated with naturalness as a complementary term, with a high degree of hemeroby 38 

equating to a high human influence and thus low naturalness (Hill et al., 2002). The concept 39 

of hemeroby was used by Sukopp (1972) to describe the human influence on urban 40 

vegetation. The hemeroby index ranges from the ahemerobic degree (no anthropogenic 41 

impact on biocenosis) to the metahemerobic degree (biocenosis completely destroyed by e.g. 42 

100% soil sealing; see e.g. Walz and Stein, 2014).  43 

44 

Kowarik (1988) used hemeroby to quantify the impact of human interventions on 45 

ecosystems. Later, hemeroby was used by e.g. Steinhardt et al. (1999), Walz and Stein (2014) 46 

and Lausch et al. (2015) for land use classifications and the assessment of the impact of land 47 

use on the biosphere (mainly on vegetation). Walz and Stein (2014) impressively documented 48 

this hemeroby classification of land use intensity using a range of GIS vector data (ATKIS). 49 

However, since large land classifications such as ATKIS (for Germany), Corine Land Cover 50 

or Urban Atlas (both with European coverage) just to name a few, only represent one specific 51 

moment in time (e.g. Corine Land Cover is provided by the EEA for 1990, 2000, 2006 and 52 
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2012 and ATKIS for cities in 2005 and 2014), they are limited in their scope and not very 53 

appropriate for monitoring the variability of vegetation over a growing season.  54 

 55 

Therefore, new approaches based on temporal high-resolution remote sensing data are 56 

required. Remote sensing is effective in monitoring short-and long-term processes, patterns 57 

and thus also the consequences of human use on land and particularly on vegetation – e.g. 58 

plant species decline  – and on soil, namely soil compaction or waterlogging (Lausch et al., 59 

2013(2); Rocchini et al., 2010) . Because the analysis of land use intensity has received much 60 

less attention than the analysis of land use conversion, only a handful of studies have used 61 

remote sensing data for land use intensity (Erb et al., 2013; Kuemmerle et al., 2013) and 62 

grassland-use intensity (Gómez Giménez et al., 2017). In the recent study by Estel et al. 63 

(2016) land use intensity was assessed based on categorical remote sensing Data (CORINE) 64 

and economic input/output statistics for the whole of Europe except cities. To our knowledge, 65 

studies investigating and quantifying land use intensity and thus hemeroby change to the 66 

terrestrial land surface in its spatio-temporal short-term change neither exists for open 67 

landscapes nor for urban areas.  68 

 69 

As a foundation for the remote sensing based analysis of land use intensity we use the 70 

indicators spectral traits (ST) and spectral traits variations (STV) by Lausch et al. (2016(2), p. 71 

8): “ST are anatomical, morphological, biochemical, biophysical, physiological, structural, 72 

phenological or functional, etc. characteristics of plants, populations and communities that 73 

[…] can be directly or indirectly recorded using remote-sensing techniques in space. […] 74 

STV are changes to Spectral Traits (ST) in terms of physiology, senescence and phenology, 75 

but also caused by stress, disturbances and the resource limitations of plants, populations and 76 

communities […]”. Cabrera-Bosquet et al. (2011) use ST to derive biomass, nitrogen content 77 

as well as growth parameters from isolated plants. Variation (STV) in remotely-sensed 78 

biochemical traits (e.g. the content of nitrogen, lignin or cellulose) has successively been used 79 

to assess forest canopy functioning, including water stress, pressure from pests/ infestations, 80 

and canopy fluxes in nutrients and carbon (McManus et al., 2016). Other studies show that 81 

both ST and STV can be analysed with remote sensing indices (e.g. Normalized Difference 82 

Vegetation Index; NDVI) in order to determine the plant’s nitrogen status, to differentiate 83 

between different ecosystem functional types or to determine an ecosystem’s net exchange of 84 

CO2 (Alcaraz et al., 2006; Morgan et al., 2016; Wang et al., 2012). This is also true for 85 

disturbance events. Lu et al. (2011) conclude ”that [the] NDVI can be used as a secondary 86 
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trait for large-scale drought resistance screening”. The spectral traits approach is thus a 87 

powerful interface linking spectral remote sensing data with important ecosystem 88 

characteristics like stress, disturbances or resource limitations (Lausch et al., 2016 (1)& (2)). 89 

 90 

The traits of a species impact its fitness, and thus its potential to grow, reproduce and survive 91 

(Violle et al., 2007). Consequently, traits enable an assessment of the reasons behind spatial 92 

and temporal changes in individual plants, communities, ecosystems and beyond (Garnier et 93 

al., 2016). A reduction in the number of traits represented in a species community (which can 94 

accompany the loss of species) has been shown to reduce the stability of ecosystems and the 95 

efficiency of ecosystem functioning (e.g. nutrient cycling) (Cardinale et al., 2012).As a 96 

consequence, the provision of those ecosystem services that are the product of ecosystem 97 

functions (e.g. soil formation) can be reduced (Lavorel, 2013). Traits and their diversity 98 

