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Abstract 22 

Light detection and ranging (lidar) is currently the state-of-the-art remote sensing technology for 23 

measuring the 3D structures of forests. Studies have shown that various lidar-derived metrics can be 24 

used to predict forest attributes, such as aboveground biomass. However, finding out which metric 25 

works best at which scale and under which conditions requires extensive field inventories as ground-26 

truth data. The goal of our study was to overcome the limitations of inventory data by complementing 27 

field-derived data with virtual forest stands from a dynamic forest model. The simulated stands were 28 

used to compare 29 different lidar metrics for their utility as predictors of tropical forest biomass at 29 

different spatial scales. We used the process-based forest model FORMIND, developed a lidar simulation 30 

model, based on the Beer-Lambert law of light extinction, and applied it to a tropical forest in Panama. 31 

Simulation scenarios comprised undisturbed primary forests and stands exposed to logging and fire 32 

disturbance regimes, resulting in mosaics of different successional stages, totaling 3.7 million trees on 33 

4,200 ha. The simulated forest was sampled with the lidar model. Several lidar metrics, in particular 34 

height metrics, showed good correlations with forest biomass, even for disturbed forest. Estimation 35 

errors (nRMSE) increased with decreasing spatial scale from < 10% (200-m scale) to > 30% (20-m scale) 36 

for the best metrics. At the often used 1-ha scale, the top-of-canopy height obtained from canopy height 37 

models with fine to relatively coarse pixel resolutions (1 to 10 m) yielded the most accurate biomass 38 

predictions, with nRMSE < 6% for undisturbed and nRMSE < 9% for disturbed forests. This study 39 

represents the first time dynamic modeling of a tropical forest has been combined with lidar remote 40 

sensing to systematically investigate lidar-to-biomass relationships for varying lidar metrics, scales and 41 

disturbance states. In the future, this approach can be used to explore the potential of remote sensing of 42 

other forest attributes, e.g., carbon dynamics, and other remote sensing systems, e.g., spaceborne lidar 43 

and radar. 44 
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1. Introduction 47 

 48 

Due to their important role in the global carbon cycle and ongoing deforestation and degradation, 49 

tropical forests are of particular interest to biomass remote sensing. Tropical forest carbon accounting 50 

and monitoring of deforestation are important tasks in the context of REDD+ and global climate 51 

modeling. In recent years, remote sensing has led to considerable improvements in this field (Gibbs et 52 

al., 2007; De Sy et al., 2012; Pan et al., 2013). Airborne small-footprint lidar (light detection and ranging) 53 

is currently the state-of-the-art technology for measuring the 3D structure of forests (Lefsky et al., 54 

2002b; Wulder et al., 2012; Mascaro et al., 2014). Various lidar metrics correlate well with different 55 

forest attributes. In particular, lidar-derived height metrics have commonly been used to predict forest 56 

aboveground biomass (AGB) and carbon density (ACD) (Drake et al., 2002; Asner et al., 2009; Dubayah et 57 

al., 2010; Jubanski et al., 2013; Asner & Mascaro, 2014).The major challenges in biomass estimation 58 

based on lidar data are that 1) the calibration of the prediction functions relies on field data that must be 59 

collected manually in inventory plots; and 2) there are many different metrics available using different 60 

spatial scales, and the task is to find the combination that provides accurate AGB predictions. 61 

In inventory plots, tree diameters at breast height (DBH) are typically measured, from which AGB is 62 

calculated via known allometric equations (e.g., Chave et al., 2005, 2014; Chen 2015). Lidar data are 63 

acquired for the same inventory plots to build regression models between lidar-based structure metrics 64 

and ground-based AGB. A wide range of metrics can be calculated from lidar data. To date, no standard 65 

approach for AGB estimation from lidar has been established and different studies have applied different 66 

metrics (Chen 2013; Lu et al. 2014). Several publications have compared metrics among each other for 67 

different forest types (e.g., Lefsky et al., 1999, 2002a; Dubayah et al., 2010; Jubanski et al., 2013). 68 

However, there has not been a comparison of a wide range of metrics on a single tropical forest dataset. 69 

Lidar metrics can generally be divided into metrics which are based on the full 3D point cloud of lidar 70 
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returns and metrics which are based on canopy height models (CHM), i.e., the rasterized canopy surfaces 71 

which are derived from the uppermost returns of the point clouds (Chen 2013). The full 3D point cloud 72 

contains more information about the vertical canopy structure than the corresponding CHM. On the 73 

other hand, the vertical distribution of lidar returns also depends on technical properties of the specific 74 

sensor, making point-cloud-based metrics less robust and comparable between different studies than 75 

CHM-based metrics (Næsset, 2009; Asner & Mascaro, 2014). Many commonly used metrics can be 76 

calculated based on both types of data. Those metrics include mean heights (Lefsky et al., 2002a; Asner 77 

& Mascaro, 2014), relative height quantiles (the heights below which a certain percentage of returns or 78 

pixels falls) (Patenaude et al., 2004; Dubayah et al., 2010; Meyer et al., 2013), and metrics of 79 

heterogeneity such as the standard deviation of heights or the Shannon diversity index of the height 80 

profiles (Stark et al., 2012). Other metrics, such as the ratio of above ground returns to total returns or 81 

fractional canopy cover above a certain height, that can be derived either from point clouds or CHMs 82 

describe relative vegetation cover. 83 

An important aspect of AGB prediction from remote sensing is spatial resolution. Resolution means, first, 84 

spatial resolution of the remote sensing data from which different metrics are calculated and, second, 85 

the spatial resolution of the output map, i.e., the grain size of the units for which the metrics are 86 

calculated to produce an AGB prediction. The resolution of the data is determined by the sensor’s 87 

technical specifications and the capacities to store and process data. The resolution of the mapping units 88 

is influenced by the desired estimation accuracy and the desired spatial detail of the mapped product. 89 

