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Abstract

Wastewaters contain complex mixtures of chemicalsich can cause adverse toxic effects in the
receiving environment. In the present study, théctty removal during wastewater treatment at seven
municipal wastewater treatment plants (WWTPs) wagstigated using an effect-based approach. A
battery of eight bioassays was applied comprisingytmtoxicity, genotoxicity, endocrine disruptiamd

fish embryo toxicity assays. Human cell-based CALBS§ays, transgenic larval models and the fish
embryo toxicity test were particularly sensitive WOWWTP effluents. The results indicate that most
effects were significantly reduced or completelynozed during wastewater treatment (76 — 100%),
while embryo toxicity, estrogenic activity and thig disruption were still detectable in the efflten
suggesting that some harmful substances remain taé@ment. The responsiveness of the bioassays
was compared and the human cell-based CALUX asdaysed highest responsiveness in the samples.
Additionally, the fish embryo toxicity test and thkansgenic larval models for endocrine disrupting
effects showed high responsiveness at low sampleecdrations in nearly all of the effluent samples.
The results showed a similar effect pattern amolhgWANTPS investigated, indicating that the
wastewater composition could be rather similar iferent locations. There were no considerable
differences in the toxicity removal efficienciestbke treatment plants and no correlation was oleserv
with WWTP characteristics, such as process cordigom or sludge age. This study demonstrated that a
biotest battery comprising of multiple endpoints) cerve as a powerful tool when assessing water
quality or water treatment efficiency in a holistanner. Rather than analyzing the concentratibms o
few selected chemicals, bioassays can be usedrplement traditional methods of monitoring in the
future by assessing sum-parameter based effects asumixture effects, and tackling chemicals &nat

present at concentrations below chemical analytiesction limits.
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1. Introduction

An increasing number of harmful chemicals are dettdn wastewater treatment plant (WWTP)
effluents and there is strong evidence that thischéirge can lead to adverse environmental effacts
the receiving waters (Goudreau et al., 1993; Kofgimal., 2002; Vajda et al., 2008; Malaj et al.120
Prasse et al., 2015). Numerous studies analyziegorpollutants in WWTP effluents have highlighted
insufficient removal of harmful substances (Haltigrensen et al., 1998; Ternes et al., 1999; dads e
2005; Stasinakis et al., 2013; Luo et al., 2014litela et al., 2016). Despite rapid developments in
analytical chemistry, it is not possible to analgzrel identify all of the pollutants in wastewateredo
limitations (e.g. cost and time). In addition, cheahanalytical data does not provide informationtioe
cumulative effects of complex compound mixturesvastewater or on possible environmental effects.
Thus, in order to get a more holistic view of thazérds posed by WWTP effluents, effect-based
monitoring approaches are required to provide ingmbr complementary information to chemical

analysis.

There are numerous effect-based tools availablev&ter quality monitoring, includingn vitro andin

vivo bioassays (Escher et al., 2013; Leusch et al4;20i4 et al., 2015; Konig et al., 2017). However,
despite this most studies investigating the reme¥fadiency of wastewater treatment plants (WWTPSs)
have focused on a few specific substances or ttogemal endpoints, which is clearly insufficientrfo
estimating the efficiency of hazard reduction byatment processes. Previous studies have employed

effect-based approaches to assess wastewaterérgatfficiency on a laboratory scale or full-sc@a
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et al.,2005; Margot et al., 2013; Wigh et al.,, 201&acova et al. (2011) applied an effect-based
approach comprising of six endpoints to monitoranig pollutants across an indirect potable reuse
scheme, including samples from one WWTP. Howevegraprehensive bioassay battery has not been

used to assess and compare multiple WWTPs.

In the present study, a battery of eight bioanedyttools was applied to assess the toxicity diierit

and effluents samples collected from seven munidhd&/TPs in Finland. The selected methods cover
multiple toxicological endpoints, such as cytotatyic genotoxicity, endocrine disruption and fish
embryo toxicity. The test battery contained stadd&d assays and bioassays that were modified for
wastewater analysis. The extensive ecotoxicologicalysis was possible due to the use of a recently
developed automated large-volume solid-phase didradevice (LVSPE50), enabling the extraction of
large volumes of influent and effluent efficientind relatively cost-effectively. In addition, ateon
WWTP the biological test battery was used to asesperformance of a newly installed membrane
bioreactor (MBR) pilot facility compared to the a@mtional treatment process. The main goals of this
research were to estimate how efficiently multigheic effects are reduced during wastewater treatme
at typical Finnish WWTPs and to assess the watalitguof influent and effluent based on their
ecotoxicological profile. In addition, the mosteeant toxicological endpoints were identified ahd t

responsiveness of the selected bioassays was edsess

2. Materials and Methods

2.1 Sample collection
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Influent and effluent samples were collected fragmesr municipal WWTPs in Finland. The selected
WWTPs represent typical treatment plants in FinJantere the most common secondary treatment
process is activated sludge with enhanced biolbgiteogen removal and simultaneous phosphorus
precipitation. Tertiary treatment in order to impeophosphorus removal is also widely applied and
chemical precipitation followed by sand filtratisgmthe most common tertiary treatment step. Thfee o
the selected treatment plants also have significahustrial loading. One of the studied treatmdan{s
employs a pretreatment with an attached growthebicor and one operates a mixed-bed bioreactor
(MBBR) in combination with dissolved air flotatioqfipAF). A detailed description of the WWTPs is
given in Table 1. The following parameters desagbihe performance and the characteristics of the
WWTPs were determined: average flow, sludge agkinwetric loading, suspended solids in influent
and effluent, nitrification rate and the share p@lustrial loading. The samples (sample volumes
presented in Table 2) were collected as 24-houmposite samples with the treatment plants’ automated
samplers between February and March 2015. Theeimfland effluent samples were collected according
to the WWTP’s hydraulic retention time in ordergample the “same” water in theory. The samples
were transferred immediately to the laboratoryftother sample treatment. At WWTP 6 there was an
ongoing membrane bioreactor (MBR) pilot, thus twiluent samples were collected (after activated

sludge process and after MBR treatment).