(‘functional diversity’) are dependent on numerous interactions and different drivers or 99 

stressors, meaning that “a particular disturbance regime – comprising disturbance type, 100 

intensity, frequency and severity – will lead to a specific plant assemblage with traits pre-101 

adapted to this disturbance regime” (Bernhardt-Römermann et al., 2011, p. 778). This also 102 

applies to human-induced stressors. For example, Garnier et al. (2007) established a direct 103 

link between the spatial variation in plant traits and human land-use regimes in agricultural 104 

and pastoral systems. Other reasons for a variation of traits in the spatial dimension include 105 

different soil or topography patterns and biotic interactions (e.g. intra- and interspecific 106 

competition) (Garnier et al., 2007; - Lausch et al., 2013(1)). Temporal variations in plant 107 

traits can be attributed among other things to their reaction to anthropogenic stressors, 108 

seasonal biorhythms (Lausch et al., 2015), natural stressors such as pests (Fassnacht et al., 109 

2014; Lausch et al., 2013(1)) or resource limitations such as soil moisture stress on plants 110 

(Lausch et al., 2013(2)). Traits thereby react to both short-term and long-term processes and 111 

provide a proxy to the variation of processes occurring in the landscape (Lausch et al., 112 

2016(2)).  113 

 114 

Urban areas differ from other land-use types (such as forests or agricultural land-use types) 115 

with respect to the dominant environmental conditions. Urban landscapes are usually more 116 

heterogeneous (Niemela, 1999), with many of them being warmer than the surrounding 117 

landscapes due to the urban heat island effect (Oke, 1982), with drier soils, the isolation of 118 

green spaces from sealed structures and frequent disturbances acting as environmental and 119 

anthropogenic stressors (Kowarik, 2011). Consequently, urban and non-urban vegetation 120 
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differ in the presence and abundance of certain traits (Knapp et al., 2008). One example is the 121 

photosynthetic pathway of plant species (C3- vs. C4- vs. CAM-photosynthesis), with higher 122 

frequencies of C4-species in urban compared to non-urban areas, as a reaction to urban heat 123 

and drought. These changes in the representation of traits across different land-use types 124 

together with the rich variety in different land use regimes make urban areas important 125 

regions for testing the ST/STV approach.  126 

 127 

We understand urban land use intensity as a driver that homogenizes vegetation diversity by 128 

controlling the environmental boundary conditions and thus the diversity of traits that can 129 

persist in intensively used urban habitats. We therefore expect land use regimes that are 130 

associated with a higher use intensity to show less diversity in spectral traits in the urban 131 

biosphere (Fig. 1).  132 
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133 

Fig. 1 Conceptual diagram showing the filtering effect of urban land use intensity (LUI) on 134 

traits in different urban land use classes, represented by an orthophoto and the 135 

complementary RapidEye normalized difference vegetation index (NDVI) values, set in 136 

relation to spectral trait variations (STV) and hemeroby. 137 

138 

When aiming to better understand coupled human environment systems in the city, a 139 

temporally and spatially explicit picture is necessary for well-informed management 140 
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approaches. Since there is no procedure for the spatially and temporally explicit assessment 141 

of urban land use intensity, the goals of this paper are: 142 

- to develop an approach for the analysis of urban land use intensity and the degree of 143 

hemeroby by using remote sensing techniques that work independently of categorical 144 

land use data and fixed boundaries and time frames. 145 

- to develop the respective indicators that will be able to identify and quantify ST and 146 

STV over space and time. 147 

- to reveal gaps and limitations of this approach and the newly developed indicators 148 

using the case study urban region of Leipzig, Germany. 149 

 150 

2. Study area 151 

The study region is the city of Leipzig, Germany, and its immediate surrounding landscape 152 

(51°20’ N, 12°22’ E, Fig.2). The city area is divided into four dominating landform 153 

configurations; built-up structures, alluvial forest, cropland, and former mining landscapes 154 

that have been transformed into lakes. In between those dominating landform configurations, 155 

Leipzig exhibits diverse patterns with small-scale variation (Haase and Nuissl, 2007). Over 156 

the last century, various contrasting trends in urban construction formed the city of Leipzig. 157 

These trends range from urban shrinkage & growth, suburbanization & re-urbanization and 158 

deindustrialisation & reindustrialization. In the early 1930s, Leipzig was home to over 159 

700,000 inhabitants. Due to an economic downturn in the industrial sector, Leipzig’s 160 

population went down to 530,000 by the fall of the Berlin Wall in 1989. This period of 161 

shrinkage was characterized by high vacancy rates in the old housing districts and in the city 162 

centre, because those buildings that had been damaged by the war were not rebuilt and 163 

instead prefabricated high-rise buildings emerged in districts on the outskirts of the city. In 164 

the years following German reunification, the outflow of people grew. The negative 165 

population balance was accompanied by further suburbanization processes in the form of 166 

townhouse complexes and large-scale infrastructure and production facilities, leaving even 167 

larger areas of the centre empty. Since the early 2000s, these processes have been turned into 168 

reurbanisation. Housing and places for work have returned to the city centre and the inner 169 

city districts that were formerly fallow grounds with vacant buildings. Residential spaces are 170 

faced with infill development and densification (Wolff et al., 2016; Nuissl and Rink, 2005). 171 

