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Originality-Significance Statement 

Methylated amine compounds such as methylamine are very important sources of nitrogen for 

microorganisms in seawater. In the marine environment, methylamine is generated by degradation 

of organic matter, and this volatile one-carbon compound can escape to the atmosphere where it 

affects global climate processes. Microbes which can use methylamine as a nitrogen source prevent 

the escape of this climate-active molecule to the atmosphere and recycle organic nitrogen 

compounds released from complex organic matter. We know little about the identity and activity of 

methylamine-degrading microorganisms occurring in marine environments. In these experiments, we 

combine 
15

N stable isotope probing, metagenomics and metaproteomics to detect and identify 

bacteria from a coastal environment that utilize methylamine and employ it as a nitrogen source. 
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Abstract 

Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated 

amines, released from the degradation of osmolytes, could provide a nitrogen source for marine 

microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest 

methylated amine, have mainly focussed on the fate of the carbon from this compound. Various 

groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use 

methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine 

as a nitrogen source, but little is known about their diversity, especially in the marine environment. 

In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from 

a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 
15

N 

methylamine combined with metagenomics and metaproteomics facilitated identification of active 

methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine 

utilizers were obtained and their metabolism with respect to methylamine was examined. Both 

bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in 

both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 
15

N 

methylamine also led to the release of 
15

N ammonium that was used as nitrogen source by other 

microorganisms not directly using methylamine. 
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Introduction 

Nitrogen is one of the major limiting elements for biological productivity in the marine environment 

(Gruber, 2008). Dissolved organic nitrogen compounds, including methylated amines, are likely to be 

an important source of nitrogen for marine microorganisms (Capone et al., 2008). In the oceans, 

methylated amines are produced in large amounts, resulting in the release of 0.6 Tg N per annum 

into the atmosphere (Lee, 1988). Little is known, however, about the turnover of methylated amines 

in the marine environment. The low standing concentrations of methylated amines found in the 

open ocean, typically in the nanomolar range (Naqvi et al., 2005), may be what remains after 

microbial utilization.  

Methylamine, the simplest alkylated amine, is released through the biodegradation of proteins and 

N-containing osmolytes (Barrett and Kwan, 1985; Neff et al., 2002). Containing carbon and nitrogen, 

this compound constitutes a direct link between the biogeochemical cycles of the two elements. 

Certain microbes can grow on methylamine as sole source of carbon and energy (Anthony, 1982). As 

methylamine is a one-carbon (C1) compound, these microbes are classified as methylotrophs. 

Phylogenetically diverse, ubiquitous and often metabolically versatile, methylotrophs play major 

roles in C1-cycling in marine habitats (Anthony, 1982; Strand and Lidstrom, 1984; Neufeld et al., 

2007a; Giovannoni et al., 2008; Chen, 2012). A wide range of non-methylotrophic organisms, some of 

which can be found in marine environments, can also degrade methylamine to CO2 and ammonium, 

the latter being used as a nitrogen source by these and other microorganisms (Budd and Spencer, 

1968; Bicknell and Owens, 1980; Anthony, 1982; Murrell and Lidstrom, 1983; Chen et al., 2010a; 

Wischer et al., 2015). 

The ability to utilize methylamine is found mainly in the Gram-negative phylum Proteobacteria, but 

also in Gram-positive methylotrophs such as some Actinobacteria and Bacillus species (McIntire et 

al., 1990; McTaggart et al., 2015), and in Eukaryotes such as the fungus Aspergillus niger (Frebort et 
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al., 1999). Gram-positive bacteria and Eukaryotes typically employ a copper-containing methylamine 

oxidase to cleave methylamine to formaldehyde and ammonium (Anthony, 1982). Within the 

Proteobacteria, two different pathways for methylamine utilization are known. The methylamine 

dehydrogenase (MaDH) pathway employs a tryptophan tryptophyl-quinone (TTP)-dependent, 

periplasmic dehydrogenase catalysing the oxidative cleavage of methylamine to formaldehyde and 

ammonium. The alternative pathway proceeds via formation of the methylated amino acids γ-

glutamyl-methylamide (GMA) and N-methylglutamate (NMG) (Anthony, 1982; Chen et al., 2010a; 

Chen et al., 2010b; Latypova et al., 2010; Good et al., 2015). This cytoplasmic pathway typically 

requires three enzymes, a GMA synthetase (GmaS), an NMG synthase (MgsABC) and an NMG 

dehydrogenase (MgdABCD). The GMA pathway transfers the C1 group of methylamine to 

tetrahydrofolate, and also releases ammonium. The eight polypeptides required for this pathway are 

typically encoded in one gene cluster in bacterial genomes (Chen, 2012).  

Both the MaDH and the GMA pathway are present in methylotrophs that grow on methylamine as 

sole carbon and energy source. Some methylotrophs, such as Methylophaga species or 

Methylobacterium extorquens strains, possess both pathways (Vuilleumier et al., 2009; Grob et al., 

2015). The GMA pathway is also present in non-methylotrophs that use methylamine as a nitrogen 

source (Chen et al., 2010a; Chen, 2012; Nayak et al., 2016) and its presence in some Gram-positive 

bacteria has been suggested (McTaggart et al., 2015). Little is known, however, about the 

distribution of microbes using the GMA pathway in the marine environment. Initial investigations in 

aquatic ecosystems revealed a high diversity of gmaS genes, suggesting an important role for the 

GMA pathway in methylamine utilization (Chen, 2012; Wischer et al., 2015).  