2.2Large volume solid phase extraction

The influent and effluent samples were extractethenlaboratory by an automated large volume solid

phase extraction device (LVSPES0), which was rdgetdgveloped for the extraction of large volumes



93 (50 — 1000 L) of surface waters (Brack et al., 208éhultze et al., 2017). The principles of theidev
94 and the approach are introduced in Schulze e@ll7), however some modifications were made to
95 optimize the extraction process for wastewater $asapn short, a large SPE cartridge packed witlg 10
96 of HR-X sorbent material (Macherey Nagel ChromafortR-X) between two glass filter plates
97 (THOMAPOR® 50 mm) was applied. The samples were pre-filtemaf po extraction with Sartopure
98 GF+ Midicap filters, therefore particle bound contaants are not considered in the present work. The
99  sorbent material was conditioned with 200 mL ofyethcetate, 200 mL of methanol and 100 mL of
100 deionized water. The maximal volume of each samas extracted with the device, which depended
101  on the rate at which the filters became clogged Jdmples were extracted sequentially in portidns o
102 500 mL. The extracted sample volumes are presémfEdble 2.
103
104  After each sample extraction with the LVSPESO0, tletridge was dried overnight under a nitrogen
105 stream. After drying, the compounds of interestenduted from the sorbent material with a sequentia
106 elution scheme into four different fractions (10Q ethyl acetate, 100 ml methanol, 100 mL methanol
107  with 1% formic acid, 100 mL methanol with 2% 7N-ama in methanol).
108
109  After elution, the acidic and basic fractions waeaitralized to pH 7 = 0.5 and all of the fractiomsre
110 filtered through filter paper (Whatman GF/F) to mma any residual interfering particles or saltsclEa
111 fraction was evaporated to dryness with rotary evafion and anEZ-Envi centrifugal evaporator
112 (Genevac Ltd, Ipswich, UK) and then re-dissolved/i@OH resulting in a final concentration factor of
113  5000x. These eluates were stored in the freez@f@)2prior to analysis.

114
115



116

117

118

Table 1.Information on the seven WWTPs in Finland seleétedampling of effluent.

Location  Population Average Industrial Secondary Tertiary Receiving Sludge Volumetric Influent Effluent Nitrification
equivalent flow influent % of treatment treatment water age (d) loading suspended suspended rate (%)
(m3/d)  the total and (kgBOD/m?3/d)  solids solids (SS
type (kg/d) mg/L)
WWTP 1 40000 17 000 4%, Activated No Baltic Sea 14 0.32 4098 3 93.5
miscellaneous sludge
WWTP 2 330000 83 000 7%, Activated Sand filtration Baltic Sea 17.25 0.375 27579 2 97.6
miscellaneou  sludge
WWTP3 13000 4500 0% Activated Sand filtration  Baltic Sea 17 0.081 670 7.5 98
sludge
WWTP 4 1100000 264000 17%, Activated Denitrifying Baltic Sea 9 0.55 57138 5 98
miscellaneou  sludge filters
WWTP5 94000 12 500 18%, dairy MBBR + Sand filtration  River 30 0.37 2850 2.3 100
activated
sludge
WWTP 6 16 000 2700 0% Activated No River 16 0.15 900 1.9 100
sludge and
MBR pilot
WWTP 7 50 000 8000 85%, paper MBBR + No River 14 0.17 4800 53 98
mill and meat flotation

processing
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For the bioassays, the four fractions from eactewsample were combined. The samples were
divided into aliquots depending on the concentratactor required for each test. The combined
eluates were evaporated to dryness withEZREnvi centrifugal evaporator and re-eluted in
MeOH or DMSO depending on the test. Ten liters 6fMS grade water (Chromasolv, Sigma-
Aldrich) was extracted in the same way as the wasdtr samples and used as an operational
blank. The operational blank was analyzed in athefbiotests to check for possible background

contamination from the sample treatment process.

Table 2. The amount of influent and effluent extracted freach WWTP by the LVSPES0
device.

Location Influent (extracted volume, L) Efflueni{eacted volume, L)
WWTP 1 13 41

WWTP 2 15 39.5

WWTP 3 19.5 43

WWTP 4 22.5 40

WWTP 5 10 35

WWTP 6 6 13 (2.5 MBR pilot)

WWTP 7 16 36

For the bioassays the concentrations of the wastewextracts were calculated as relative
enrichment factors (REFs) according to (Macovalet2810). In short, the REF values were
calculated by multiplying the dilution factor of @mbioassay by the enrichment factor of the
extracted sample (Eqg. 1). The value representenhiehment or dilution of the original water

sample in each bioassay. The equations for caioglahe dilution factor and the enrichment

factor are presented in the Supplementary Infoonaisl, 1).