 172 

The interaction of the manifold building trends has created a highly diverse cityscape, in 173 

which naturalness and thus hemeroby vary considerably between adjacent areas. In Leipzig, it 174 
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often only takes a few steps to move from a place with an entirely destroyed biocenosis to 175 

reach the shores of semi-natural ecosystems. Situated right next to the city centre for instance 176 

is the alluvial floodplain forest (“Auwald”), which is dominated by ash-, oak-, beech-, lime- 177 

and sycamore trees and protected under the flora-fauna-habitat-directive (FFH). Furthermore, 178 

patches of fallow land are spread across the city. Both ecosystems are subject to very low 179 

management intensity and consequently feature a comparably natural character. In addition, 180 

the old housing districts feature old-grown vegetation, which is comparably rich in species 181 

diversity. This illustrates that in Leipzig the typical urban to rural gradient is often overlaid by 182 

sharp small-scale variation. 183 

Leipzig was chosen as a case study region, both because of the availability of data and the 184 

profound expert knowledge in interpreting ST and STV patterns. 185 

 186 
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 187 

 188 

Fig. 2. (A) Location of the study region Leipzig in Germany, (B) RapidEye image of Leipzig 189 

showing the city borders, (C) and an overview of the main land use classes that are 190 

embeddeed in the urban land use matrix of Leipzig 191 

 192 

193 
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3. Data and methods 194 

3.1 Overview of the methodological approach 195 

This study analyses STV to determine land use intensity and the degree of hemeroby of urban 196 

surfaces with remote sensing data and a biotope map as a reference scheme (Fig. 3). To 197 

determine STV, firstly the STs in every pixel cell of the satellite images (RapidEye) were 198 

calculated. For this purpose we used statistical indices (different principal components from a 199 

PCA carried out on the spectral RapidEye bands) and a range of normalized difference 200 

vegetation indices (NDVI, gNDVI, reNDVI). The vegetation indices can be used indicatively 201 

for the traits photosynthesis rate, chlorophyll content or phenological characteristics 202 

(Cabrera-Bosquet et al., 2011; Gamon et al., 2016, 1995; Gitelson and Merzlyak, 1997; Reed 203 

et al., 1994). This pixel-based information was extracted for every pixel of the regions of 204 

interest, whose location was derived from a biotope map (Frietsch, 1997). In every region of 205 

interest the STV were calculated for the 12 DOY (day of years) with 12 statistical measures 206 

assessing different aspects of the (un)equal distribution of the ST inside the region of interest. 207 

The information from the STV was then aggregated for each of the land use classes for every 208 

time step and plotted for the entire annual course. 209 

 210 

 211 

Fig. 3. Flowchart of the methodical approach for the quantification of urban-land use 212 

intensity and hemeroby on the basis of spectral trait variations (STV). Spectral traits were 213 
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calculated separately with each of the six different remote-sensing indices (three different 214 

normalized difference vegetation indices (NDVI) and three different combinations of 215 

principal components from a principal component analysis (PCA)) for the regions of interest 216 

(ROI) of the regarded land use classes (LUC). Inside the regions of interest spectral trait 217 

variations were then calculated with each of the twelve different indicators. We then 218 

identified the best performing combination of remote sensing and statistical indicator based 219 

on expected spectral trait variation behavior and used only these for further analysis. 220 

221 

3.2 Ground truth 222 

For the selection of regions of interests - we used a biotope map from 2005 (Frietsch, 1997), 223 

containing information about the current plant communities, abiotic factors and different 224 

forms of land use. From this map we derived the location of our regions of interest, grouped 225 

them according to the current land use regime and assigned the corresponding degree of 226 

hemeroby to the land use classes (Tab. 1). In this way we sampled for a total of 12 land use 227 

classes, 20 to 50 regions of interest per class based on the biotope map, local expert 228 

knowledge and an orthophoto. The sampling was carried out with a round sample buffer with 229 

a radius of 50m. The 12 classes were split up into six built-up land use classes with different 230 

building densities and forms, and six vegetation-dominated classes covering the most 231 

important ecosystems of Leipzig. The land use classes thereby served as a basis for the larger 232 

purpose of deriving the hemeroby of the respective land surfaces in future studies without the 233 

guidance of a categorical land use product. 234 

235 

Tab. 1 Classification of the individual land use classes according to their degree of hemeroby 236 

and their corresponding degree of naturalness and their human impact (modified after Lausch 237 

et al., 2015; Sukopp and Kunick, 1976) 238 

Land use class types Land use classes 

Degree of 

hemeroby 

Degree of 

naturalness 

Human 

impact 

Built-up urban land Inner city business district 7. Metahemerobic Artificial Excessive 

Crafts and industry 7. Metahemerobic Artificial Excessive 

High-rise buildings 6. Polyhemerobic Close to artificial Very strong 

Perimeter development 6. Polyhemerobic Close to artificial Very strong 

Townhouses 6. Polyhemerobic Close to artificial Very strong 

Allotment gardens 5. α-Euhemerobic Far from natural Strong 

Vegetation – Pasture lands Park pastures 5. α-Euhemerobic Far from natural Strong 

Extensively managed pastures 4. β- Euhemerobic Far from natural Moderate/Strong 

Fallow ground 3. Mesohemerobic Semi-natural Moderate 

Vegetation –  Agriculture Agricultural Fields 5. α-Euhemerobic Far from natural Strong 
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 Fields fallow in winter 5. α-Euhemerobic Far from natural Strong 

Vegetation – Forest Alluvial hardwood forest 3. Mesohemerobic Semi-natural Moderate 

 239 

3.3 Remote sensing data 240 

The RapidEye satellite fleet offers high temporal- and spatial resolution imagery. The sensor 241 

acquires data in five spectral bands (R,G,B, red-edge & near infra-red) with a ground 242 

resolution of 6.5 meters at nadir, making it very capable of tracking the spatio-temporal 243 

pattern of small-scale urban environments (Tigges et al., 2013). 244 

 245 

For our study, we acquired 24 cloud-free RapidEye images from the years 2010 to 2012 246 