Köhler & Huth (2010), Mascaro et al. (2011b) and Chen et al. (2016) showed how errors in AGB 90 

estimations from mean lidar heights decreased with increasing grain sizes and that a grain of 91 

approximately 1 ha is required to achieve errors of < 10%.  92 

Fitting any of the described lidar metrics to measured AGB relies on field inventory data. Forest 93 

inventory plots are limited in number, size and structural variety. The collection of inventory data is 94 
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costly and laborious and most studies in the past made use of tens to a few hundred plots (Fassnacht et 95 

al., 2014). Those plots are often located in old growth forests. Hence, available data sets might not cover 96 

the full structural complexity of forests over their entire successional range (noteworthy exceptions are 97 

e.g., Dubayah et al. 2010, Poorter et al. 2016). For lidar-to-AGB-calibration, a broad range of different 98 

forest succession states that cover the range of all possible AGB stocks and associated forest structures is 99 

preferable. To overcome this limitation, we propose a new approach in which we complement in situ 100 

measurements with simulated forest stands (Fig. 1). We used an individual-based forest model 101 

(FORMIND, Fischer et al., 2016) to simulate a large virtual inventory dataset, covering the full range of 102 

succession stages by including forest disturbances in the simulations. The model was parameterized to 103 

represent the well-studied lowland tropical rainforest of Barro Colorado Island, Panama (Condit et al., 104 

2001; Kazmierczak et al., 2014). We developed a lidar model to sample lidar data of simulated forest 105 

stands.  106 
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 107 

Fig. 1: Workflow of the study. Reference data from field inventories and an airborne lidar campaign were used to 108 
parameterize and calibrate a forest model and a lidar model. With the models, large quantities of simulated inventory and 109 
simulated lidar data were generated, allowing for a systematic analysis of lidar-to-biomass relationships under different 110 
disturbance regimes and for various spatial scales. 111 

The research goals of this study were 1) to establish a lidar simulation model that is able to produce 112 

synthetic lidar-like data for dynamic forest model output; 2) to test a wide variety of lidar metrics for 113 

their ability to predict AGB of a tropical rainforest at various spatial scales; and 3) to investigate the 114 

influence of disturbances on the lidar-to-biomass relationships.  115 

116 
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2. Material & Methods 117 

 118 

2.1 Study area 119 

The study focused on the tropical forest on Barro Colorado Island (BCI), Panama (9.15° N, 79.85° W). BCI 120 

is a 15 km2 island located in Lake Gatun, an artificial water body created by the construction of the 121 

Panama Canal (Condit et al., 2001). It is covered with semi-deciduous tropical lowland rainforest, the 122 

minimum forest age is estimated to range from 300 to 1500 years (Bohlman & O’Brien, 2006; Meyer et 123 

al., 2013; Lobo & Dalling, 2014). The climate is characterized by average daily maximum and minimum 124 

temperatures of 30.8 and 23.4 °C and an annual precipitation sum of approximately 2600 mm, with a dry 125 

season from January to April (Condit et al., 2001). A 50-ha rainforest observation plot is located on the 126 

central plateau of the island, with terrain altitudes varying between 120 and 160 m above sea level (Lobo 127 

& Dalling, 2014). Since the establishment of the plot in the early 1980s, each tree in the 1000 m × 500 m 128 

area with a DBH ≥ 1 cm has been measured during censuses in five year intervals (Condit, 1998; Hubbell 129 

et al., 1999, 2005). Estimates of the mean canopy height are 24.6 ± 8.2 m, and those of the mean AGB 130 

are 281 ± 20 t/ha (Chave et al., 2003).  131 

 132 

2.2 Lidar data 133 

An airborne discrete point cloud lidar dataset was collected on BCI in August 2009 with a multi-pulse 134 

scanning laser altimeter (Optech ALTM Gemini system; BLOM Sistemas Geoespaciales SLU, Madrid, 135 

Spain, Lobo & Dalling, 2014). The terrain elevation was subtracted from the point cloud to obtain the 136 

relative height above ground. Point densities ranged from 0 to 60 m-2 with a median of 10 m-2 and a 5th-137 

percentile of 4 m-2. To avoid locally varying point densities, caused by flight swath overlaps, the point 138 

clouds were thinned by random subsampling of 4 returns in each square meter. A 1-m resolution canopy 139 
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height model (CHM) was derived from the highest returns in each square meter. Data processing was 140 

performed using LAStools (Isenburg, 2011) and R (R Development Core Team, 2014). 141 

 142 

2.3 Lidar model description 143 

The purpose of the lidar model is the simulation of a lidar scan of a given forest stand. More specifically, 144 

it generates point clouds of discrete returns as usually produced by small-footprint lidar systems. As 145 

input, a tree list has to be provided. The list can either be real forest inventory data or data generated by 146 

a forest model (Fig. 2a). The basic elements of the model are trees, lidar pulses and lidar returns. Trees 147 

are characterized by their position (X- and Y-coordinate), height, crown length, crown radius, crown 148 

shape and leaf area index (LAI). The model operates in a 3D space represented by an array of cuboid 149 

voxels. Each vertical column of voxels represents one modeled lidar pulse. Lidar returns are points in 3D 150 

space, characterized by their X-, Y- and Z-coordinates. 151 

From the tree list, a voxel representation of the entire forest is created. Thus, voxels that could 152 

potentially produce a lidar return, because they belong to a tree crown or the ground, are distinguished 153 

from empty space voxels. The voxel forest is then scanned with a virtual lidar. The simulation follows a 154 

probabilistic approach. Instead of explicitly simulating the branches and foliage and their interaction with 155 

laser beams within the tree crowns, the model assumes that the tree crown space is a homogeneous, 156 

turbid medium filled with a certain leaf area density (LAD). The probability of having a lidar return from a 157 

certain point decreases as the distance the laser beam has to travel through the medium before reaching 158 

the point increases. This relationship is analogous to the Beer-Lambert light-extinction law (Campbell & 159 

Norman, 2012). Thus, the probability for a lidar return P for each tree and ground voxel (Fig. 2c) can be 160 

calculated as a function of cumulative leaf area index LAI above the voxel (Fig. 2b). 161 

     𝑷(𝑳𝑨𝑰) = 𝑷𝟎  ∙ 𝒆−𝒌 ∙𝑳𝑨𝑰     (1) 162 
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P0 in Eq. (1) represents the probability of obtaining a return from the very upper voxel, where the laser 163 

beam hits a tree or the ground for the first time. The parameter k is the exponential extinction 164 

coefficient, which determines how fast the return probability decreases after entering the crown space. 165 

The decision regarding whether each voxel will contain a return is taken stochastically, based on the 166 

calculated return probability. Ultimately, this leads to a discrete point cloud (Fig. 2d). The voxel 167 

resolution was set to 0.5 m × 0.5 m along the horizontal direction and 1 m along the vertical direction. 168 