REF = dilution factorpioqssay X enrichment factorspg (Eq. 1)
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2.3Biological analysis

The samples extracted with the LVSPES0 device vesrayzed with a battery of biological
toxicity tests comprising of bioassays for differéoxicological endpoints (Table 3). Influents
and effluents were analyzed with five and eightabgays, respectively. The selected assays
included organism-level assays aimdvitro tests. A detailed description of the methods is
provided in the Supplementary Information (SI, Bjiefly, the acute cytotoxic effects of the
influent and effluent samples were investigatedubing the neutral red retention (NRR) assay
with a rainbow trout liver cell line RTL-W1 (Lee at., 1993). Endocrine disrupting effects were
analyzed with multiple assays covering androgerffeces, estrogenic effects and thyroid
disruption. Bothin vitro (AR-CALUX®, ER-CALUX®) and organism-level approaches were
applied (transgenic eleuthero-embryonic models égtrogen and thyroid axis activity).
Genotoxicity of the samples was evaluated with stendardized umuC assay and a newly
developed p53-CALUR assay. Embryo toxic effects (lethal and sub-letbfiects) were
investigated with the standardized fish embryodityitest (FET). The sub-lethal effects that

were analyzed are presented in Sl, Table 1.
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168 Table 3.Toxicity assays selected for the biological analg$ influent and effluent samples.

Bioassay Type Toxicological endpoint Influent Effluent Reference
samples samples
analyzei analyzes
NRR-retention test Invitro  Acute cytotoxicity X X Lee et al., 1993
(RTL-W1 cells
AR-CALUX® Invitro  Androgenic activity X X van der Linden et al.,
2008
ER-CALUX® Invitro  Estrogenic activity X X van der Linder et al., 2008
Rapid estrogen activity In vivo  Estrogenic activity X Spirhanzlova et al., 2016

in vivo (REACTIV)
medaka assay

Xenopusmbryonic Invivo  Thyroid disruption X Fini et al., 2007
thyroid assay (XETA
umuC assays Invivo  Genotoxicity X X ISO 13829 (2000)
p53-CALUX® Invitro  Genotoxicity X X van der Linden et al.,
2014
Zebrafish embryo Invivo  Embryotoxicity X OECD TG 236 (2013)
toxicity (survival, sublethal
effects

169

170

171 3. Results and discussion

172

173 3.1 Biological effects of influent and effluent

174

175 All five toxicological endpoints were triggered amajority of the seven influent samples and
176  seven out of eight endpoints were found active titeast one out of eight WWTP effluent
177 samples. The operational blank did not show pasitesponses in any of the bioassays at the
178 tested concentrations, indicating that there wabaukground toxicity due to sample processing.
179 The figures for the toxicities, which were detectatl relatively low sample REFs after
180 wastewater treatment process, are presented hmréhd-other endpoints, the figures and tables
181 can be found in the supplementary information.

182

10
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Cytotoxicity. The results of the NRR assay revealed cytotoxiterg@l of all the influent
samples, especially when sample concentrations RERLO or higher (SI, Table 2). Influent
samples from WWTP 2, 5 and 6 were most cytotoxithwo viable cells at the three highest
sample concentrations, whereas the cytotoxicityhef influent was clearly lower in samples
from WWTP 1, 3 and 7 with more than 50 % viabldscal the highest test concentration. The
cytotoxicity of the effluent samples was considérdbwer compared to the raw wastewater
samples, but minor effects were detected in sixobegight effluent samples. The most cytotoxic
samples were the influent sample from WWTP 6 amdeffluent sample from the MBR-pilot

(WWTP 6).

Androgenic activity Androgenic activity was detected in five (WWTP21,4, 5, 6) out seven
influent samples with dihydrotestosterone (DHT) ieglents ranging between 14 — 67 ng/L (S,
Fig. 2). None of the effluent samples showed anel@gactivity above the detection limit. The
highest activity was observed in WWTP 6 influent (&g DHT eq./L). Previous studies have
reported DHT equivalents ranging from below theedgbn limit to 370 ng/L (Svenson and
Allard 2004; Bain et al., 2014; Leusch et al., 2014 this study, large differences between
androgenic and estrogenic activities in influenngkes were not observed, which support the

previous findings of van der Linden et al. (20083 & eusch et al. (2014).

Estrogenic activity Estrogenic activity was detected in all of theueht and effluent samples
with the ER-CALUX® assay (Figure 1). The highest estrogenicity wasoked in the influent
sample from WWTP 4 (42 ng E2 eq./L), which is taggest WWTP. For the influent samples

from WWTP 1, 2, 5 and 6 the estrogenic activity viaghe range of 14 — 32 ng E2 eq./L.

11
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Influent samples from WWTP 3 and 7 had the lovesdtogenic potential (0.45 — 1.6 ng E2
eg./L). Overall, estrogenic activity was substdhtieeduced in the effluent samples, where the
results ranged between 0.61 — 3.1 ng E2 eq./L.s@neples were tested only in agonistic mode
in the ER-CALUX® assay. Therefore, the estrogenic activity of tkenmes may be

underestimated as the presence of antagonistseirsdimples may decrease the net response

(Ihara et al. 2014, Neale and Leusch 2015).

BO [--m--emmsmmmssememmsssesoesooseoeooeooon
45 oo T
40 |emmemmmemmemeee e e
35 |
=
30 [l
(<))
N R A = Influent
220 [ Effluent
(SNNY EREEE b [ S SMBR Effluent
10 §----J----------- N B
5 . - e
0 - = — § —ﬁ e
P RS LL
éﬂ $& éﬂ éﬂ éﬂ @Q $&

Figure 1. The estrogenic activity of influent and efflueanples from seven WWTPs analyzed
with ERo-CALUX®. The error bars represent standard deviationeobibassay replicates.