(Tab.2) and stacked those images according to the day of year (DOY). This way we generated 247 

an intra-annual time series with 12 images per tile, portraying the annual variability of the 248 

urban ecosystem. 249 

 250 

Tab. 2. Image acquisition dates of the RapidEye remote-sensing data. 251 

Month DOY Acquisition dates 

Leipzig south 

Acquisition dates 

Leipzig north 

January 26 26.01.2012 26.01.2012 

March 60 01.03.2011 01.03.2011 

81 22.03.2011 22.03.2011 

April 111 21.04.2011 21.04.2011 

May 135 14.05.2012 20.05.2011 

June 154 03.06.2011 03.06.2011 

 178 27.06.2011 27.06.2011 

July 206 24.07.2012 26.07.2011 

August 232 20.08.2011 20.08.2011 

September 265 22.09.2010 25.09.2011 

October 305 31.10.2012 29.10.2011 

November 326 21.11.2012 21.11.2012 

 252 

3.3.1 Remote Sensing data processing 253 

For the atmospheric correction of the acquired satellite data we deployed the widely used tool 254 

ATCOR 2 (Richter, 2011; Scatozza, 2013). From the pre-processed data we then calculated 255 

six indices combining multiple RapidEye bands into one single band file, to avoid constraints 256 

caused by multidimensionality (Tab. 3). We tested 3 variations of normalized difference 257 

vegetation indices and the first 3 components from a principal component analysis (PCA) in 258 

terms of their suitability to depict spectral traits variations. In our study the NDVI proved to 259 

be the most robust index and was therefore chosen to calculate the STV indicators. Overall, 260 
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the NDVI was comparable to gNDVI and reNDVI with the advantages that it offered a 261 

greater contrast between the classes, while the principal components from the PCA did not 262 

foster any meaningful results.  263 

 264 

Tab. 3. Remote-sensing indices calculated for the RapidEye data in the urban study region of 265 

Leipzig. 266 

Type of Index Index Name Abbreviation Reference 

Vegetation 

Indices 

Normalized difference vegetation index NDVI (Tucker, 1979) 

Green NDVI gNDVI 
(Gitelson et al., 

1996) 

Red edge normalized difference 

vegetation index 
reNDVI 

(Gitelson and 

Merzlyak, 1994) 

Statistical  

Indices 

Principal component analysis 1
st
 component (Jolliffe, 2002) 

 2
nd

 component  

 1
st
 and 2

nd
  component  

 267 

3.3.2 Spectral trait-based indicators for urban land use intensity with remote sensing 268 

For the analysis of spectral trait variations, we used 12 statistical indices of 3 different types. 269 

The first type of indices is computed on a grey level co-occurrence matrix (GLCM), the 270 

second group are measures of spatial autocorrelation and the third group consists of a set of 271 

descriptive statistics (see Fig. 4, Table 4). 272 

 273 
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 274 

Fig. 4. Schematic explanation of the quantification of human use intensity using statistical 275 

indicators, (A) on monotemporal RapidEye remote-sensing data, analysing the spatial 276 

variability inside a region of interest, (B) on multitemporal RapidEye imagery, assessing the 277 

temporal aspect of variability and (C) an integrated scheme, where both temporal and spatial 278 

spectral trait variations (STV) are analysed over the course of a year (cf. DOY – day of year) 279 

based on RapidEye derived NDVI images to assess the degree of hemeroby and urban land 280 

use intensity. 281 

 282 

A GLCM is a reliable way of spatial texture evaluation for remote sensing data (Guo, 2004; 283 

Marceau et al., 1990), e.g. the evaluation of remote sensing measured NDVI. The procedure 284 

assesses the texture of an image by calculating the number of occurrences of specific value 285 

combinations between adjacent pixels, evaluating the distribution of remote sensing 286 

measured NDVI values in every region of interest. Based on this frequency matrix we 287 

calculated eight indicators, introduced by Haralick et al. (1973) (Tab. 4). 288 

 289 
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The descriptive statistics that we calculated included the median, standard deviation, and the 290 

Shannon index of NDVI values and two measures of spatial autocorrelation (Geary’s C and 291 

Moran’s I) (Tab. 4). The last two indices describe the degree of relation that the values of a 292 

variable feature based on their location (Geary, 1954; Moran, 1950). 293 

 294 

Tab. 4 Statistical indicators that have been tested in this study for the quantification of 295 

spectral trait variations.  296 

Type Name Formula Reference 

GLCM 

Stats group 

GLCM mean 

 

(Haralick et al., 

1973) 

GLCM variance 
 

(Haralick et al., 

1973) 

GLCM correlation 

 

(Haralick et al., 

1973) 

GLCM 

Contrast group 

GLCM homogeneity 

 

(Haralick et al., 

1973) 

GLCM contrast 

 

(Haralick et al., 

1973) 

 

GLCM dissimilarity 

 

(Haralick et al., 

1973) 

GLCM 

Orderliness group 

GLCM entropy 

 

(Haralick et al., 

1973) 

GLCM angular second   

moment 
 

(Haralick et al., 

1973) 

Spatial  

Autocorrelation 

Geary's C 

 

(Geary, 1954) 

Moran's I 

 