To identify active microorganisms in environmental samples, where classical enrichment and 

isolation experiments have proven to be difficult, the technique of stable isotope probing (SIP) has 

been established. In this cultivation-independent method, substrates labelled with heavy isotopes 

such as 
13

C are used, leading to the incorporation of these isotopes in the biomass of active microbes. 

The application of SIP in combination with analysis of DNA and RNA, i.e., DNA- and RNA-SIP 
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(Radajewski et al., 2003; Neufeld et al., 2007b), as well as proteins, i.e., Protein-SIP, (Jehmlich et al., 

2010), has enabled the detection of the heavy isotopes in a variety of biomolecules. Active marine 

methylotrophs utilizing methylamine, such as Methylophaga spp., have previously been identified by 

13
C stable isotope probing (SIP) experiments (Neufeld et al., 2007a). However, non-methylotrophic 

organisms that utilize methylamine as an nitrogen source would be missed in 
13

C SIP studies, as only 

those who have assimilated methylamine derived carbon into biomass would be detected (Neufeld 

et al., 2007b). 

In this study, a SIP experiment using 
15

N labelled methylamine was combined with metaproteomics 

and metagenomics to identify microbes from a coastal marine habitat that are capable of utilizing 

methylamine and assimilating methylamine-derived nitrogen. The quantification of 
15

N incorporated 

into proteins after incubation with 
15

N methylamine showed a clear link between nitrogen uptake 

and the pathways used for methylamine utilization, and revealed the identity of different 

methylamine utilizing bacteria. A “blueprint” for the central metabolism of two of these key species 

was reconstructed from metagenomic sequence data generated from 
15

N labelled DNA from the 

same samples, and then validated using metaproteomics. 

Results and Discussion 

The seawater samples used in this study were obtained from Station L4 of the Western Channel 

Observatory (WCO, Plymouth, UK). Genomic DNA and proteins were extracted after incubating 

seawater with 100 µM 
14

N or 
15

N methylamine for 3, 6 or 8 days in duplicate, and at the beginning of 

the incubation experiments (T0) to establish the initial microbial community composition in the 

seawater used. The aim of this SIP experiment was to explore the metabolism of microbes from 

coastal seawater capable of responding to an increase in the concentration of methylamine. 

Although the relatively large amount of substrate added here is not strictly environmentally relevant, 

and the resulting microbial activities are not necessarily representative of in situ conditions, it 
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enabled enriching for groups of microbes of interest. This in turn allowed evaluation of the potential 

of naturally occurring marine microbes to utilize methylamine without the need to cultivate them. 

Composition of the microbial community in methylamine incubations 

Microbial diversity in methylamine incubations was determined using 454 amplicon pyrosequencing 

targeting bacterial 16S rRNA genes in the total extracted DNA. Three of the samples (one incubated 

with 
15

N methylamine for 3 days and two incubated with 
14

N methylamine for 6 and 8 days) showed 

a distinct difference in community composition compared to the others (Fig. S1). In these samples, a 

single OTU related to the genus Methylophaga (Piscirickettsiaceae) was enriched up to 92%, whereas 

in the remaining samples, Methylophaga were present at <1% of relative abundance or not detected 

at all (T0).  

Analysis of 16S rRNA gene diversity from the remaining DNA samples consistently yielded the same 

major phylogenetic groups (Fig. 1). In the seawater used to set up the incubation experiments (T0), 

the dominant operational taxonomic units (OTUs) were related to Candidatus Pelagibacter 

(Pelagibacteraceae, approximately 60%), but this group decreased in relative abundance to between 

1 and 27% after incubation. C. Pelagibacter belong to the SAR11 cluster, first described in the 

Sargasso Sea, and are commonly found at high abundance in marine habitats (Morris et al., 2002; 

Rappe and Giovannoni, 2003). OTUs related to Rhodobacteraceae increased in relative abundance 

from approximately 5% at T0 to between 20 and 70% after incubation. Up to 50% of the 

Rhodobacteraceae OTUs were related to Leisingera, the remaining OTUs being mostly related to 

Roseobacter, Ruegeria and Phaeobacter. OTUs related to the Gammaproteobacterium strain 

IMCC2047 also increased in abundance after 3 days of incubation, reaching up to 24%. This OTU was 

found in low abundance (0.2%) at T0, and decreased again at later time points to around 1%.  

The changes observed in the microbial community composition were most likely caused by the 

relatively high methylamine concentration used for the SIP experiment, leading to an enrichment of 

the most capable and rapidly growing organisms during incubation. Other organisms, such as the 
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slow growing Pelagibacter (Carini et al., 2013), seemed to disappear as they were outcompeted by 

fast growing methylamine utilizers. After 6 and 8 days of incubation, 16S rRNA genes of other 

bacterial families, such as Flavobacteriaceae and Cryomorphaceae, increased in abundance. This 

diversification is likely to be a result of cross-feeding and metabolic processes other than 

methylamine utilization. We thus focused our investigation on those microorganisms that first 

responded to the addition of methylamine: Leisingera sp. and the IMCC2047-related 

Gammaproteobacterium. 