The effluent samples (excluding WWTP 6 MBR pilotre also tested for estrogen disruption
in the presence (spiked mode) and absence (unspiloelf) of testosterone with transgenic
medaka embryos (see SlI, section 2.2.2 for a ddtdéscription of the assay). All of the effluent
samples caused 100 % mortality of the embryos & 1REA ten-fold lower concentration

(REF1) was therefore selected for the estrogemipliem test. Significant estrogenic activity was
found in samples from all of the WWTPs in the alegeaf testosterone, except WWTP 1 (SI,

12
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Fig. 3). The results are similar to those obtaiveth the ER-CALUX®, however slight
differences can be observed. In both of the as3A TP 4 effluent samples show highest
estrogenic potency. However, in the ER-CALYX¥ssay WWTP 3 has the lowest estrogenic
activity, whereas in the in vivo medaka assay, ébrogenicity of WWTP 3 effluent is not
notably lower than the other samples. This migbidate that the assays respond in a different
way to some specific compounds. This is likelyrasinh vivo transgenic medaka assay can detect
the effects of compounds not acting directly on ds¢rogen receptor as well as compounds
requiring metabolic activation. The samples wersoalested for antagonistic effects and
modulation of aromatase enzyme by spiking the sasnpith testosterone in the medaka assay.

No significant effects were detected in any ofsheples in spiked mode (data not shown).

Thyroid disruption.Most studies on endocrine disrupting potency o$tewaters have focused
on estrogenic and androgenic activities. Howevhyraid hormones (THs) are important
modulators of development and physiology and idieation of adverse effects on TH signaling
is important when considering wildlife health. E&#ht samples (excluding WWTP 6 MBR)
were tested for thyroid disruption with a transgelme of Xenopusembryos (see S, section
2.2.2 for a detailed description of the assay).roildydisruption was detected in the unspiked
effluent samples from WWTP 1, 2, 3, 4 and 7 (Fig@jeat REF1 and triiodothyronine T3
equivalents ranged between undetected to 1.34 pigie. samples were also tested in the
presence of T3 (spiked mode), to reveal antagenestects and more complex effects such as
disruption of thyroid hormone metabolism. Significgro-thyroid effects were observed for the
same WWTPs showing effects in unspiked mode. Howenere marked effects were observed

in spiked mode ranging from undetected to 3.71 pi@lequivalents.

13
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The results of the present study are somewhat @wogagh compared to previousvitro studies,
where effluents have not shown high potential fiyraid disruption activity. Jugan et al. (2009)
detected thyroidal activity in influent samples bot effluent samples with cell-based luciferase
reporter gene assays. Additionally, Escher et24118) did not detect any responses in thyroid
receptor baseth vitro assays in effluent samples. However, it has leslhestablished that
thyroid hormone disruptors in particular act vianfreceptor based mechanisms of action. It is
therefore particularly important for thyroid distign to evaluate non-receptor based thyroid

disruption which is unlikely to be detectedibyitro (Wegner et al. 2016).

Castillo et al. (2013) studied thyroid disruptidrwastewaters with the same transgefenopus
laevis embryos as used in the present study and obsényeoid disruption in most influent
samples and some effluent samples. However, thithgisruption potential of the effluent
samples was clearly lower than the untreated wades: It is well recognized that some
brominated flame-retardants and the antimicrob@ampound triclosan can cause thyroid-
disrupting effects (Veldhoen et al., 2006; Croftenal., 2007; Boas et al., 2012), and these
chemicals have been frequently detected in Finmigbtewater samples (Huhtala et al., 2011;
Vieno, 2014). In the next phase of this projece #ame WWTP samples will be analyzed to
determine the concentrations of various organidaromants, and perhaps the results from the
chemical analysis will provide more insight on &f@uent thyroid disruption activity (data not

yet published).

14
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6 i Spiked mode
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Figure 2. Thyroid disrupting effects of the effluents sampdesilyzed with transgenienopus
laevis embryos (XETA assay) in spiked and unspiked mo&esults are expressed as T3
hormonal equivalents (ng/L). The results for WWTasl 6 were below the limit of detection.
The error bars represent 95% confidence interval.

Genotoxicity.The genotoxicity of the influent and effluent sdespwas analyzed with a newly
developed p53-CALUR assay (van der Linden et al., 2014) and a commenhployed
Salmonella typhimuriunTA 1535 pSK1002 (umuC-assay). Six of the influsamples showed
activation of p53 protein in the test with metabalctivation with S9. No effects were detected
in the tests without S9. The genotoxic activityigdrgreatly between the WWTPs (61 — 6200 ug
cyclophosphamide eq./L) (SI, Fig. 4). The genotgxatency was considerably higher in the
influent sample from WWTP 5 compared to the othempgles. The genotoxic effects were
reduced to below the limit of detection (<53 pglopbosphamide eq./L) in all of the effluent

samples except the MBR pilot effluent, where thelaghosphamide equivalent value was 540

pHg/L. The samples did not show high genotoxic ppiidein the umuC-assay. Genotoxic effects

15
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in the influent and effluent samples were deteatety in the most concentrated samples
(>REF20) (SI, Table 3). Many of the influent sansplgere cytotoxic to the bacteria in the
highest sample concentration (REF40), thus thedtmolu ratio could not be calculated in those
cases. Influent samples from WWTP 4 and WWTP 5 wkeemost cytotoxic with bacterial

growth factors under 0.5 also at REF20. Cytototieots were observed only in tests without
metabolic activation with S9. None of the influemteffluent samples showed genotoxic activity
at any of the lower concentrations (REF10 and REBS)y two effluent samples (WWTP 1 and
WWTP 4) had induction ratios exceeding the threslhalue at REF20 in addition to REF40. In

all of the cases, samples had higher inductionsati the tests without metabolic activation.