(Moran, 1950) 
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 297 

All the indicators mentioned in table 4 above have been tested if they could reproduce 298 

anticipated STV behavior of the test sites. This was done for every of the above mentioned 299 

indicators with all remote sensing indices, making 72 different testing combinations. Out of 300 

these combinations we chose GLCM Variance and Correlation as final indicators for the 301 

calculation of STV. 302 

 303 

3.4 Relating spectral trait variations (STV) with hemeroby 304 

To derive meaningful information from our analysis of spatio temporal variability we 305 

calculated a first indicator, the annual amplitude in STV. For each of the hemeroby classes 306 

featured in this study (Tab. 1) we derived the mean annual amplitude in STV of every land 307 

use class exhibiting the regarded degree of hemeroby. This was done by subtracting the 308 

lowest from the highest GLCM Variance or Correlation value. Fallow ground, forest, 309 

extensively managed- and park pastures were measured with GLCM Correlation, the others 310 

in GLCM Variance (for normalization, the value range for the GLCM Correlation indicators 311 

was fitted by a factor of 1000). Based on these figures we fitted a linear model (1). As the 312 

dependent variable we used the mean annual amplitude in STV and the degree of hemeroby 313 

as the independent variable 314 

 A-STVi = α + β Hi + ε       (1) 315 

A-STV: Mean annual amplitude in STV 316 

H: Degree of hemeroby 317 

To test for statistical significance we used a one-sided analysis of variance (ANOVA) test 318 

with a significance level of 0.05%. The expert-based, empirically-tested biotope map of the 319 

city of Leipzig was used as the ground truth for the modeled degree of hemeroby.  320 

In order to avoid misinterpretation, it is important to state that we looked at pure lawn spaces 321 

within a larger park and not at the entire park unit. Thus, we could exclude the effects of 322 

designed structural diversity and complex configuration of different types of green in such 323 

Descriptive Statistics 

Standard Deviation 

 

 

Coefficient of 

Variation 
 

(Datt, 1998) 
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parks. Second, we are looking at the spectral diversity of the land surface and not at species 324 

diversity. 325 

 326 

4. Results 327 

4.1 Quantification of  urban land use intensity by remote sensing for all land use classes 328 

The framework outlined above is able to detect STV in the urban environment to a degree 329 

where we can draw conclusions about the degree of hemeroby of the ecosystem in question 330 

directly from the remote-sensing data. With this we can show that higher urban land use 331 

intensity, meaning more human use related pressure causes a reduction in the variety of 332 

spectral plant traits both in the spatial and in the temporal dimension.  333 

From the linear model, we can deduct, that for a difference of 38 in annual STV amplitude 334 

(measured in GLCM Variance), there is a reduction of 1 degree of hemeroby (Fig. 5). We 335 

found the relation to be statistically significant with a p value of 0.01. 336 

A-STV = 285 – 38.5* H + ε        (2) 337 

A-STV = Annual amplitude in spectral trait variation 338 

H = Degree of Hemeroby 339 

ε = Error term 340 

We achieved this relation by using the NDVI as an indicator for the spectral traits’ 341 

photosynthesis rate, chlorophyll content, greenness content or phenological status. Thereof 342 

we calculated the spectral trait variations (STV). For this we successfully deployed two 343 

indicators, namely GLCM Variance and GLCM Correlation. While GLCM Variance proved 344 

to be best suited in built-up land use classes, GLCM Correlation was better for land use 345 

classes solely with vegetation. 346 

 347 
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 348 

Fig. 5 (A) All analysed urban land use classes with their corresponding degree of hemeroby 349 

and their annual amplitude in spectral trait variations (STV) measured in GLCM Variance; 350 

fallow ground, forest, extensively managed- and park pastures were measured with GLCM 351 

Correlation. For normalization, the value range was fitted by a factor of 1000. (B) The mean 352 

annual amplitude of spectral trait variation (STV) in relation to the degree of hemeroby of the 353 

analysed urban areas, with a fitted linear model in red and the confidence interval in grey, 354 

showing that for every degree of hemeroby we measure 38.5 less in the annual amplitude in 355 

spectral trait variations (STV); the degree of hemeroby Metahemerobic and ß-Euhemerobic 356 

were measured in GLCM Correlation, the rest in GLCM Variance. 357 

 358 
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For the regarded urban land use classes, we find that the STV contained in different land use 359 

classes varies substantially. This is true for their mean annual STV, the amplitude as well as 360 

the annual course of the STV. This is primarily due to the fact that land use management 361 

schemes systematically vary between different land use forms. The vegetation that is found 362 

between sealed surfaces, in rather densely-populated areas is thereby of pronounced 363 

importance because while it delivers vital ecosystem services it is subject to a wide variety of 364 

stressors. This underpins the fact that an integrated view of the city’s ecosystems is necessary, 365 

that is not limited to the classical green infrastructure, but rather includes the dynamics of 366 

change across the entire city in a continuous temporal and spatial scope to draw conclusions 367 

about the nature of urban ecosystems. 368 

 369 

4.2. Quantification of urban land use intensity by remote sensing for single land use 370 

classes 371 

4.2.1 Urban built land 372 

For the built land use classes (Fig. 6), STV between the different building- densities, shapes 373 

and sizes varies substantially, demonstrating that even in densely-populated and therefore 374 

intensely-used areas, different types of vegetated areas can exist in a relatively small space 375 