Retrieval of genomes of enriched methylamine utilizers by 
15

N DNA-SIP 

The incorporation of 
15

N into DNA leads to an increase of its density that can be detected by density 

gradient centrifugation. While for 
13

C DNA of microbial communities, this increase is large enough to 

allow a complete separation from 
12

C DNA, separation of 
14

N and 
15

N DNA is not possible, as DNA 

contains less nitrogen than carbon, and DNA density is also influenced by GC content, resulting in an 

overlap of GC-rich 
14

N DNA and AT-rich 
15

N DNA (Fig. S2) (Cupples et al., 2007). Here, density gradient 

centrifugation of a DNA sample from seawater incubated for 3 days with 
15

N methylamine was used 

to enrich for DNA of OTUs related to Rhodobacteraceae and strain IMCC2047 that were presumed to 

be involved in methylamine utilization. The enrichment was quantified by a comparison of 16S rRNA 

gene profiles obtained by amplicon pyrosequencing from unfractionated DNA and from DNA 

fractions obtained after density gradient centrifugation. For the IMCC2047-related 

Gammaproteobacterium, a relative 16S rRNA gene abundance of 34.9% was observed in the fraction 

with a density of 1.695 g ml
-1

, corresponding to a ~2-fold enrichment compared to unfractionated 

DNA (see Fig. S2). For Rhodobacteraceae, an abundance of 98.7% was observed in the fraction with a 

density of 1.704 g ml
-1

, corresponding to a ~1.6-fold enrichment. These two fractions were selected 

for metagenomic sequencing, allowing a targeted reconstruction of the genomes of the 

corresponding organisms that would not have been possible without the fractionation process. The 

completeness of the genomes obtained was assessed with CheckM (Parks et al., 2015) after removal 

of phylogenetically unrelated sequences.  
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The genome of the IMCC2047-related Gammaproteobacterium constructed was estimated to be 

approximately 89% complete (Table 1), based on the presence of 401 out of 452 single-copy core 

genes defined by CheckM for this phylogenetic group. Based on the abundance of multiple versions 

of these single copy genes, the genome was estimated to contain approximately 3% of genes likely 

related to other taxa. The genome obtained from the fraction enriched in OTUs related to 

Rhodobacteraceae was phylogenetically classified as belonging to the genus Leisingera, and was 

most closely related to Leisingera aquimarina (Vandecandelaere et al., 2008). All of the 626 core 

genes of this phylogenetic group (based on CheckM analysis) were present (Table 1). However, a high 

number of these single-copy genes were found multiple times, showing more than 90% protein 

sequence similarity to each other. This indicates the presence of genomic sequences from more than 

one Leisingera strain, but for simplicity, these were treated as one phylogenetic entity in the 

following analysis. The Leisingera genome contained about 8% of genes which were likely to be 

related to other taxa based on the CheckM analysis. In summary, metagenomic sequencing of DNA 

fractions from the 
15

N DNA-SIP experiment, containing a high enrichment of DNA from the organisms 

related to Leisingera and strain IMCC2047, led to the successful recovery of two almost complete 

microbial genomes of organisms rapidly responding to an increase in the availability of methylamine 

in seawater. 

15
N incorporation into peptides confirms methylamine utilization by enriched 

microbes 

The incorporation of 
15

N from methylamine in microbial biomass, as evidence for an assimilation of 

methylamine derived nitrogen, was investigated in DNA and proteins obtained from seawater after 3 

days of incubation with methylamine. To detect potential changes in density of the DNA of particular 

organisms between 
14

N and 
15

N methylamine incubations, DNA distribution profiles were calculated 

based on 16S rRNA gene amplicon pyrosequencing data of DNA fractions. For Leisingera and the 

IMCC2047-related Gammaproteobacterium, an increase in DNA density between 
14

N to 
15

N samples 
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was observed (Fig. S2). A similar increase was observed between 
14

N DNA and 
15

N DNA of reference 

strains investigated in control experiments (Fig. S2). OTUs related to C. Pelagibacter were also 

investigated, and showed a partial and minor increase in DNA density between the 
14

N and 
15

N 

sample. This was the first indication for 
15

N assimilation from methylamine by Leisingera and the 

IMCC2047-related Gammaproteobacterium, but lack thereof to any appreciable extent, by C. 

Pelagibacter. However, as a complete separation of 
14

N and 
15

N DNA was not possible, mass 

spectrometric investigation of the 
15

N incorporation in peptides was performed for validation, since 

this can quantify changes in 
15

N abundance down to 0.1 at.% (Taubert et al., 2013).  

Protein extracts obtained from seawater incubated for 3 days with methylamine were investigated 

by high resolution mass spectrometry (MS) after tryptic digestion, using the NCBInr database for 

peptide identification. A total of 8,184 non-redundant peptides were identified in the samples 

incubated with 
14

N methylamine. Of these, 131 peptides, 997 peptides and 2,010 peptides were 

unique for C. Pelagibacter, Rhodobacteraceae (including Leisingera), and strain IMCC2047, 

respectively (Table S1). The 
15

N at.% in peptides of these three phylogenetic groups was assessed in 

the samples incubated with 
15

N methylamine to investigate whether these bacteria assimilated 

methylamine-derived nitrogen, or unlabelled ammonium that had been added to the incubations as 

an alternative nitrogen source. Under the conditions present in our SIP incubations, bacteria using 

methylamine directly as a nitrogen source should be almost completely labelled (i.e. close to 100 

at.% 
15

N). However, the breakdown of 
15

N methylamine will also lead to an isotopic enrichment of 

the ammonium pool in the incubations. Due to the unlabelled ammonium in the incubations, 

however, organisms that assimilate ammonium, and are thus cross-feeding on methylamine-derived 

ammonium, should show a significantly lower 
15

N labelling compared to those assimilating 

methylamine-N. All Rhodobacteraceae- and IMCC2047-related peptides were found to be more than 