The parameters P0 and k were calibrated such that simulated point cloud profiles derived for subareas of 169 

the 50-h inventory data set matched the airborne lidar profiles of those subareas (details see 170 

supplements). The resulting value for k = 0.2 can be confirmed by literature (Campbell & Norman 2012, 171 

Jones 2013). For P0 we found 0.2 to be a good value, leading to simulated point densities that were 172 

similar to the airborne reference point cloud. P0 being smaller than 1 can be interpreted by the 173 

heterogeneity of leafs, branches and empty space within the tree crown. This means that a laser beam 174 

entering the idealized cylindrical tree crown does not necessarily trigger a return in the first voxel.  175 
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 176 

Fig. 2: Principle of the lidar model. Inputs to the workflow can either be forest model output or field inventory data. The 177 
pictures on the right side show intermediate products: a) Visualization of a forest stand; b) voxel representation with colors 178 
indicating the cumulative leaf area index; c) voxel representation with colors indicating the probability of containing a lidar 179 
return; d) simulated lidar point cloud with colors indicating height above ground. 180 

  181 
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2.4 Forest model description 182 

FORMIND belongs to the group of forest gap models (Botkin et al., 1972; Shugart, 1984; Bugmann, 183 

2001). As such, the model simulates the processes of establishment, growth, competition and mortality 184 

of trees on spatial patches with the dimensions of a typical treefall gap (20 m × 20 m). By combining 185 

many patches, large forest areas of hundreds of hectares can be simulated. FORMIND is an individual-186 

based model (IBM) in which the individuals represent trees that belong to different plant functional 187 

types (PFTs). One PFT may contain several species with similar ecological traits. FORMIND has been 188 

applied to many tropical forest sites and has proven capable of accurately reproducing patterns 189 

observed in these complex ecosystems (Fischer et al., 2016). The individual-based model architecture 190 

allows for the inclusion of disturbances such as logging or forest fires in a structurally realistic way. A 191 

detailed description of FORMIND including the modules for logging and fire disturbance can be found in 192 

Fischer et al. (2016). The supplements contain descriptions of the parameterization of the lidar model 193 

and the forest model (Tab. S1). Before using the forest model output for remote sensing analyses, the 194 

structural validity of the simulated old growth stands was confirmed by visually comparing biomass 195 

stocks (Fig. S1) and stem size distributions (Fig. S2) of all PFTs to the values obtained from the inventory 196 

data.  197 

 198 

2.5 Simulation experiment 199 

Using FORMIND, we simulated the development of a 16 ha (400 m × 400 m) area of the BCI forest over 200 

several thousands of years and stored the results at 20-yr intervals. The simulations were repeated with 201 

different disturbance regimes. The first run comprised 2000 yr without any external disturbance, 202 

simulating only natural gap dynamics. In the second run, forest fires were introduced as a source of 203 

spatially heterogeneous disturbance to clear parts of the area regularly and enable natural succession 204 

and regrowth. Fire occurrence was drawn from a Poisson distribution such that the mean interval 205 
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between two fire events was 25 yr. Fire size at each fire event was drawn from an exponential 206 

distribution, such that on average 50% of the total area was affected. More information on the fire 207 

module used is provided in Fischer (2013) and Fischer et al. (2016). The third scenario included selective 208 

logging. At a logging cycle of 99 yr, all trees with DBH > 30 cm were felled and removed. More 209 

information on the logging module used is provided in Huth et al. (2004). For all three runs, the first 200 210 

yr were discarded as spin-up. For each of the remaining simulation years, a virtual lidar campaign using 211 

the lidar model was conducted. The disturbance frequencies and intensities were not intended to 212 

represent realistic disturbances scenarios in the study region. The intention was to sample many stands 213 

at each stage along the full successional range, using the disturbance modules to regularly set the forest 214 

back to an early stage. The selective logging acts on the whole area, while the fires move in a spatially 215 

explicit way through the simulated area, causing mosaics of unaffected forest next to cleared areas 216 

where succession starts over. Such patchy landscapes are typical for many forest regions, although the 217 

reasons for the structures may be as diverse as clear cuts, wind blowdowns, fires or natural areas 218 

without vegetation, e.g., grasslands or water bodies. Thus, these simulations produce landscapes that 219 

can be used as general examples of heterogeneous landscapes. 220 

 221 

2.6 Lidar-based biomass prediction 222 

We analyzed forest plots measuring 20, 33, 50, 100 or 200 m (side length). At each spatial scale, a range 223 

of 29 different lidar metrics (Tab. 1) were tested for their suitability as single predictors of AGB. Metrics 224 

were either derived from point clouds (PC) or canopy height models (CHM). CHMs were constructed 225 

from point clouds by rasterizing the highest lidar returns in each pixel of a given pixel size.  226 

Point-cloud-based metrics comprised the mean canopy profile height (MCH), which is the mean height of 227 

all lidar returns, and the quadratic mean canopy profile height (QMCH), where high returns receive a 228 
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larger weighting than low returns. For a given point cloud profile pPC that consists of lidar return counts 229 

at height bins hi, MCH and QMCH can be calculated from Eq. (2) and (3), respectively. 230 

     𝑴𝑪𝑯 =  ∑ (𝒑𝑷𝑪,𝒊 ∙ 𝒉𝒊) 𝒊𝒎𝒂𝒙𝒊=𝟏∑ 𝒑𝑷𝑪,𝒊  𝒊𝒎𝒂𝒙𝒊=𝟏      (2) 231 

     𝑸𝑴𝑪𝑯 =  √∑ (𝒑𝑷𝑪,𝒊 ∙ 𝒉𝒊𝟐) 𝒊𝒎𝒂𝒙𝒊=𝟏∑ 𝒑𝑷𝑪,𝒊  𝒊𝒎𝒂𝒙𝒊=𝟏      (3) 232 

where pPC,i is the lidar return counts in height bin hi. A metric similar to MCH can be derived from the 233 

vertical CHM profile instead of the point cloud profile. This metric corresponds to the mean of all pixel 234 

values of the CHM, and is commonly referred to as the mean top-of-canopy height (TCH, Eq. (4)). 235 