(Fig. 7). Figure 7 shows that land use classes with the same degree of hemeroby are 376 

discernibly clustered together. These two major groupings are high-rise buildings, perimeter 377 

development and townhouses on the one hand featuring polyhemerobic habitats, and 378 

industrial areas and the CBD on the other, featuring metahemerobic habitats with (almost) 379 

exclusively sealed surfaces and a completely damaged biocenosis. Both the mean and the 380 

annual amplitude follow the trend that lower values represent a higher degree of hemeroby. 381 

(The exception of the allotment gardens will be discussed in the course of this section and in 382 

section 5.)  383 

  384 
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 385 

Fig. 6 Orthophoto and the corresponding NDVI values quantified by RapidEye data for urban 386 

built land use classes 387 

 388 

The main determinants for the STV in built-up areas are the degree of surface sealing, 389 

defining the general available space for plants, and secondly the anthropogenic management 390 

techniques. This means that higher levels of unsealed surfaces or greenness do not directly 391 

translate into higher STV. For instance, even though they are subject to less surface sealing 392 

the newly build townhouse areas feature lower STV compared to the perimeter development 393 

areas. This is due to higher green space management intensity and the fact that these areas 394 

feature large sections of fastidiously cut lawn and not yet old but fast-growing tree species. 395 

Comparable management schemes between neighboring gardens lead to the situation that 396 

adjacent RapidEye pixels are spectrally very similar resulting in less spatial STV. This also 397 

holds true for the temporal STV dimension, since multiple phenology related traits are absent 398 

in the presence of management schemes such as cutting, weeding, watering, fertilization and 399 

the application of pesticides. In contrast to this the perimeter development areas, feature large 400 

old-growth trees with other green areas in their back yards, leading to a higher annual 401 

amplitude in STV. The higher share of deciduous trees in comparison to evergreen lawn can 402 

also be derived from the fact that the STV recorded in winter are higher for the areas with 403 

townhouses and lower for perimeter development areas. 404 

 405 
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 406 

 407 

Fig. 7 Spectral trait variations (STV) of six urban built land use classes and their 408 

corresponding hemeroby values. The GLCM variance values are given over the course of a 409 

year (DOY = day of year). 410 

 411 

For the built-up land use classes in question we find a strong relationship between spatial and 412 

temporal STV. It is true that the higher the classes’ annual STV mean, the higher the annual 413 

amplitude. The industrial class, on the one hand, is absent of vegetation and lacks an annual 414 

amplitude, because the measured variance solely originates from either the buildings, the 415 

background noise from the sensor or illumination effects. The polyhemerobic land use classes 416 

on the other hand, feature both a much higher mean and amplitude. The amplitude thereby 417 

particularly depends on the green space management intensity. This exemplifies how the 418 

connection between spatial and temporal variability is related to both the degree of sealing 419 

and green space management. 420 

 421 

4.2.2 Pasture land 422 

Our results for the pasture classes follow our hypothesis, that the higher the land use intensity 423 

and the degree of hemeroby, the lower the spectral trait variations. For the most intensively 424 

managed pasture type we measured the lowest variations in spectral traits (park pastures) and 425 

for the least intensively managed pastures we measured the highest variations (succession) 426 

(Fig 8).  427 
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 428 

The low STV for intensively managed pastures can predominantly be traced to the 429 

monoculture planting scheme and the high cutting frequency, which serve as important filters 430 

for many plant traits such as variation in growth height, different leaf forms or traits that are 431 

related to different stages of the phenological cycle. The extensively managed pastures 432 

feature lower levels of management intensity and higher spectral trait variations, especially in 433 

summer. This is primarily due to a lower cutting frequency, allowing plants to run through 434 

larger parts of their natural life cycle. In this respect, the phases of flowering and maturity are 435 

particularly important as it is during these phases that different plant species produce unique 436 

traits such as different flower colours and forms or different seed sizes. Spectral trait variation 437 

for the two classes under investigation is very similar in spring (DOY 60, 80 & 110) and 438 

during the autumn/winter time frames (DOY 220-320), which could be attributed to cutting 439 

taking place in both pasture types. This observation emphasizes just how great the need is for 440 

spectral trait diversity analysis to feature multi-temporal data that covers all major 441 

phenological stages and abrupt changes due to human influences.  442 

 443 

Fig. 8 Spectral trait variations (STV) of three urban pasture types and their corresponding 444 

degree of hemeroby. The GLCM correlation values over the course of a year are shown. 445 

 446 

We measured the largest spectral trait variations on fallow land that has only been subjected 447 

to human actions in the past or is only affected by the surrounding urban landscape (e.g. soil 448 

sealing, contamination, eutrophication and the restriction of dispersal vectors). These systems 449 
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are able to develop a wide variety of plant traits from a range of different plants that are part 450 

of the grassland mosaic. These include different forms of leaves – broad-leafed and 451 

coniferous species; different growth heights - from grass to shrubs or even trees; and different 452 

forms of flowering. This variety is then reduced in the summer months when deciduous 453 

plants also feature a large set of traits, and flowering plants exhibit the traits of flowering and 454 

their seeds. 455 

 456 

4.2.3 Farmland 457 

Mechanized agriculture can be thought of as an intense repetitive intra-annual land use 458 

intensity gradient that basically consists of ploughing, seeding and harvesting and produces 459 

different spectral traits over the course of the year. To account for different cultivation 460 

schemes, we subdivided our sampling areas into fields that show photosynthetically active 461 

vegetation in winter and those that do not. Due to crop rotation, it is very likely that the same 462 

plant grows on the field in successive years. Since we aggregated remote sensing data from 463 

two years, we suggest that the effect caused by different plants in terms of their STV is 464 

smaller than the general repetitive character of the system.  465 

In spring, STV are higher in those fields with plant cover in winter compared to those fields 466 

without (Fig. 9) (DOY 26 is an exception that is likely to be caused by illumination effects). 467 