Zebrafish embryo toxicitylhe use of fish acute toxicity test in environnamisk assessment is
becoming a routine in several European countriehd® et al., 2008). The assessment of
environmental quality can include acute effects (ethality) and interference with development,
growth and reproduction (Embry et al., 2010). la pinesent studypanio rerio embryos showed
high sensitivity towards the tested wastewateuefit extracts. Toxic effects were observed in
all of the samples with considerable mortality (2043 %) even at the lowest exposure
concentration (REF2.5). Mortality was evidently themary effect induced by the samples,
since lethal endpoints accounted for 95.5 % onamesof all the observed endpoints throughout
the tested samples and dilutions. Mortality in tlegative controls was below 15% in all three

replicates.

Toxic effects were detected in the first 24 h w8th5 % embryo mortality at REF10. Embryos

showed also several malformations such as scalimsosis and pericardial edema at different

16
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308 evaluated time points and effluent samples (Figan8 Sl, Fig. 5). However, none of the
309 malformation proved to be site-specific but rathegeneral stress response of fish embryos to
310 environmental mixtures. These effects can be iedugy many compounds and it was not
311 possible to detect any specific responses. Dueg@xtracted sample volumes, only the effluent
312 samples (excluding WWTP 6) were analyzed. No camalle differences were detected
313 between the different WWTPs (Fig. 4). Oxygen lesid pH were stable for the duration of the
314  exposure.

315
316

317
318
319
320
321

322
323  Figure 3. Examples of malformations iD. rerio embryos exposed to the wastewater samples

324 after a) 24 h b) 48 h. C and d are examples of abembryos at 24 and 48 h, respectively.

17



325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

The successful application of early life stagedisti for wastewater toxicity testing has been
demonstrated in many studies. As an example, ZdaMeng (2006) already showed the use of
larval stages of Japanese meddBeytias latipesto assess the toxicity from a banknote printing
plant after a 9-day exposure. They observed selesu@ns in the embryos, such as pericardial
edema and hemostasis, at concentrations as |10@.5% Df the native samples. Also Galus et al.
(2013) exposed zebrafish embryos and adult fishuoicipal wastewater from Ontario, Canada.
The exposure to a higher concentration (25% dijutédvastewater significantly increased the
incidence of developmental abnormities in adufkese studies were conducted by exposing the
embryos directly to the water sample without prasiextraction. As demonstrated in the present

study, the FET test can also be applied to anay®cts dissolved in a carrier solvent.

One of the major advantages of using organic agasdkvents is the possibility to concentrate the
samples by several orders of magnitude without gingrthe final volume of the exposure media
(Tanneberger et al., 2010). By concentrating thepdas, it is possible to obtain acute toxicity
data also from samples where toxic substances ezeemt at low concentrations. The
information obtained can be applied for prolongexidity studies (Arome and Chinedu 2013).
Moreover, sample enrichment allows the percentdgmlvent in the test media to be reduced

and minimizes its potential toxic effect during espre (Hallare et al. 2005).
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Figure 4. Total embryotoxic effects (lethal and sublethaly@tved in effluent samples from 6
WWTPs at three different sample concentrations (REB and 2.5) as well as positive and
negative controls (PC and NC respectively).

3.2 Responsiveness of the bioassays and their usesereening tools

The responsiveness of the bioassays varied degeodithe assay method, sample and endpoint
(Fig. 5). Figure 5 displays an overview of the mwspveness of the selected assays in all of the
tested influent and effluent samples as a heat @alwr coding indicates the ratio between the
lowest sample enrichment (REF) and the lowest megabontrol enrichment eliciting a toxic

response. Red indicates sample effects at a lowehenent (high potency) and dark green for
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sample effects at a high enrichment (low potenisigturally, responsiveness is related to assay
sensitivity. However, even the most sensitive agsanot detect toxicity in the absence of the
chemicals that can activate the bioassay endp®ime. results of assay responsiveness can
provide useful information regarding the suitalilitf bioassays for monitoring purposes or for

assessing the efficiency of wastewater treatmestgzses (Escher et al. 2013).

Comparisons between the samples show that the padikged influent samples induced more
positive results at lower sample concentrations ttiee effluent samples. Positive responses
were detected in all of the five endpoints thatevested with influents. The p53-CALUX® test
was more sensitive than the umuC assay, becaube BALUX assay genotoxic effects were
observed in the influent samples even at REF1, ed®emone of the samples showed any
genotoxic activity at concentrations lower than R&Rn the umuC assay. Interestingly, the
results related to metabolic activation with SJaii#d between the assays. In the p53-CALUX
assay genotoxic effects were only seen in the 48§ whereas in the umuC assay more
genotoxicity was observed in the tests without in&ia activation, which might indicate that
the tests are responding to different compoundsdtiition, the differences in the results could
be partly explained by physiological differencesn@en the test organisms, e.g. bacteria do not
have a nuclear envelope protecting the DNA as agpds the eukaryotic cells used in the

CALUX assays.

Based on the overall results, the key endpoin&tedl to wastewater toxicity were estrogenic
activity, thyroid disruption and fish embryo toxici These endpoints were activated in the
majority of the samples and responses were detattéolv sample concentrations indicating

high toxic potency. The human cell-based CALUssays showed highest responsiveness to the
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392
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influent samples with positive results detectedRBF1. The ER-CALUR assay for estrogenic
activity was the most responsive cell-based assain all of the samples an estrogenic response
was detected at low exposure concentrations. Ttheeef samples induced embryotoxicity in the
FET assay in all of the samples at REF2.5, sugggshiat the toxic effects may be caused by
chemicals that are typically present in all muratipvastewaters. Additionally, positive
responses were detected in the transgenic larvdelmdor endocrine disruption at low sample

concentrations in several effluent samples.