90% enriched in 
15

N, which indicated that under the SIP incubation conditions used, these bacteria 

mostly assimilated nitrogen from methylamine (Fig. 2, Table S2). C. Pelagibacter-related peptides 

contained a significantly lower amount (p < 0.001, t-test) of 
15

N with an average of 44%. This low 
15

N 
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incorporation suggests mostly assimilation of nitrogen from the ammonium pool in the incubations, 

which got only slightly enriched in 
15

N by ammonium release from methylamine utilizing organisms. 

In the 
15

N sample enriched in Methylophaga, a 
15

N content of 70-75%, differing significantly from all 

other organisms investigated (p < 0.001, t-test), was found in peptides unique for Methylophaga, 

indicating a different route of nitrogen assimilation as compared to Rhodobacteraceae and the 

IMCC2047-related Gammaproteobacterium, most likely at least partially via ammonium. The 
15

N 

incorporation patterns in peptides thus enabled a clear discrimination of bacteria using mostly 

methylamine as nitrogen source (Rhodobacteraceae and the IMCC2047-related 

Gammaproteobacterium), and organisms either additionally or exclusively using ammonium as 

nitrogen source (C. Pelagibacter and Methylophaga). 

Metabolic pathways for methylamine utilization and ammonium assimilation 

The genomes obtained from the two enriched methylamine utilizers related to Leisingera and 

IMCC2047 in the SIP incubations with 
15

N methylamine were investigated for the presence of genes 

required for methylamine utilization and ammonium assimilation. In the assembled genomes, no 

genes of the MaDH pathway were present. Genes of the GMA pathway were found in both genomes. 

In the Leisingera-related genome, putative gmaS and mgsABC genes (encoding GMA synthetase and 

NMG synthase) were present in one gene cluster, and two separate mghABCD clusters (encoding 

NMG dehydrogenase) were found. In the genome of the IMCC2047-related Gammaproteobacterium, 

a single gene cluster containing all eight genes of the GMA pathway was present. The gmaS gene of 

the Leisingera-related genome was 93% identical to that of Leisingera aquimarina, while the gmaS 

gene of the genome of the IMCC2047-related Gammaproteobacterium was 96% identical to that of 

strain IMCC2047 (both at the nucleic acid level). An overview of the phylogenetic distribution of the 

derived GmaS-sequences is given in Fig. S3.  

Protein sequences derived from the genomes obtained were used to reanalyze the metaproteomics 

data from the SIP incubations to verify the expression of proteins from the GMA pathway. Proteins 
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encoded by both GMA gene clusters related to Leisingera and the IMCC2047-related 

Gammaproteobacterium were found to be expressed (Fig. S4). This confirmed that both organisms 

used the GMA pathway for methylamine utilization. No peptides specific for GMA gene clusters 

related to C. Pelagibacter were detected. For comparison, we also checked for expression of proteins 

of GMA and MaDH gene clusters related to Methylophaga, using the samples where Methylophaga 

was enriched in 16S rRNA gene profiles (after 6 and 8 days of incubation). The published genome of 

Methylophaga thiooxydans strain L4 (Grob et al., 2015), the closest relative of the Methylophaga sp. 

detected in our incubations, was used as the reference. We detected 25 peptides encoded in the 

MaDH gene cluster, but only 5 peptides encoded in the GMA gene cluster. This strongly suggests that 

in our SIP incubations, Methylophaga used the MaDH pathway for methylamine utilization. 

Genes involved in ammonium assimilation, encoding the glutamine 

synthetase/glutamine:oxoglutarate amidotransferase system (GS/GOGAT), the ammonium 

transporter amtB and the glutamate dehydrogenase, were present in the genomes of Leisingera and 

the IMCC2047-related Gammaproteobacterium. The corresponding proteins related to both 

organisms were also expressed. An alanine dehydrogenase gene was only present in the Leisingera 

genome, but no corresponding protein was detected, suggesting that the GS/GOGAT pathway was 

primarily used for ammonium assimilation by Leisingera during these SIP incubations. 

In summary, the methylamine SIP experiment revealed the presence of two key methylamine 

utilizers related to Leisingera and Gammaproteobacterium strain IMCC2047, both employing the 

GMA pathway for methylamine utilization. Concomitantly, these organisms showed a high 
15

N 

incorporation in their peptides (Table S2), indicating the use of methylamine as sole nitrogen source. 

The Methylophaga sp. enriched in three of our incubations, conversely, was found to use the MaDH 

pathway for methylamine utilization, employing the two-subunit methylamine dehydrogenase 

(MauAB). Peptide analysis revealed a lower incorporation of 
15

N, indicating the additional uptake of 

unlabelled ammonium by this bacterium. A possible explanation for this difference is the cellular 

location of the pathways. Enzymes of the GMA pathway are found in the cytoplasm, thus the 
15

N 
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ammonium is released directly inside of the cell, where it can be immediately assimilated via the 

GS/GOGAT pathway or by glutamate dehydrogenase (Fig. 3). The MaDH is located in the periplasm, 

and therefore ammonium is released to the outside of the cell. Any 
15

N ammonium released in this 

way would thus need to be transported back into the cell (together with unlabelled ammonium from 

the seawater) before assimilation. 