     𝑻𝑪𝑯 =  ∑ (𝒑𝑪𝑯𝑴,𝒊 ∙ 𝒉𝒊) 𝒊𝒎𝒂𝒙𝒊=𝟏∑ 𝒑𝑪𝑯𝑴,𝒊  𝒊𝒎𝒂𝒙𝒊=𝟏      (4) 236 

Because a CHM can be derived from a point cloud at variable pixel resolutions, by taking the height of 237 

the highest return that falls into each pixel, TCH always depends on the pixel size used. We calculated 238 

TCH from CHMs with pixel side lengths of 1, 5, 10, 20, 33, 50 and 100 m. Note that, once the pixel size 239 

equals the plot size for which AGB is calculated, TCH is equal to the maximal height in the plot, which is 240 

also referred to as Hmax or RH100 in the literature. Another method for measuring forest height from 241 

lidar data is by using relative height quantiles of either the point cloud or the CHM. These quantiles 242 

represent the heights below which a certain percentage of the returns or CHM pixels fall. We calculated 243 

RH25, RH50 and RH75 for the point clouds and 1-m resolution CHMs.  244 

Other metrics, however, capture the vertical heterogeneity of the forest. Those metrics include the 245 

standard deviation (SD) of heights (point-cloud- or CHM-based), the coefficient of variation (CV, Eq. (5) 246 

and (6)), the skewness of the vertical point cloud profile (Eq. (7), where N is the total number of points 247 

and hi is the height of each point i), the Shannon Index (Eq. (8), where imax is the number of height layers 248 

and pi is the count of points in the layer i) as a measure of entropy of the profile and the P:H ratio (Eq. 249 

(9), where imax is the number of height layers, pi is the count of points in the layer i and hi is height of 250 
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layer i), which describes the height of the densest part of the point cloud (peak in the profile) relative to 251 

the maximal height (Marvin et al., 2014). 252 

     𝑪𝑽𝑷𝑪 =  𝑺𝑫𝑷𝑪𝑴𝑪𝑯      (5) 253 

     𝑪𝑽𝑪𝑯𝑴 =  𝑺𝑫𝑪𝑯𝑴𝑻𝑪𝑯       (6) 254 

     𝑺𝒌𝒆𝒘𝒏𝒆𝒔𝒔 =  𝟏𝑵  ∙  ∑ (𝒉𝒊−𝑴𝑪𝑯𝑺𝑫𝑷𝑪 )𝟑 𝑵𝒊=𝟏     (7) 255 

     𝑺𝒉𝒂𝒏𝒏𝒐𝒏 𝑰𝒏𝒅𝒆𝒙 = − ∑ 𝒑𝒊  ∙ 𝐥𝐧(𝒑𝒊)𝒊𝒎𝒂𝒙𝒊=𝟏    (8) 256 

     𝑷: 𝑯 𝒓𝒂𝒕𝒊𝒐 =  𝒉( 𝐦𝐚𝐱𝒊 𝝐 [𝟏, 𝒊𝒎𝒂𝒙](𝒑𝒊))𝐦𝐚𝐱𝒊 𝝐 [𝟏, 𝒊𝒎𝒂𝒙](𝒉𝒊)     (9) 257 

Furthermore, we calculated vegetation density metrics. Based on the point clouds, the count of 258 

aboveground returns divided by either the count of ground returns NAGR/NGR or the count of total returns 259 

NAGR/NTR was calculated. Based on the CHMs, the fractional canopy cover (FCC) was derived by defining 260 

different height thresholds below which a CHM-pixel was considered a canopy gap. We calculated FCC0, 261 

FCC10 and FCC20 using the forest floor, 10 m and 20 m as height thresholds, respectively.  262 

Tab. 1: List of the lidar metrics and the underlying data (PC = point cloud, CHM = canopy height model). CHM usually refers to 263 
1-m resolution rasters, except for TCH where various resolutions were tested. 264 

Lidar metric Description Data 

MCH Mean canopy profile height PC 

QMCH Quadratic mean canopy profile height PC 

TCH Mean top-of-canopy height (at variable CHM pixel resolutions), 
e.g., TCH5 is based on 5-m pixels 

CHM 

RH Relative height quantile, e.g., RH50 is the 50-percentile of 
heights 

PC or CHM 

SD Standard deviation of heights PC or CHM 

CV Coefficient of variation of heights (normalized SD) PC or CHM 

Skewness Skewness of the vertical profile PC 

Shannon Index Entropy of the vertical profile PC 

P:H ratio Relative height of the peak in the vertical profile PC 

NAGR/NGR  Ratio of aboveground returns to ground returns PC 

NAGR/NTR  Ratio of aboveground returns to total returns PC 

FCC Fractional canopy cover, e.g., FCC10 is the relative share of pixels 
higher than 10 m 

CHM 

 265 
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Each lidar metric LM was fit to the dependent variable AGB using a power law model (Eq. (10)) and 266 

maximum likelihood estimation in R. 267 

     𝑨𝑮𝑩 =  𝒂 ∙ 𝑳𝑴 𝒃      (10) 268 

If possible, such relationships were derived for plots with side lengths of 20, 33, 50, 100 and 200 m. 269 

Relationships could not be derived in cases where pixel size exceeded plot size or where the maximum 270 

likelihood estimation did not provide a parameter b different from zero. The AGB-prediction accuracy for 271 

the different power law functions was quantified as the normalized root mean square error (nRMSE) [%]. 272 

The measure was calculated as the RMSE of n AGB predictions against n observations, normalized by the 273 

mean observed AGB (Eq. (11)).  274 

     𝒏𝑹𝑴𝑺𝑬 =  √∑ (𝒑𝒓𝒆𝒅𝑨𝑮𝑩𝒊−𝒐𝒃𝒔𝑨𝑮𝑩𝒊)𝟐𝒏𝒊=𝟏 𝒏  ∙  𝟏𝒐𝒃𝒔𝑨𝑮𝑩̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   (11) 275 

The power law parameters and additional statistics (mean, RMSE, bias, R², slope and intercept of linear 276 

fits between predictions and observations) for all metrics, scales and datasets (672 models) can be found 277 

in Tab. S2.  278 

  279 
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3. Results 280 

 281 

3.1 Forest and lidar simulation results 282 

The forest simulations could reproduce AGB succession over time for the four PFTs. An overshoot of total 283 