The heat map forms a bioanalytical fingerprintéach sample, which can be used to assess the
most relevant endpoints related to the risks polsgdeffluent discharges to the aquatic
environments concerning assay responsiveness.t@rpatf bioassays selected to cover relevant
biological endpoints can be used as a compreherienefor indicating water quality. The
battery should include endpoints for detecting ganexicity such as cytotoxicity, as well as
bioassays with more specific endpoints, such asréoeptor-mediated tests for endocrine
disruption. As shown in this study, the inclusidracsensitiven vivo assay such as the FET test
can also be beneficial. Escher et al. (2013) alggasted that specific receptor-mediated modes
of action for endocrine disruption and assays &active modes of action, such as umuC for
genotoxicity, are promising assays for screeningewguality. However, the most sensitive
methods should be applied as the genotoxic poteheffluents may be low as indicated in the

present study.
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Figure 5. The heat map of all the bioassays for influent effldent samples from 7 WWTPs. The effect conediuns are plotted as
the lowest sample concentrations (REF) where ateifect was compared to the negative control. ddlers indicate the level of
sample enrichment: red indicates an assay respuaitiséow enrichment, whereas dark green correspdadow potency with toxic
effects detected only at high sample enrichment.
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3.3 Toxicity removal during wastewater treatment

The efficiency of the WWTPs to reduce toxicity wadculated by comparing the toxicity of the
influent and effluent samples. There was no caticeiabetween toxicity removal efficiencies
and the presence or absence of a tertiary treatsteptat the WWTP. However, it should be
noted that these treatment steps were originalgrgded for the removal of phosphorus and
suspended solids rather than micro-pollutants. #altally, other WWTP parameters, such as
sludge age or nitrification rate, did not correlati¢gh toxicity removal efficiency either. To our
knowledge, there are no previous studies on theeledion between sludge age or sludge
retention time (SRT) and general toxicity removatevious studies have been focused on
individual chemical compounds, such as pharmacastior hormones. Higher biodegradation
rates for micro-pollutants have been observed acgsses with higher sludge retention times or
sludge age, such as membrane bioreactors (Vien&#ladpaa, 2014; Kruglova et al., 2016).
The benefits related to increased degradation @tesicro-pollutants with higher sludge age
seems to reach an optimal level at approximately 2% days (Zeng et al., 2013; Falas et al.,
2016). However, in the present study clear diffeesnin toxicity removal between WWTPs with
the lowest sludge age (9 days at WWTP 4) or thbdsgsludge age (30 days at WWTP 5) were
not seen. It is possible that other operationahmpaters and factors (e.g. temperature, organic
loading rates) could greatly affect the removalcedhcy (Kruglova et al., 2014), and thus further
research is needed in order to draw distinct canmhs. In agreement with the present study,
some previous investigations have failed to findoarelation between operational parameters
and pollutant removal. For example, Joss et al0§2®bserved no clear dependency between

sludge age, temperature or reactor configuratiah@mpound removal. They concluded that
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sludge age unexpectedly showed no significant imnpacthe transformation efficiency of the

seven pharmaceuticals analyzed.

Three out of four WWTPs with a tertiary treatmetefpshad sand filtration as the final treatment
step and one WWTP had denitrifying filters. Theultss suggest that sand filtration does not
provide conclusive advantages related to toxicéyneval. To our knowledge, there are no
previous studies that have investigated the remeffadiency of sand filtration as a tertiary
treatment step related to multiple toxic effect&vibus research had focused on determining the
removal of specific substances during sand filbrgtiand those studies have shown that sand
filtration does not significantly improve pollutanrémoval, which support the findings of the
present study. Okuda et al. (2008) concluded thaing sand filtration process, the total
concentrations of 66 pharmaceuticals did not deersaynificantly. Nakada et al. (2007) showed
that the removal of pharmaceutically active compmsuwas generally inefficient during sand
filtration, perhaps due to the hydrophilic natufahe selected target compounds supporting the
findings of the present studi{oh et al. (2008) showed that biological procegday the most
important role in removing estrogenic activity thgh biotransformation and biodegradation,
indicating that sand filtration does not signifidgnimprove the removal of estrogens. Also
according to Leusch et al. (2005) estrogenic agtivemained unchanged following sand
filtration. Other tertiary treatment steps, suchoasnation and activated carbon, have shown
more promising results related to toxicity remo(Réungoat et al., 2011; Altmann et al., 2014;

Luo et al., 2014; Mathon et al., 2017).
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The findings of the present study suggest that¢ngoval efficiency was more related to each
toxicological endpoint than characteristics of WEVTPs. The toxicity removal related to all of
the selected endpoints is summarized as radarscimaRigure 6. In these charts, the toxicity of
each sample is evaluated by a simple scoring systé@re a value between 1 and 7 is given, 7
indicating higher toxicity and 1 no toxicity. Theae bands for each bioassay are presented in
Sl, Table 4. The toxicity pattern of the influerngples was similar between the WWTPs, as
almost all of the samples induced toxic effectdhi@ majority of the bioassays. Furthermore,
there was some variation depending on the endpaict the influent of certain WWTPs was
clearly more androgenic, cytotoxic, genotoxic dragenic than the others. Based on the overall
results, influent samples from WWTP3 and WWTP7 wibee least toxic and influent samples
from WWTP4, WWTP5 and WWTP6 were the most toxiceTladar diagrams for effluent
toxicity clearly show that the remaining toxicitiaiter treatment are embryo toxicity, estrogenic