Genomic and proteomic analysis of the metabolism of methylamine utilizers 

The draft genome sequences of the two key methylamine utilizers related to Leisingera and 

Gammaproteobacterium strain IMCC2047 that we obtained were analyzed in order to reconstruct 

their central metabolic pathways. Peptides identified were mapped to the protein sequences derived 

from these genomes to obtain data on gene expression in our SIP incubations.  

The Leisingera-related organism expressed key proteins of the serine pathway for carbon 

assimilation, including serine hydroxymethyltransferase and malate thiokinase. Furthermore, the 

pathway for tetrahydrofolate-dependent reduction of formate as well as an S-(hydroxymethyl) 

glutathione dehydrogenase for the glutathione-dependent oxidation of formaldehyde to formate, 

and a formate dehydrogenase were expressed by this organism. It was thus presumably utilizing 

methylamine not only as nitrogen source, but also as an energy source, by oxidising formaldehyde 

derived from the GMA pathway to CO2, and as carbon source by reduction of formate and 

assimilation via the serine pathway. This follows the classical mode of carbon utilization in 

alphaproteobacterial methylotrophs (Anthony, 1982). The Rhodobacteraceae, including the marine 

Roseobacter clade comprising up to 25% of marine microbial communities, contain a variety of 

organisms able to utilize C1 compounds, including methylated sulfur compounds (Buchan et al., 

2005) and amines (Chen, 2012). The closest relatives of the Leisingera-related organism, L. 

aquimarina and L. methylhalidivorans, possess genes of the GMA pathway and are able to use 

methylamine as nitrogen source but not as carbon source (Chen, 2012). The observed enrichment of 

the Leisingera-related organism in our SIP experiment hints to the ability of this organism to employ 
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methylamine also as carbon source, indicating an interesting deviation from the metabolic 

capabilities found in other members of Leisingera. In the Leisingera-related genome, genes encoding 

enzymes involved in degradation of dimethylsulfoniopropionate (dmdA, dddD) (Todd et al., 2007; 

Reisch et al., 2008) and dimethyl sulfoxide (dmsABC) (Weiner et al., 1992) were present. 

Furthermore, this genome also contained a sox gene cluster encoding enzymes involved in 

thiosulfate oxidation (Friedrich et al., 2000). These genes are also present in other Leisingera species 

(Schaefer et al., 2002; Vandecandelaere et al., 2008), suggesting that these organisms can utilize 

various sulfur compounds, but none of these genes were found to be expressed under the incubation 

conditions used in our experiments. 

The genome of the IMCC2047-related Gammaproteobacterium lacked genes encoding 

hydroxypyruvate reductase and malyl-CoA lyase, which are key enzymes of the serine pathway. Key 

genes of the ribulose monophosphate cycle, another methylotrophic pathway for the assimilation of 

carbon from methylamine (Anthony, 1982), were also missing. Alternatively, a ribulose-bisphosphate 

carboxylase and a phosphoribulokinase gene were found, suggesting that carbon might be 

assimilated into biomass at the level of CO2 via the Calvin Benson Bassham (CBB) cycle. The protein 

products of these genes were not detected, so it remained uncertain whether the organism used 

methylamine or CO2 as carbon source. The IMCC2047-related Gammaproteobacterium expressed 

various proteins involved in oxidation/reduction of C1 groups (methylenetetrahydrofolate 

dehydrogenase/methenyltetrahydrofolate cyclohydrolase, formate:tetrahydrofolate ligase, S-

(hydroxymethyl)glutathione dehydrogenase, S-formylglutathione hydrolase, and formate 

dehydrogenase). This indicated the likely use of methylamine as a source of reducing power and 

energy by the IMCC2047-related Gammaproteobacterium. No further genes encoding enzymes 

involved in C1 metabolism were found in the genome of this organism. The presence of a 

proteorhodopsin for light driven formation of a proton gradient is described in strain IMCC2047 

(Kang et al., 2011). The combination of proteorhodopsin and the CBB cycle has been suggested to 

allow a photoheterotrophic growth of strain IMCC2047, with reducing power obtained from 
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exogenous chemical compounds (Pinhassi et al., 2016) such as methylamine. However, no 

photorhodopsin encoding gene was found in the genome of the IMCC2047-related 

Gammaproteobacterium obtained here, potentially due to its incompleteness. 

Only a low number of peptides related to C. Pelagibacter were identified, and no evidence for the 

expression of C. Pelagibacter-specific proteins involved in methylamine utilization was found. 

However, Candidatus Pelagibacter ubique strain HTCC1062, the first cultivated representative of this 

genus (Giovannoni et al., 1990; Giovannoni et al., 2005), possesses genes of the GMA pathway for 

methylamine utilization and can oxidize methylamine for ATP production (Sun et al., 2011). 