AGB around a forest age of 100 yr was observed (Fig. S1). The duration of the primary succession and the 284 

biomass overshoot are consistent with observations by Mascaro et al. (2012). Furthermore, the stem size 285 

distributions for all four PFTs matched well between the model and reference data (Fig. S2). The AGB 286 

distributions of reference data and undisturbed and disturbed FORMIND runs can be found in Fig. 3, and 287 

for the undisturbed case, the simulated distributions are in good agreement with previously reported 288 

distributions based on field data (Chave et al., 2003). At all scales the range of AGB in undisturbed 289 

simulations was smaller than the observed range of AGB in the field reference data. In the disturbance 290 

scenarios, the range of AGB values increased. At the small 20 m × 20 m scale, the real forest contained 291 

extremely high local AGB values (max. 2022 t/ha) caused by single large trees. Such extreme values were 292 

not reached in the simulations. 293 

 294 

Fig. 3: Relative frequency distributions of aboveground biomass (AGB). Columns represent the BCI field data (50 ha) and 295 
output of FORMIND simulations from different disturbance scenarios (1,400 ha each). Rows represent different spatial 296 
resolutions. Notice the different axis scaling in each row. 297 
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 298 

Using the lidar simulation approach, synthetic lidar data were generated for the simulated forest stands. 299 

Lidar simulation outputs, such as the vertical point cloud profile (Fig. 4) and CHMs, closely resembled 300 

their airborne equivalents. In the supplements we present how alternative assumptions about the tree 301 

geometry affect the simulated lidar profiles and metrics (Fig. S15 to S18). 302 

 303 

 304 

Fig. 4: Vertical lidar profiles of a) the 9 ha in the southwestern corner of the BCI megaplot, airborne and simulated based on 305 
inventory data; b) the same for the 9 ha in the northeastern corner of the BCI megaplot; and c) the simulated lidar profile of 306 
16 ha simulated forest in FORMIND in the old growth stage (age 500 yr). Dashed lines mark the mean canopy profile height 307 
(MCH), and ‘×’ symbols mark the ground return peaks. 308 

 309 

3.2 Biomass prediction from top-of-canopy height 310 

Based on the simulated stands, we analyzed 4,200 ha of forest (3.7 million trees with DBH ≥ 3 cm) with 311 

respect to the relationships between forest height (TCH) and biomass (AGB). We generated undisturbed 312 

(1,400 ha), fire-disturbed (1,400 ha) and logging-disturbed (1,400 ha) stands. Fig. 5 shows the 313 

relationships observed for different plot sizes (20 to 100 m) assuming a fine resolution (pixel size = 1 m). 314 

The disturbed stands (fire and logging were pooled) cover a wider range of TCH and AGB values than the 315 
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undisturbed stands. The fitted relationships for undisturbed and disturbed forest stands are similar. The 316 

scattering around the regression lines decreases with increasing plot size. If we decrease the pixel 317 

resolution from 1 to 10 m (Fig. 6), we observe a change in the TCH-to-AGB relationship. Curves become 318 

flatter because averaging over lidar point height maxima in 10 m × 10 m pixels leads to higher TCH-319 

values than averaging over the lidar point height maxima in all 1 m × 1 m pixels. Thus, the coarser the 320 

pixel resolution is, the higher the TCH value for a given stand becomes. For the 1-m and the 10-m pixel 321 

resolution, we observe similar relations for disturbed and undisturbed forests, respectively. More 322 

extensive analyses and graphics that consider the BCI reference data and treat the different disturbance 323 

regimes separately can be found in the supplementary material (Fig. S4 and following). 324 
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 325 

Fig. 5: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) from 1-m pixel resolution (CHM) for different 326 
plot sizes. All data was derived from FORMIND and lidar simulations. 1) The first row demonstrates the sampling approach. 327 
Shown is a scene of 9 ha simulated forest with different stages of succession. The following rows show the TCH-to-AGB 328 
relationship with each record representing one 20-m, 50-m or 100-m plot, respectively, for 2) 1,400 ha of undisturbed 329 
simulated forest (green), 3) 1,400 ha of fire-disturbed and 1,400 ha of regularly logged simulated forest (red) and 4) the 330 
curves of the best power law fits. 331 
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 332 

Fig. 6: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) from 10-m pixel resolution (CHM) for different 333 
plot sizes. All data was derived from FORMIND and lidar simulations.  1) The first row demonstrates the sampling approach. 334 
Shown is a scene of 9 ha simulated forest with different stages of succession. The following rows show the TCH-to-AGB 335 
relationship with each record representing one 20-m, 50-m or 100-m plot, respectively, for 2) 1,400 ha of undisturbed 336 
simulated forest (green), 3) 1,400 ha of fire-disturbed and 1,400 ha of regularly logged simulated forest (red) and 4) the 337 
curves of the best power law fits. 338 

 339 
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The general trends were that the nRMSE of the TCH-based AGB predictions increased with decreasing 340 

plot size and with increasing pixel size (Fig. 7). The prediction accuracy at each scale was better for the 341 

undisturbed forest dataset than for the disturbed forest dataset, indicated by generally lower nRMSE for 342 

each plot size and pixel size combination for the undisturbed forest as compared to the disturbed forest 343 

(Fig. 7). For the disturbed dataset and large plot sizes (100 and 200 m), we observed slightly better 344 

prediction accuracies at medium pixel resolutions (5 and 10 m) than at fine pixel resolutions (1 and 2 m). 345 

The analysis shows that to achieve, a plot-level biomass estimation error < 10%, plot sizes of ≥ 100 m are 346 

required. At such plot sizes, any pixel size would be sufficient to predict AGB for undisturbed forests with 347 

the desired accuracy, but for disturbed forests, the errors exceed 10% and increase strongly at pixel sizes 348 

≥ 20 m. 349 

 350 
Fig. 7: Normalized root mean square errors (nRMSE) [%] of power law models that describe the relationship between 351 
aboveground biomass (AGB) and top-of-canopy height (TCH) at different plot scales and different pixel resolutions for 352 
undisturbed and disturbed simulated forest. For pixel sizes of 1 and 10 m, the decrease in nRMSE with increasing plot size is 353 
shown on the right side. 354 

 355 
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3.3 Biomass prediction based on various lidar metrics 356 