In late spring / early summer time frames, when the newly planted fields start to grow, both 468 

curves align with one another. Between DOY 180 and DOY 200 in late July and August, both 469 

index curves drop significantly (Fig. 9). This sharp drop relates to the main harvesting time, 470 

when most of the plants are eliminated. Subsequently, farmers mulch and plough under the 471 

crop residues, eliminating the vegetation and subsequently any remaining traits. Since this 472 

procedure is thought to greatly eliminate any crop pests, it is fair to assume prompt and rather 473 

consistent action of the farmers, showing that STV analysis from remote sensing data can 474 

trace specific human management intervention. The rise in GLCM Correlation for the winter 475 

recordings (DOY 305 & 326), is very likely to be caused by illumination effects due to the 476 

low sun angle. 477 

 478 
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 479 

Fig. 9 Spectral trait variations (STV) for fields, subdivided into fields that are cultivated in 480 

the winter and those that are not. The GLCM correlation values over the course of a year are 481 

shown. 482 

 483 

4.2.4 Forest 484 

The intra-annual changes observed in STV in Leipzig’s urban forest can be attributed to 485 

natural phenomena, namely the phenological cycle. Spectral trait variations in the forest are 486 

highest in spring, with a slight increase in autumn (Fig. 10). In the winter and the summer 487 

months spectral trait variations in Leipzig’s forest are comparably lower. In periods with high 488 

GLCM variance values there is a strong shift in various traits in terms of photosynthetic 489 

activity and general chemical leaf composition. While the spring phenophase is characterized 490 

by foliation, autumn is dominated by foliage discoloration and leaf fall. Since different plants 491 

have differently timed onsets for these changes, a heterogeneous cover unfolds in spring and 492 

autumn. In summer, when all trees feature a dense canopy and the photosynthesis capacity is 493 

consequently higher, the spectral trait variations between adjacent areas are lower. Since there 494 

is only one larger consistently managed forest in Leipzig with low land use intensity, it is not 495 

possible to draw conclusions about the effects of human land use on STV in a forest 496 

ecosystem. 497 
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 498 

Fig. 10 Spectral trait variations (STV) for the urban forest of Leipzig over the course of a 499 

year, the GLCM variance values are shown. 500 

 501 

5. Discussion 502 

By adding the spatio-temporal component to the ST and STV concept, we developed a 503 

framework that analyses land use intensity and its effects on the degree of hemeroby 504 

irrespective of the categorical land use data. This is an important new reference point in the 505 

ecology of the urban landscape and land use intensity assessment. Since the concept of plant 506 

traits is a functional framework in which each trait can be assigned to one or more ecosystem 507 

functions, (Lausch et al., 2016(2); Violle et al., 2007) the assessment of STV is a promising 508 

step not only for assessing the functional diversity in an ecosystem (Diaz et al., 2004) but also 509 

for improving the interpretation of the effects of human activity on land and its specific place-510 

based temporal/seasonal impacts on the affected ecosystems (Hill et al., 2002). The use of 511 

remotely sensed data thus opens up the opportunity of spatially continuous comparisons of 512 

entire landscapes over longer periods of time. 513 

 514 

From the three vegetation remote-sensing indices (NDVI, NDVIre, gNDVI) and the three 515 

different combinations of principal components from a PCA, we found that the NDVI is 516 

superior to the other indices in representing spectral traits. The NDVI is a well-proven index 517 

that is sensitive towards a variety of key spectral traits: It correlates with photosynthetically 518 

active radiation (Gamon et al., 1995), allows for the differentiation between canopy structures 519 
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and phenological characteristics (Gamon et al., 1995; Reed et al., 1994) and can differentiate 520 

between different ecosystem functional types or determine an ecosystem’s net exchange of 521 

CO2 (Alcaraz et al., 2006; Morgan et al., 2016; Wang et al., 2012). 522 

 523 

To calculate the distribution of ST, we successfully used the indicators GLCM Correlation 524 

and GLCM Variance and were thus able to determine STV. The other indicators used in this 525 

study (table 4) allowed for no consistent and meaningful linkage between STV and hemeroby 526 

or did not provide as much contrast between the single classes. We found that GLCM 527 

Variance proved to be best in built-up land use classes, whereas GLCM Correlation was 528 

better for land use classes solely with vegetation. Geary’s C and Moran’s I produced results 529 

with tendencies that were very similar compared to GLCM correlation, but without offering 530 

as much contrast between individual classes. The similarity between GLCM correlation and 531 

the means of spatial autocorrelation is very promising and in accordance with the literature, 532 

especially as those measures are independent in their calculation (Van Der Sanden and 533 