Environments containing C. Pelagibacter strains are highly oligotrophic, and presumably these 

bacteria grow on the low concentrations of such compounds when they are released from dissolved 

organic matter (Tripp, 2013). When grown in culture, C. Pelagibacter strains have strict nutritional 

requirements for compounds such as pyruvate, glycine and reduced sulfur compounds, and typically 

have doubling times of more than 2 days even under optimal conditions (Carini et al., 2013). In our 

incubations, C. Pelagibacter was thus outcompeted by organisms capable of higher growth rates 

responding rapidly to methylamine addition. Nevertheless, as even slow growth with 
15

N 

methylamine as nitrogen source would result in a measurable abundance of peptides highly enriched 

in 
15

N (> 90% at.%), we still believe that C. Pelagibacter was not involved in methylamine utilization in 

our SIP incubations. C. Pelagibacter strains are adapted to nitrogen-limited conditions, and only 

switch to uptake of organic nitrogen sources under high nitrogen stress (Smith et al., 2013). Under 

the conditions present in our incubations, cross-feeding on 
15

N ammonium released by other 

methylamine utilizers might thus have been sufficient to satisfy the nitrogen requirement of C. 

Pelagibacter (Fig. 3), which would also explain the amount of 
15

N labelling observed in C. Pelagibacter 

peptides. 

For Methylophaga sp., key enzymes of the ribulose monophosphate cycle for carbon assimilation and 

enzymes involved in the tetrahydromethanopterin- and tetrahydrofolate-dependent 

oxidation/reduction of C1 groups were detected. This resembles the metabolism of the closely 
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related Methylophaga thiooxydans strain L4 during growth on methanol, as previously described 

(Grob et al., 2015). Methylophaga spp. are known bona fide methylotrophs (Janvier et al., 1985), thus 

it is not surprising that the Methylophaga sp. in our incubations used methylamine as source of 

carbon and energy, while releasing ammonium as a by-product. Interestingly, Methylophaga species 

are commonly observed in enrichment cultures and SIP experiments where marine samples are 

incubated with C1 compounds such as methanol, methylamine or dimethylsulfide (Neufeld et al., 

2007a; Moussard et al., 2009; Boden et al., 2010), even though they appear to be present only at 

very low relative abundance in 16S rRNA gene surveys of seawater samples (Janvier et al., 2003; 

Rusch et al., 2007; Grob et al., 2015). The bloom-like appearance of Methylophaga sp. in three of our 

incubations might indicate a preference for the high concentrations of methylamine used in our SIP 

experiment, in contrast to the ability of e.g. C. Pelagibacter to grow under highly oligotrophic 

conditions. The ecological niche of Methylophaga spp. in the environment, however, remains 

unknown.  

In summary, the draft genomes of two methylamine-utilizing organisms were recovered after 
15

N-SIP 

experiments. Both bacteria used the GMA pathway for methylamine utilization and assimilated 

nitrogen from the methylamine present. Based on the expressed proteins we detected, they 

probably also used methylamine as an energy source, but potentially employed different carbon 

uptake pathways, using either methylamine or CO2 as carbon source. 

Conclusion 

In this study, we used a 
15

N-SIP experiment to investigate the metabolism of methylamine in bacteria 

from a coastal environment. A combination of SIP, metagenomics and metaproteomics revealed that 

phylogenetically diverse methylamine utilizers of the Alpha- and Gammaproteobacteria assimilate 

the nitrogen from methylamine into biomass using the GMA pathway. Furthermore, ammonium 

released during methylamine utilization, e.g. via the MaDH pathway, can be used as a nitrogen 

source by bacteria not utilizing methylamine. Our study demonstrated that 
15

N-SIP is a powerful 
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technique to detect bacteria present in seawater samples that are able to respond to an increase in 

the availability of methylamine, and facilitates retrieval of their genomes by metagenomic 

sequencing of 
15

N labelled DNA. When coupled with proteomics, 
15

N-SIP can be used to reconstruct 

putative metabolic pathways and assess the expression of key proteins involved in cycling nitrogen 

from methylated amines by these bacteria. Since measurements of the in situ concentrations of 

methylated amines in seawater are difficult, further development of process-based methods, 

coupled with molecular ecology techniques such as SIP and metagenomics, will be required to 

analyze in depth the exact contribution of bacteria in the cycling of methylated amines in the marine 

environment. 

Experimental Procedures 

15
N stable isotope probing experimental setup 

Surface seawater was collected at the WCO Station L4 (50°15.0'N; 4°13.0‘W) on 29
th

 of September, 

2014. Three sets of four 2 L gas-tight glass bottles were filled with 0.75 L of seawater, to which 

75 μmol of 
15

N or 
14

N methylamine (two bottles each per set) were added (100 μM final 

concentration) as well as 750 µl marine ammonium mineral salt medium (MAMS,  NH4
+
 15 µM final 

concentration) (Schäfer et al., 2005). Bottles were incubated at 25°C in a shaking incubator at 50 

rpm. Methylamine concentration in the incubation bottles was measured daily by ion 

chromatography (see Supp. Info). When methylamine concentrations were below the limit of 

detection (5 µM), again 75 µmol of 
15

N or 
14

N methylamine were added. Seawater from a set of 

bottles was filtered through 0.22 µm Sterivex
TM

 filters (Merck Millipore) after 3, 6 and 8 days of 

incubation, by which time a cumulative amount of 75 µmol, 150 µmol and 300 µmol of methylamine 

had been added per bottle, respectively. For T0, 3.4 L of seawater were filtered in duplicate through 

Sterivex filters within 24 h of collection using a peristaltic pump (Watson-Marlow 502S, 50 ml min
-1

). 