In addition to TCH, we analyzed 21 other metrics concerning their capability to predict biomass using 357 

power law equations. For this analysis, we no longer distinguished between the different disturbance 358 

regimes and pooled all forest stands. Fig. 8 shows nRMSE values for all lidar metrics, for which it was 359 

possible to fit a power law model, at the plot scales of 100 and 20 m. From left to right, the metrics are 360 

sorted by increasing nRMSE at the 100-m plot size. The figure shows that the best ten metrics are all 361 

measures of forest height. Vegetation density metrics (e.g., NAGR/NGR and FCC) and vertical heterogeneity 362 

metrics (e.g., SD and Shannon Index) were less accurate AGB predictors than height metrics. The best 363 

predictions at large plot scales were achieved by TCH (10 m) and TCH (5 m), whereas at small plot scales 364 

RH75, MCH, QMCH and TCH (1 m) were the most accurate predictors. We could not find any relationship 365 

between AGB and CV of height, profile skewness or P:H ratio. The Shannon Index of the profiles only 366 

showed a relationship with AGB for plot sizes ≥ 50 m. Scatter plots of a selection of metrics against AGB 367 

can be found in Fig. S12, nRMSE values for all metrics at all plot scales are displayed in Fig. S13 and 368 

detailed statistics and the coefficients of all fit power laws are listed in Tab. S2.  369 

 370 

Fig. 8: Normalized root mean square errors (nRMSE) [%] of power law models that describe the relationship between 371 
aboveground biomass (AGB) and various lidar metrics (for explanations of the abbreviations, please refer to the main text 372 
and Tab. 1) at plot scales of 100 and 20 m, respectively. From left to right, the metrics are sorted by increasing nRMSE at the 373 
100-m plot size. Whether certain metrics were derived from point clouds (PC) or from canopy-height-models (CHM) is 374 
indicated in brackets. This analysis was based on pooled (undisturbed and disturbed) simulated forest data and lidar 375 
simulations. Missing bars indicate that no power law model could be fit at the 20-m plot size. 376 

  377 
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4. Discussion 378 

 379 

This study demonstrated a new approach for simulating 3D lidar point clouds of forest stands and for 380 

investigating structural lidar metrics for their relationship with AGB of a tropical forest using forest 381 

simulations. We explored the accuracy of AGB predictions based on various lidar metrics, spatial scales 382 

and considering undisturbed and disturbed forest plots. 383 

 384 

4.1 Lidar simulations 385 

Unlike other lidar simulation approaches that use detailed radiative transfer theory (Sun et al., 1993; Ni-386 

Meister et al., 2001; Kotchenova et al., 2003; Goodwin et al., 2007) or explicit 3D models of trees and ray 387 

tracing (Disney et al., 2010; Endo et al., 2012), our method requires only a minimal parameter set to 388 

efficiently compute synthetic lidar point clouds for large areas. Under simple assumptions, e.g., one DBH-389 

to-height and DBH-to-crown-diameter allometry, a constant crown length proportion, cylindrical crowns 390 

shapes and a homogeneous leaf area density within crowns, the lidar model was able to reproduce the 391 

vertical lidar profiles of different 9-ha subplots within the 50-ha BCI megaplot to an overlap of 87%. An 392 

extinction factor kNIR of approximately 0.2 was suggested by empirical measurements (Jones, 2013) and 393 

theoretical considerations (Campbell & Norman, 2012; Tang et al., 2012) and could be confirmed by our 394 

inverse modeling tests. 395 

Airborne and simulated profiles for the 9-ha subplots matched well in general. They diverged most in the 396 

upper canopy, where the DBH-to-height allometry led to an overestimation of high trees. Frequencies of 397 

ground returns of simulated profiles were approximately 25% lower than for the airborne data, which 398 

could be adjusted by choosing another lidar return probability P0 for ground voxels. Because the exact 399 

size of the ground return peak does not affect most of the lidar metrics, we did not treat ground voxels 400 

differently than canopy voxels in this study. It should also be noted that simulated lidar profiles 401 
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(inventory- and FORMIND-based) contain only returns from trees and ground. Non-woody vegetation 402 

such as shrubs and lianas may contribute to the airborne lidar profiles, particularly near ground, whereas 403 

they are absent in the simulations. 404 

 405 

4.2 Biomass prediction from lidar height 406 

For the simulated BCI lidar dataset, TCH at various pixel resolutions performed better than any other 407 

lidar metric for biomass predictions. The lowest AGB prediction errors (< 10%) were found for large 408 

mapping units (plot sizes of 100 and 200 m) with TCH derived from CHMs with pixel sizes of 5 to 20 m. 409 

For the smaller mapping units of 50 m, 33 m and 20 m, the minimal achievable errors from any metric 410 

were 15%, 23% and 33%, respectively. At those scales, the high pixel resolution TCH, RH75 or point-411 

cloud-based MCH and QMCH led to slightly smaller errors than TCH of medium pixel resolution. The 412 

finding that medium pixel resolution CHMs are sufficient to make highly accurate AGB predictions at the 413 

1-ha scale is encouraging for spaceborne biomass mapping efforts on the global scale. The generation of 414 

high-resolution information (e.g., pixel size of 1 m) requires airborne laser scanning campaigns, whereas 415 

medium resolutions can be derived from satellites. The synthetic aperture radar satellite system 416 

TanDEM-X can provide forest heights closely correlated to TCH at a resolution of 10 m (referred to as 417 

H100 in the radar literature; Kugler et al., 2014; Lee & Fatoyinbo, 2015). Future sensors, such as GEDI 418 

(http://science.nasa.gov/missions/gedi/) and Tandem-L (https://www.tandem-l.de/), will provide data of 419 

similar horizontal resolution (20 to 50 m) and improved vertical resolution. Thus, TCH as well as MCH and 420 

RH75 of the vertical profiles are promising metrics for estimating AGB using these sensors. The analysis 421 

also showed that sensors that only provide maximum height at the coarse resolution of 100 m lead to 422 

AGB estimation errors of > 25%. It appears highly plausible that CHMs with pixels sizes around 10 m that 423 

correspond to the dimensions of the objects of interest, namely crowns of medium to large trees, which 424 

contribute most to the total AGB, are a good data source for AGB inference. High-resolution data such as 425 
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1-m pixel CHMs or the full point cloud have the advantage of providing detailed information on crown 426 

architecture and small gaps, but this information might only be additional noise in the signal for stand 427 

level AGB and may not be necessary for large-scale mapping. 428 

 429 

4.3 The role of structural metrics 430 

Metrics of vertical heterogeneity (e.g., standard deviation or Shannon Index) and vegetation density 431 