activity, thyroid disruption and genotoxicity (umuC

When looking at the different toxicological endptsiim more detail, some variation in removal
efficiency between the WWTPs can be observed. Tyietaxicity was substantially or
completely reduced during the wastewater treatnpeatess in all of the WWTPs, except
WWTP 7 and the MBR pilot plant at WWTP 6, whereréhgvas no significant reduction in
cytotoxic effects. In general cytotoxicity reductivas high (76 — 89 %) and in the cases of
WWTP 5 and WWTP 6 the toxic effects were completedynoved in the highest sample

concentration tested.
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Figure 6. The toxicity of the influent (a) and effluent (bxmples related to all of the selected
endpoints. The toxicity of each sample is scoredjilbing a value between 1 and 7, 7 indicating
higher toxicity and 1 representing no toxicity. Tiesults from WWTP 6 influent sample follow

the same line as for WWT6 MBR.

The results of this study suggest that the activatedge process is the most effective treatment
step at removing cytotoxicity from the studied WVETH oxicity removal of cytotoxic effects
was at the lowest level at WWTP 7, which employs #tBBR + DAF process. WWTP 7 had
the highest industrial loading, which could pakiplain the outcome as industrial influent may
contain more compounds that are less biodegradabipared to typical municipal wastewaters.
At WWTP 5 where the MBBR process is combined wittivated sludge, the toxic effects were
completely removed. Having sand filtration as didey treatment step did not improve the
removal of cytotoxic effects, since there was neaclcorrelation between better removal
efficiency and sand filtration. Previous studiesénalso shown that influents are typically highly
cytotoxic and that toxicity is significantly reduwteluring conventional wastewater treatment

processes (Smital et al., 2011; Stalter et al. 120&imilar results have also been shown with
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bacterial assays. For example, Castillo et al. 120fbserved asubstantial decrease of the
inhibition of bacteria, from 70-80 % down to 15-20 when analyzing the WWTP influent
versus effluent. Cytotoxicity of wastewater infli®has also been linked to linear alkylbenzene-
sulfonates, which are surfactants mainly used umday products (Castillo et al., 2001).
Surfactants are typically present at high concéptra in wastewaters (Smital et al., 2011),

however cytotoxicity of the samples may also bkdthto other substances.

Androgenic effects were most efficiently removeding the wastewater treatment processes
and no androgenic activity was detected in anyhef éffluent samples. This suggests that
androgenic endocrine disruption is of less contlean estrogenic endocrine disruption in regard
to organisms in WWTP effluent receiving waters. Thsults from the present study support
previous findings showing that androgenic effecesenefficiently removed during conventional
wastewater treatment (Bain et al., 2014; Leuschl.e2014). However as na vivo androgen
assays were included in the test battery, it cabhaatxcluded that androgen disruptors remained

that required metabolic activation or did not iatgrdirectly with the androgen receptor.

A similar trend was observed in the case of genoityx In the adaptive stress response assay
(p53-CALUX®) the genotoxic effects were reduced to below thmt lof detection (<53 pg
cyclophosphamide eq./L) in all of the effluent séspexcept the MBR pilot effluent, where the
genotoxic potency was reduced only by 16 %. Thidifig suggests that the pilot plant was not
operating at the targeted level and more sampliogldvhave been necessary to draw further
conclusions. Overall, the results based on the @ABUX assay indicate that the compounds

causing genotoxic effects are removed efficientlyiy the conventional treatment processes.
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However, the results based on the umuC-assay dutpgeshe genotoxic effects are not reduced
during wastewater treatment, although effects atg detected at high sample concentrations.
The results from previous studies have also predewarying results. Al-Saleh et al. (2017)
showed that effluents still had high genotoxic ptitd after wastewater treatment process.
Additionally, genotoxic potential of wastewaterleéints was demonstrated in a study by Escher
et al. (2014) and Jolibois and Guerbet (2005) witheral assays based on reactive modes of
action (e.g. umuC assay and SOS chromotest). Magge al. (2014) demonstrated significant
genotoxic effects in samples taken after second@gimentation, which were effectively
reduced by an ozonation process but were not furdguced by sand filtration following the
ozonation step. In a study by Zegura et al. (2@@9potoxic effects were not observed in influent
samples but were detected in some of the correspprdfluent samples, which may be due to

the formation of genotoxic compounds during thddgaal treatment of wastewaters.

The reduction in estrogenic activity was between-787 % due to the water treatment in
majority of the WWTPs. In WWTP 3 and 7 estrogerativaty was not removed at all, however
in those samples the estrogenic potential of tfl@ant was low to begin with. The removal
efficiency of the MBR pilot in WWTP 6 was lower thahe efficiency of the normal treatment
process (normal 97 %, MBR 88 %). A number of steidiave investigated the removal of
steroid hormones using membrane bioreactors. Sdnteeostudies have shown that MBR
removes estrogens more efficiently than conventiaotivated sludge process (Zuehlke et al.,
2006; Maletz et al., 2013). On the other handsheghkin et al. (2004) and Weber et al. (2005)
did not find an appreciable difference in removélestrogens between membrane activated