Page 17 of 29

Wiley-Blackwell and Society for Applied Microbiology

This article is protected by copyright. All rights reserved.



18 

 

All filters were stored at -20°C for a maximum of two weeks before extraction of DNA and proteins, 

which was performed as described in (Grob et al., 2015). 

Protein-SIP analyses 

Protein extracts were subjected to SDS polyacrylamide gel electrophoresis followed by in-gel tryptic 

digestion and LC-MS/MS analysis (see Supp. Info). Peptide identification was performed in Proteome 

Discoverer v1.4 (Thermo Fisher Scientific) via the Mascot search algorithm (Koenig et al., 2008). Only 

peptides with a false discovery rate (FDR) <1% and peptide rank of 1 were considered as identified. 

Searches against two different reference databases were performed: the NCBInr database with 

taxonomy set to Bacteria and Archaea and a database consisting of the predicted protein sequences 

of metagenome-derived DNA sequence data. To exclude peptides that were conserved in multiple 

phylogenetic groups, the taxonomic range of all peptides was checked with Unipept 

(www.unipept.ugent.be). Proteins were considered as identified if at least one unique peptide was 

identified.  

Quantification of 
15

N incorporation in peptides 

A subset of peptides from proteins identified in samples incubated with 
14

N methylamine was 

selected for investigation of 
15

N incorporation in phylogenetic groups of interest (see Supp. Info). 

Mass spectra from samples of the corresponding 
15

N methylamine incubations were analyzed, the 

signals of the selected peptides were identified based on expected m/z, chromatographic retention 

time and MS/MS fragmentation pattern, and 
15

N incorporation was quantified as previously 

described (Taubert et al., 2013). 

DNA-SIP ultracentrifugation and fractionation 

DNA extracted from the incubations with 
14

N and 
15

N methylamine after 3 days was fractionated by 

ultracentrifugation in CsCl density gradients. For comparison, 
14

N and 
15

N DNA from reference strains 

(Methylophaga marina, Escherichia coli DH5α, Rhodococcus AD45) was also investigated. The 
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gradients were prepared by adding 3 µg of DNA per sample to a mixture of 7.163 M CsCl solution and 

gradient buffer (0.1 M Tris, 0.1 M KCl and 1 mM EDTA) set to a final density of 1.700 g ml
-1

. 

Ultracentrifugation at 40,900 rpm (164,000 x g max) for 64 hours at 20°C and with vacuum, 

maximum acceleration and no brake set was performed, using a VTi 65.2 rotor and an OptimaTM LE-

80K Ultracentrifuge (Beckman Coulter) (see Supp. Info). 

16S rRNA gene amplicon sequencing 

To generate amplicons of the 16S rRNA gene from DNA fractions and unfractionated DNA, the primer 

set 27Fmod (5′-AGRGTTTGATCMTGGCTCAG-3′) and 519Rmodbio (5′-GTNTTACNGCGGCKGCTG-3') 

was used. After amplification by PCR, 454 pyrosequencing was performed on a GS FLX Titanium 

system (MR DNA, Shallowater, TX, USA) followed by sequence analysis and phylogenetic 

classification (see Supp. Info). 

Selection and preparation of DNA fractions for shotgun sequencing 

Normalized distribution profiles of DNA from phylogenetic groups of interest along the density 

gradient were estimated in order to enable the selection of samples with the highest enrichment of 

DNA from a particular phylogenetic group for metagenome sequencing (see Supp. Info). Multiple 

displacement amplification (MDA) using the REPLI-g Mini Kit (Qiagen) was done to increase the low 

amounts of available DNA (see Supp. Info). A total of 4 μg of amplified DNA from each sample were 

sent for MiSeq, 2 x 300 bp, Illumina sequencing (2 million reads; MR DNA, Shallowater, TX, USA). 

Genome reconstruction and analysis 

The MiSeq sequencing datasets were assembled using SPAdes Genome Assembler v3.0 (Bankevich et 

al., 2012). Contigs below 1 kb were removed, the remaining contigs were binned based on 

tetranucleotide frequencies and % GC-content using VizBin (Laczny et al., 2015) and comparison with 

reference genomes using blastn (Altschul et al., 1997). Completeness of genomic bins was checked 

using CheckM (Parks et al., 2015). Selected genomic bins were annotated in RAST (Aziz et al., 2008), 
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followed by manual revision. Annotation of genes related to the GMA pathway was done as 

previously described ((Chen, 2012; Wischer et al., 2015), see Supp. Info).  

Sequence data deposition 

Raw data from 454 amplicon pyrosequencing of 16S rRNA gene amplicons have been deposited in 

the Sequence Read Archive (SRA) of NCBI under accession numbers SRR3183712-SRR3183751. 