(e.g., NAGR/NGR or FCC) showed weaker relationships with AGB than most of the height metrics. Hence, 432 

these metrics might not be the optimal choice as single AGB predictors. However, considering vegetation 433 

structure in addition to mean height could potentially improve AGB estimations. Several approaches 434 

have been suggested to improve power-law-based lidar-to-AGB models by considering additional 435 

predictors. These predictors include horizontal and vertical structure indices (Tello et al., 2015) and 436 

texture metrics of the CHM (Abdullahi et al., 2016). Finally, when thinking beyond AGB stock prediction 437 

and towards the study of forest dynamics and disturbances based on remote sensing, structural metrics 438 

may become very important. The Shannon Index of the lidar profile has been previously associated with 439 

productivity and mortality (Stark et al., 2012), and gap fraction and size distribution may provide 440 

information about disturbances (Lobo & Dalling, 2014). 441 

 442 

4.4 Prediction errors 443 

For all tested lidar metrics, we observed the tendency for the prediction errors to decrease with 444 

increasing plot scale. This pattern has been reported and quantified previously for MCH (Asner et al., 445 

2010; Mascaro et al., 2011b), QMCH (Chen et al. 2016) and TCH (Köhler & Huth, 2010; Asner & Mascaro, 446 

2014) and in general for the situation in which remote sensing footprints and ground plot extents do not 447 

fully match (Réjou-Méchain et al., 2014). In our analysis, the spatial locations and extents of ground plots 448 

and remote sensing data matched perfectly, because they were based on simulations. Also there was no 449 
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displacement of crowns from stem locations. Thus, our dataset is free of geolocation errors and the 450 

observed residuals in the lidar-to-AGB relationships can be attributed to the following sources of 451 

uncertainty: 1) the highly clumped biomass distribution on the ground, i.e., the majority of biomass is 452 

localized in tree trunks at specific positions with empty space in between, whereas remote sensing 453 

signals capture the tree crowns, which are spread around the trunk positions; 2) edge effects of 454 

overhanging tree crowns with trunk positions and thus biomass being located outside the focal plot area; 455 

3) the general variability among trees with respect to their geometries and wood densities; and 4) the 456 

undergrowth vegetation that is obscured by the upper canopy and not detected by the remote sensing 457 

sensor. The error caused by 1) should decrease with increasing plot size due to the decrease in biomass 458 

variability (Fig. 3) and the decreasing influence of single large trees. The error caused by 2) should 459 

decrease with increasing core area to edge length ratio. The error caused by 3) should decrease because 460 

differences at the individual tree level average out with increasing plot size. Only errors caused by 4) can 461 

be expected to be scale-independent. Using a crown-distributed instead of a stem-localized biomass 462 

distribution as ground truth has been shown to reduce estimation errors (Mascaro et al., 2011b). 463 

However, the actual biomass distribution in a forest is expected to be closer to being stem-localized than 464 

(uniformly) crown-distributed. Thus, reducing errors by assuming crown-distributed biomass does not 465 

necessarily lead to more accurate biomass maps. Our modeling approach may allow future studies to 466 

gain a closer look at the contributions of the separate error sources by switching them off one at a time. 467 

Different lidar metrics showed different changes in errors across scales: e.g., in moving from large to 468 

small plots, the errors of TCH20, TCH33 and the Shannon Index increased much faster than for other 469 

metrics with similar errors at the 200-m scale (Fig. 8 and S13). For the Shannon Index, the relationship 470 

with AGB was entirely lost at scales smaller than 50 m. 471 

 472 

4.5 Linking remote sensing with dynamic forest models 473 
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Despite the great potential of the proposed approach, relatively few studies have linked remote sensing 474 

and forest modeling. Applications include model initialization (Ranson et al., 2001; Hurtt et al., 2004), 475 

model parameterization (Falkowski et al., 2010), remote sensing calibration (Köhler & Huth, 2010; Palace 476 

et al., 2015), error quantification (Hurtt et al., 2010; Frazer et al., 2011) and the understanding of large-477 

scale ecosystem patterns and processes (Shugart et al., 2015). Our study is the first to demonstrate how 478 

remote sensing simulations combined with a dynamic forest model can provide remote sensing metrics 479 

over the full range of disturbance-induced successional stages, which is particularly useful for tropical 480 

forests where available field data is limited. The lidar-to-AGB relationships can differ between 481 

disturbance types because one type (e.g., fire) might cause mosaics of surviving trees and bare ground, 482 

whereas another type (e.g., selective logging) might cause a height degradation throughout the entire 483 

study area. Horizontal heterogeneities, such as those caused by fires, are particularly problematic when 484 

lidar metrics are aggregated over larger areas. Thus, the disturbance regime of a region and the presence 485 

of the described phenomena should be taken into account when deciding which metric and resolution to 486 

choose for biomass mapping. Modeling can be one way to explore these effects in greater detail.  487 

An important condition for combining a forest model and remote sensing is the structural realism of the 488 

model in the relevant aspects. Overall, our model was able to reproduce forest attributes and literature 489 

values well. Previous studies on BCI that linked AGB at the 1-ha scale to MCH derived from airborne lidar 490 

scans reported RMSE values of 17 tCarbon/ha (Mascaro et al., 2011a) and 28.9 tAGB/ha (Meyer et al., 2013) 491 

in agreement with the value of 27.1 tAGB/ha we obtained for the pooled simulated dataset (Tab. S2). A 492 

noteworthy deviation between the simulation data and reference data was that for comparable AGB 493 

values the simulated TCH was higher than the airborne TCH, particularly at the upper end of the AGB and 494 

TCH ranges (described in detail in supplements). We believe that this deviation was primarily caused by 495 

the simple tree geometries used in the forest model. Using only one general DBH-to-height allometry for 496 

all trees might be suboptimal if the aim is to reproduce the natural height heterogeneity of the upper 497 
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canopy at all scales. In our simulations, too many trees reached the maximum possible height of 55 m, 498 

which is an exceptional height on BCI observed for only one tree in the airborne lidar CHM. Hurtt et al. 499 