sludge or conventional activated sludge systemshénpresent study, any conclusions on the
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removal efficiency of the MBR process compareddoventional activated sludge are difficult
to draw, because the MBR system was a newly iestgilot and the operational parameters
might not have been fully optimized as indicatedhmsy other results from this study. In addition,
it should be acknowledged that the present studhased on one sampling event and the results
can vary depending on the time, temperature aner otdrying parameters. The majority of the
previous studies focusing on estrogens in wastewditave used chemical analytical tools to
analyze the removal efficiencies of estrogenic coummgls (Ternes et al.,, 1999; Johnson,
Belfroid, & Di Corcia, 2000; Ying, Kookana, & Kumga2008; Xu et al., 2012; Luo et al., 2014;).
Some previous studies have employed ther-ERLUX® to study removal efficiencies of
estrogenic activity during wastewater treatmentpsses (Murk et al., 2002; Maletz et al., 2013;
Bain et al., 2014) and their findings support tesults of the present study. Murk et al. (2002)
showed substantial reductions (90 — 95 %) of estrimgpotency in effluents compared to
influents in municipal WWTPs. Similar results wesdown in a more recent study with
reductions between 89 — 100 % for estrogenic dgtini three Australian WWTPs (Bain et al.,
2014). Their results suggest that tertiary treatnpeacesses (flocculation, tertiary clarification,
dual-media filtration, chlorine disinfections anectilorination) contribute markedly to the

enhanced reduction of estrogenic potency follovdogventional treatment.

The estimation of the risks posed by the treatéidesfts to the receiving waters is challenging as
many factors, such as dilution and flow rate of teeeiving water, affect the actual risk. The
chemicals causing toxic effects in wastewater effta are typically present at low

concentrations and concentration of the sampledtésn necessary to observe ecotoxicological

effects in acute tests. In the receiving waters, effluents are diluted, but the exposure is
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typically constant and long-term. One approachgseas the bioassay results in terms of risk
context, is to apply effect-based trigger (EBT)ued (Escher et al., 2013; JaroSova et al., 2014,
Escher et al., 2015; van der Oost et al., 2017 stletet al., 2017). These trigger values have
been developed to assess whether the detected iefi@particular bioassay is at an acceptable

or a safe level (Leusch et al., 2017).

The available effect based trigger values in litee for the ER-CALUX assay vary between
0.2-2.0 ng/L EEQ depending on the sample typeueril/surface/potable water) and exposure
duration (JaroSova et al., 2014; Escher et al.520&usch et al., 2017). The EEQ values in the
present study were higher than the lowest calalllatgger value (0.2 ng/L EEQ) in all of the
effluent samples suggesting that the effluents pwse a risk to the receiving waters. The EEQ
values for samples from WWTP 2, 4 and 5 exceedsultak highest trigger value calculated for

the ER-CALUX® assay.

EBT values for nonspecific toxicity are determir®dusing a different approach. Van der Oos
et al. (2017) derived EBT values for nonspecifigittly based on the assumption that acute
toxicity in a concentrated sample is an indicatdrchronic effects in the original sample. They
determined that for nonspecific toxicity effects amered below a REF 20 are considered
indicative of chronic effects, whereas REFs abo@etranslate to a lower risk. In the present
study, significant lethal and sublethal effects28 % of embryos with lethal and sublethal

effects) were detected at REF2.5 suggesting thatnah effects would likely be seen in the

original sample.
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Genotoxicity bioassays are typically not easily mjifeable, therefore calculating biological
equivalent values is difficult (van der Oos et &017). In addition, current guidelines for
genotoxic substances assume that there is noeafe even though the likelihood of adverse
effects decreases at lower exposure levels. Censglthe theoretical risk which is always
present with genotoxic substances, van der Oos €2Gl7) proposed an EBT value of 0.005
genotoxic units, which means genotoxic effects olesk at REF200. In the present study,
genotoxic effects were not observed in the efflaesamples with the p53-CALUX assay,
although it was impossible to test the samples BFZR0 due to cytotoxicity. However,
genotoxicity was observed at REF40 and REF20 wighumuC-assay, suggesting that based on

the EBT value some risks persist after the treatipetess.

Comparing the results from the present study to EBd values available in the literature
suggests that the remaining toxicities after waatewtreatment are at a level, which is not

considered acceptable in terms of risks.

4. Conclusions

This study demonstrates the successful applicaticen effect-based approach to assess water
guality and toxicity removal at seven WWTPs. Thalgsis of the biological effects of influent
and effluent samples revealed that within the itigated endpoints the key effects were
estrogenic activity, thyroid disruption and fish lenyo toxicity. These toxicities remained in the
effluent after wastewater treatment process inlpedirof the sampled WWTPs. Comparison of
results to published EBT values suggests that viegeiwaters may be at risk. Assays for

genotoxicity, androgenic activity and cytotoxicitgvealed the high toxic potency of influent
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samples, but were not responsive in the less poll@ffluent samples indicating that these
toxicities were efficiently removed during the centional treatment process. Interestingly, the
toxicity removal efficiency of the WWTPs did notast dependency between the operational
parameters or WWTP characteristics, but rather sdosvmilar patterns for each toxicological

endpoints. These findings suggest that the toagioal effect pattern or composition of

municipal wastewaters is very similar within themgded WWTPs and that the chemicals
causing the observed effects are not completelyoveoh by activated sludge processes
regardless of the WWTP characteristics. The resnfitthe present study are based on one
sampling event, thus further research is neededrgov further conclusions. For future

perspectives, it can be concluded that in ordeetluce the toxic potency of effluents and the
risks to the receiving environments more advancedtinent methods should be applied. In
addition, concerning future challenges in monitgnmater quality, effect-based tools are clearly

required to analyze the net effects of environmesamples.
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Toxicity removal during wastewater treatment at 7 municipa WWT Ps was investigated
Removal efficiency was assessed by an effect-based approach comprising of multiple
endpoints

Large volumes of influent and effluent samples were extracted with anovel device
Embryo toxicity, estrogenic activity and thyroid disruption were detected in effluent
samples

The results showed a similar effect pattern among all the WWTPs