Genome sequences obtained are available in the GenBank Whole Genome Shotgun (WGS) database 

under accession number LUKH00000000 (Leisingera) and LUKI00000000 (IMCC2047-related 

Gammaproteobacterium). Raw Illumina MiSeq data were deposited at BaseSpace 

(https://basespace.illumina.com/s/gDb2v3gnAbxU). 
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Table and Figure Legends 

Figure 1: Phylogenetic profiles of samples from the methylamine SIP experiment obtained by 16S 

rRNA gene amplicon sequencing. Relative abundance of taxonomic groups within each sample is 

shown at the family level as percentages and coloured bars. Profiles are derived from total DNA 

extracted from seawater samples collected at the Western Channel Observatory Station L4 (T0) and 

after incubating the same seawater with 
14

N or 
15

N methylamine and 0.1% MAMS (NH4
+
 15 µM final 

conc.) for 3, 6 or 8 days, when 75, 150 and 300 µmol of methylamine had been consumed, 

respectively. Mean values from 3 replicates (incubation for 3, 6 and 8 days) or 2 replicates (T0) and 

standard deviations are shown. Families containing less than 3% of sequences are combined in the 

“unknown/other” category.  

Figure 2: Incorporation of 
15

N into peptides after 3 days of incubation of seawater with 
15

N 

methylamine. Boxplots show median, first and third quartile for 
15

N relative isotope abundance in 

unique peptides of Gammaproteobacterium strain IMCC2047, Leisingera, C. Pelagibacter and 

Methylophaga. Whiskers indicate minimum and maximum values. ***All four groups differ 

significantly from each other (p < 0.001, t-test). 

Figure 3: Hypothetical overview of nitrogen utilization by the major phylogenetic groups identified 

in the 
15

N methylamine SIP experiment. Red discs show release of ammonium by methylamine 

utilization. Enzymes shown in black have been detected by metaproteomics. Enzymes shown in grey 

have not been detected, but the corresponding organisms possess the genes encoding these 

enzymes. GmaS: γ-glutamylmethylamide synthetase, Mgs: N-methylglutamate synthase, Mgd: N-

methylglutamate dehydrogenase, MauAB: methylamine dehydrogenase; GS/GOGAT: Glutamine 

synthetase/ Glutamine 2-oxoglutarate amidotransferase pathway of ammonium assimilation.  
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Table 1: Summary of genome statistics based on CheckM analysis (see Parks et al., 2015). N50/L50: 

length and number of the contig for which the collection of all contigs of at least that length contains 

at least half of the total length of the genome. Strain heterogeneity comprises the fraction of core 

genes present multiple times with a protein sequence similarity > 90%. 
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Figure 1: Phylogenetic profiles of samples from the methylamine SIP experiment obtained by 16S 
rRNA gene amplicon sequencing. Relative abundance of taxonomic groups within each sample is shown 

at the family level as percentages and coloured bars. Profiles are derived from total DNA extracted from 

seawater samples collected at the Western Channel Observatory Station L4 (T0) and after incubating the 
same seawater with 14N or 15N methylamine and 0.1% MAMS (NH4

+ 15 µM final conc.) for 3, 6 or 8 days, 
when 75, 150 and 300 µmol of methylamine had been consumed, respectively. Mean values from 3 

replicates (incubation for 3, 6 and 8 days) or 2 replicates (T0) and standard deviations are shown. Families 
containing less than 3% of sequences are combined in the “unknown/other” category.  

Fig. 1  
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Figure 2: Incorporation of 15N into peptides after 3 days of incubation of seawater with 15N 
methylamine. Boxplots show median, first and third quartile for 15N relative isotope abundance in unique 

peptides of Gammaproteobacterium strain IMCC2047, Leisingera, C. Pelagibacter and Methylophaga. 
Whiskers indicate minimum and maximum values. ***All four groups differ significantly from each other (p 

< 0.001, t-test).  
Fig. 2  
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Figure 3: Hypothetical overview of nitrogen utilization by the major phylogenetic groups 
identified in the 15N methylamine SIP experiment. Red discs show release of ammonium by 

methylamine utilization. Enzymes shown in black have been detected by metaproteomics. Enzymes shown in 

grey have not been detected, but the corresponding organisms possess the genes encoding these enzymes. 
GmaS: γ-glutamylmethylamide synthetase, Mgs: N-methylglutamate synthase, Mgd: N-methylglutamate 
dehydrogenase, MauAB: methylamine dehydrogenase; GS/GOGAT: Glutamine synthetase/ Glutamine 2-

oxoglutarate amidotransferase pathway of ammonium assimilation.  
Fig. 3  
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Table 1: Summary of genome statistics based on CheckM analysis (see 
Parks et al., 2015). N50/L50: length and number of the contig for which 
the collection of all contigs of at least that length contains at least half of 
the total length of the genome. Strain heterogeneity comprises  the 
fraction of core genes present multiple times with an identity of > 90% on 
amino acid level. 

  

fraction 5 
Leisingera 

fraction 7 
IMCC20471 

Methylophaga 
str. L42 

no. of contigs 1488 214 8 

total length / bp 7,813,916 2,494,546 2,589,653 

N50 / bp 52,902 36,700 397,852 

L50 32 22 3 

GC / % 61.8% 48.5% 45.7% 

no. of predicted genes 8,600 2,656 2,521 

core genes present 100% 88.9% 100% 

core genes present 
multiple times 

66.1% 3.0% 0.3% 

strain heterogeneity 87.9% 44.4% 66.7% 

core genes related to 
other taxa 

8.0% 1.7% 0.1% 

1IMCC2047-related Gammaproteobacterium 
2Methylophaga thiooxydans strain L4, Accession JRQD01,  
from Grob et al., 2015 
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