(2004) encountered a similar problem with large trees. In their case, model-derived canopy heights were 500 

restrained to a maximum, whereas observed lidar heights exceeded that limit. Therefore, one potential 501 

improvement for future model parameterizations would be to consider asymptotic instead of power law 502 

DBH-to-height allometries and allow for a certain plasticity of modeled heights and crown diameters. The 503 

sensitivity analysis about model assumptions showed that the alternative scenario using an asymptotic 504 

tree height allometry led to slight increases in R² and decreases in nRMSE of the stand height to biomass 505 

relationship (S16-S18). Recent advances in individual tree delineation from airborne lidar (Duncanson et 506 

al., 2014; Ferraz et al., 2016) and terrestrial laser scanning (Raumonen et al., 2013) have the potential to 507 

improve our understanding of tree allometries and the structural realism of forest models. When models 508 

are able to reproduce observed patterns in the relationship between remote sensing metrics and static 509 

biomass stocks, we can move forward using the presented methodology to explore dynamic changes of 510 

biomass stocks.  511 

 512 

5. Conclusion 513 

 514 

This study introduced a novel approach for coupling remote sensing simulations with a dynamic forest 515 

model to derive structure-to-biomass relationships for a tropical forest, including disturbed stands. The 516 

lidar model was validated successfully with airborne and census reference data from Barro Colorado 517 

Island. The model proved its capacity for efficient and realistic lidar point cloud simulations for large, 518 

simulated forest stands. Virtual forest inventory datasets were generated with a forest model and 519 

sampled with the lidar simulation model. The results provide a comprehensive overview of biomass 520 
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estimation errors for a wide range of lidar metrics and spatial scales and may guide decisions on which 521 

metric to choose for a given remote sensing data structure (e.g., point clouds, vertical profiles, canopy 522 

height models). It was found that height-to-biomass relationships were similar for undisturbed and 523 

disturbed forest, but errors were larger for the latter. Furthermore, we found that top-of-canopy height 524 

was an accurate biomass predictor even if pixel resolutions were only 10 to 20 m. Such resolutions could 525 

be derived at large scale from spaceborne sensors.  526 
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LIST OF FIGURE CAPTIONS 754 

Fig. 1: Workflow of the study. Reference data from field inventories and an airborne lidar campaign were 755 

used to parameterize and calibrate a forest model and a lidar model. With the models, large quantities of 756 

simulated inventory and simulated lidar data were generated, allowing for a systematic analysis of lidar-757 

to-biomass relationships under different disturbance regimes and for various spatial scales. 758 

Fig. 2: Principle of the lidar model. Inputs to the workflow can either be forest model output or field 759 

inventory data. The pictures on the right side show intermediate products: a) Visualization of a forest 760 

stand; b) voxel representation with colors indicating the cumulative leaf area index; c) voxel 761 

representation with colors indicating the probability of containing a lidar return; d) simulated lidar point 762 

cloud with colors indicating height above ground. 763 

Fig. 3: Relative frequency distributions of aboveground biomass (AGB). Columns represent the BCI field 764 

data (50 ha) and output of FORMIND simulations from different disturbance scenarios (1,400 ha each). 765 

Rows represent different spatial resolutions. Notice the different axis scaling in each row. 766 

Fig. 4: Vertical lidar profiles of a) the 9 ha in the southwestern corner of the BCI megaplot, airborne and 767 

simulated based on inventory data; b) the same for the 9 ha in the northeastern corner of the BCI 768 

megaplot; and c) the simulated lidar profile of 16 ha simulated forest in FORMIND in the old growth 769 

stage (age 500 yr). Dashed lines mark the mean canopy profile height (MCH), and ‘×’ symbols mark the 770 

ground return peaks. 771 

Fig. 5: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) from 1-m pixel resolution 772 

(CHM) for different plot sizes. All data was derived from FORMIND and lidar simulations. 1) The first row 773 

demonstrates the sampling approach. Shown is a scene of 9 ha simulated forest with different stages of 774 

succession. The following rows show the TCH-to-AGB relationship with each record representing one 20-775 

m, 50-m or 100-m plot, respectively, for 2) 1,400 ha of undisturbed simulated forest (green), 3) 1,400 ha 776 

of fire-disturbed and 1,400 ha of regularly logged simulated forest (red) and 4) the curves of the best 777 

power law fits. 778 

Fig. 6: Aboveground biomass (AGB) as a function of top-of-canopy height (TCH) from 10-m pixel 779 

resolution (CHM) for different plot sizes. All data was derived from FORMIND and lidar simulations.  1) 780 

The first row demonstrates the sampling approach. Shown is a scene of 9 ha simulated forest with 781 

different stages of succession. The following rows show the TCH-to-AGB relationship with each record 782 

representing one 20-m, 50-m or 100-m plot, respectively, for 2) 1,400 ha of undisturbed simulated forest 783 

(green), 3) 1,400 ha of fire-disturbed and 1,400 ha of regularly logged simulated forest (red) and 4) the 784 

curves of the best power law fits. 785 

Fig. 7: Normalized root mean square errors (nRMSE) [%] of power law models that describe the 786 

relationship between aboveground biomass (AGB) and top-of-canopy height (TCH) at different plot 787 

scales and different pixel resolutions for undisturbed and disturbed simulated forest. For pixel sizes of 1 788 

and 10 m, the decrease in nRMSE with increasing plot size is shown on the right side. 789 



39 
 

Fig. 8: Normalized root mean square errors (nRMSE) [%] of power law models that describe the 790 

relationship between aboveground biomass (AGB) and various lidar metrics (for explanations of the 791 

abbreviations, please refer to the main text and Tab. 1) at plot scales of 100 and 20 m, respectively. From 792 

left to right, the metrics are sorted by increasing nRMSE at the 100-m plot size. Whether certain metrics 793 

were derived from point clouds (PC) or from canopy-height-models (CHM) is indicated in brackets. This 794 

analysis was based on pooled (undisturbed and disturbed) simulated forest data and lidar simulations. 795 

Missing bars indicate that no power law model could be fit at the 20-m plot size. 796 

 797 

LIST OF TABLE CAPTIONS 798 

Tab. 1: List of the lidar metrics and the underlying data (PC = point cloud, CHM = canopy height model). 799 

CHM usually refers to 1-m resolution rasters, except for TCH where various resolutions were tested. 800 
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