Hoekman, 2005). 534 

 535 

The STV featured in different types of urban vegetation varies strongly and depends on 536 

human land use intensity and specific management strategies over the season/year. Results 537 

generally follow the trend that the lower the human green space management intensity, the 538 

higher the STV. This is in accordance with the hemeroby classification of urban sites 539 

introduced at the beginning of the paper. Thus, our STV analysis is a proof-of-concept for 540 

deriving urban land intensity and hemeroby from remotely sensed data. 541 

 542 

We thereby find that of emphasized importance is thereby the amplitude in STV. This is 543 

because heterogeneity caused by sealed land is stable over the course of the year. Only 544 

changes in vegetation due to stressors or phenology can cause intra annual change. While this 545 

provides for a god and effective starting point more sophisticated indicators could be 546 

calculated in upcoming studies. 547 

 548 

What is also interesting is the large gradient in STV between the different types of built 549 

structures, implying that the ecological diversity between primarily sealed land can be very 550 

different. The high trait diversity in the late 19
th

 century districts dating back to the 551 

Wilhelminian period with their large backyards with old mature trees is very much in 552 

accordance with recent literature, stating that both plants and birds can develop a high 553 
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diversity in these areas, compared to other inner-urban areas (Müller, 2009; Strohbach et al., 554 

2009). This highlights the need for urban landscape planning that focuses much more on the 555 

qualitative aspects of plant trait diversity, particularly in times of strong urban growth and the 556 

trend towards infill development (Schetke et al., 2012).  557 

 558 

The classification of different types of pasture land using remote sensing is difficult and has 559 

so far only been partly solved (Schuster et al., 2015). This is also true for the differentiation 560 

between different land use management intensities (Franke et al., 2012). These shortcomings 561 

are largely due to the high spectral similarity of pastures and grasslands, the small size of 562 

objects to be measured, and the overall small spatial extent of such habitats (Schuster et al., 563 

2015). With our approach, the diversity in grassland habitats could be analyzed. Moreover, 564 

promising results in the domains of agriculture and forests indicate that our study can be 565 

transferred into peri-urban and rural areas. 566 

 567 

We conclude that in the urban context; less management or reduced land use intensity result 568 

in a higher diversity of spectral plant traits, i.e. higher functional diversity. As functional 569 

diversity supports a range of ecosystem services such as pollination or wood provision 570 

((Lavorel, 2013) and references therein), the preservation of it should be a central goal of 571 

land management. We therefore see a tremendous need for strategies and programs that 572 

inform policy makers, land owners, planners and managers about the verified impacts which 573 

intensified management actions, such as mowing, irrigating, and the application of pesticides 574 

and fertilizers have on the diversity of life in cities and the services it provides for us. Hence, 575 

we strongly believe that it is important to get urban land owners and other stakeholders to 576 

become part of creating change towards a more diverse urban biosphere. 577 

Uncertainties 578 

Scaling is one of the key uncertainties in ecology when comparing patterns observed on 579 

different spatial scales. One example from our study is the comparison of town house and 580 

allotment garden areas, which both tend to exhibit a matrix of built-up and vegetated 581 

structures that consist of the same compartments, only that in the case of the allotment 582 

gardens everything is somewhat smaller. Therefore, the structures of the allotment garden 583 

areas are aggregated into mixed pixels, meaning that a comparative assessment between 584 

differently scaled biotopes is hard to achieve. What is true for the scaling of such patterns 585 

extends to the scaling of the data derived from these patterns. We therefore highlight the fact 586 
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that this assessment is only comparable to studies featuring equally scaled data (6.5x6.5m). 587 

For the analysis of small-scale structures, finer resolution images are required. 588 

589 

We analysed all 12 land use intensity classes in separate groups, because of various issues 590 

regarding the scaling and as a consequence thereof, different levels of aggregation. The level 591 

of aggregation depends on the relational scaling between the sensor and the object and 592 

therefore changes when objects of different sizes are analyzed. While, for instance, the 593 

canopy of a single tree might well fill out an entire RapidEye pixel, the canopy of a grass 594 

stalk only fills out a very minute portion of one pixel. This results in the fact that grassland 595 

pixels are much more of an aggregation of an uncertain amount of stalks, possibly belonging 596 

to different species that exhibit different traits and other abiotic components compared to 597 

single trees. In contrast, the forest pixels will show much less aggregation of different 598 

individual plants, featuring varying traits and an abiotic background signal. While the 599 

different degrees of aggregation are already important for mere image classification, they are 600 

even more important when measuring the variance of image regions (Woodcock and Strahler, 601 

1987). 602 

603 

6. Conclusions604 



29 

With spectral trait variations from a dense remotely sensed time series we can estimate urban 605 

land use intensity and the degree of hemeroby for large spatial areas. Adding attributes of 606 

space and time to the spectral traits concept opens up the possibility of analysing these 607 

important indicators for urban and open land surfaces in a repeatable, comparable and cost 608 

effective manner. 609 

610 

By expanding the analysis of land use intensity and hemeroby in the urban environment 611 

beyond land cover maps we open up the opportunity of spatially continuous comparisons of 612 

entire landscapes over longer periods of time, irrespective of a classification procedure. 613 

Remotely sensed data still reflects the physio-chemical information of both the vegetation 614 

and the soil layers that were grabbed by the sensor. Only then properties of the living 615 

elements of the site/area can be analysed and interpreted such as the differentiation of lawns 616 

or forests in a city according to their fitness and greenness which would be not at all possible 617 

using land cover maps. 618 

619 

Upcoming studies should use the spatially continuous spectral data of remote sensing 620 

missions rather than analysing specific patches. For this purpose, the integration of the 621 

presented routine into remote sensing based classification tools would be desirable. At the 622 

same time, more ground truth measurements of traits are necessary to verify remote sensing 623 

data. If these obstacles are overcome, the presented procedure could become an important 624 

cornerstone in decision making processes. 625 
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