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23 

We present an efficient method for sampling and spatial estimation of soil moisture at the small 24 

catchment scale which is based on terrain data and sparse soil moisture measurements.  25 

26 

Accurate characterization of spatial soil moisture patterns and their temporal dynamics is 27 

important to infer hydrological fluxes and flow pathways and to improve the description and 28 

prediction of hydrological models. Recent advances in ground-based and remote sensing 29 

technologies provide new opportunities for temporal information on soil moisture patterns. 30 

However, spatial monitoring of soil moisture at the small catchment scale (0.1-1 km2) remains 31 

challenging and traditional in situ soil moisture measurements are still indispensable. This paper 32 

presents a strategic soil moisture sampling framework for a low-mountain catchment. The 33 

objectives were to: (i) find a priori a representative number of measurement locations, (ii) 34 

estimate the soil moisture pattern on the measurement date and (iii) to assess the relative 35 

importance of topography for explaining soil moisture pattern dynamics. The fuzzy c-means 36 

sampling and estimation approach (FCM SEA) was used to identify representative measurement 37 

locations for in-situ soil moisture measurements. The sampling was based on terrain attributes 38 

derived from a DEM. Five TDR measurement campaigns were conducted from April to October 39 

2013. The TDR measurements were used to calibrate the FCM SEA to estimate the soil moisture 40 

pattern. For wet conditions the FCM SEA performed better than under intermediate conditions 41 

and was able to reproduce a substantial part of the soil moisture pattern. A temporal stability 42 

analysis shows a transition between states characterized by a re-organization of the soil moisture 43 

pattern. This indicates that, at the investigated site, under wet conditions topography is a major 44 
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control that drives water redistribution whereas for the intermediate state other factors become 45 

increasingly important. 46 

Keywords: soil moisture, sampling design, cluster analysis, switching of states, 47 
pattern analysis  48 

49 

Despite the importance of soil moisture patterns to derive information for hydrological, 50 

ecological, and pedological studies, spatial monitoring of soil moisture at the small catchment 51 

scale (0.1-1 km2) remains a challenge. The interplay between static properties (e.g., topography, 52 

soil, geology) and dynamic processes (e.g., vegetation growth, evapotranspiration) is the reason 53 

why soil moisture is highly variable in space and time and the characterization of this variability 54 

is one of the major challenges within the hydrological sciences (Vereecken et al., 2014). 55 

To observe the spatio-temporal dynamics of soil moisture at the small catchment scale, numerous 56 

measurement techniques are available including traditional in situ field measurements with 57 

various types of soil moisture sensors, geophysical measurement techniques, and passive and 58 

active microwave remote sensing (see e.g., Robinson et al., 2008; Wagner et al., 2007 for 59 

reviews). A drawback of the application of geophysical techniques is that the temporal resolution 60 

is often low and restricted to a few snapshots during the year and that the effectiveness of the 61 

different methods to spatially map soil moisture often depends on site conditions (e.g., soil 62 

texture, soil moisture state). Passive and active remote sensing data on airborne and space borne 63 

platforms have been widely used for detecting soil moisture at different wavelengths. However, 64 

at the small catchment scale remote sensing data are not yet operationally available to depict soil 65 

moisture patterns at adequate temporal and spatial resolution (Bronstert et al., 2012). For this 66 

reason, traditional in situ soil moisture measurements are still indispensable because they are 67 
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straightforward in application and provide most accurate data. However, there is a trade-off 68 

between sampling density and spatial scale to observe soil moisture pattern dynamics by point 69 

measurements. Recent advances in sensing technology, in particular through wireless sensor 70 

networks (Cardell-Oliver et al., 2005; Bogena et al., 2010), allow for automated soil moisture 71 

monitoring in real time for the hillslope to the small catchment scale (Martini et al., 2015; 72 

Rosenbaum et al., 2012; (Penna et al., 2009; Bogena et al., 2010; Qu et al., 2015). However, 73 

these measurements are costly and hard to maintain, especially at agriculturally used sites. This is 74 

the reason why conventional soil moisture data collection is often done using portable sensors. 75 

Several studies collected in situ soil moisture on uniform grids or densely distributed and 76 

comprise hundreds of points for multiple sampling campaigns (Western and Grayson, 1998a; 77 

Wilson et al., 2003; Takagi and Lin, 2012; Hu and Si, 2014). Grayson et al. (1997) and Western 78 

et al. (1999a) demonstrated the use of “lots of points” (LOP) measurements (~500) to study the 79 

dynamics of spatial soil moisture patterns and their controls at the 10 ha Tarrawarra catchment in 80 

a temperate region in Australia. In their studies, they recognized that soil moisture patterns tend 81 

to switch between two preferred states depending on the seasonal evapotranspiration and 82 

precipitation ratio and the moisture state of the catchment. The observed patterns indicated a 83 

different degree of spatial organization (i.e., more organized for wet than dry state) related to the 84 

dominant hydrological process controlling the soil moisture distribution. The dry state is 85 

dominated by vertical fluxes, with local controls including soil properties and local terrain (areas 86 

of high convergence) shaping the spatial pattern. The wet state is dominated by lateral water 87 

movement through both surface and subsurface paths, with nonlocal controls which represent the 88 

dominant influence of catchment terrain on the distribution of soil moisture. Merz and Plate 89 

(1997) showed that organization in spatial patterns of soil moisture at particular times and soil 90 
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properties may have a dominant influence on catchment runoff. Moreover, Western and Grayson 91 

(2000) demonstrated the use of observed patterns to improve the development, calibration and 92 

testing of a distributed model.  93 

Systematic comprehensive observation campaigns like the ones of the Tarrawarra study (Western 94 

et al., 1999b) or the Mahurangi catchment (Woods et al., 2001) are rare because they are labor 95 

intensive and time consuming. Therefore, there is a need for new measurement designs which are 96 

technically and economically feasible, while maximizing information content (Soulsby et al., 97 

2008). The challenging questions to design such strategic sampling schemes for in situ soil 98 

moisture measurements include: (i) how to define a priori an appropriate number of 99 

representative measurement locations?, and (ii) how to regionally estimate soil moisture patterns 100 

(from point observations) for a target area by using sparse in situ measurements and readily 101 

available ancillary data so that the derived spatial information matches the model resolution or 102 

the footprint of high-resolution remote sensing data to which it is being compared?  103 

Vachaud et al. (1985) were the first who introduced the concept of temporal stability (TS) in soil 104 

moisture monitoring to reduce the measurement effort to characterize the spatial soil moisture 105 

pattern of large fields. TS is described as the temporal persistence of a spatial pattern which 106 

implies that particular locations exist in the field that always display mean behavior while others 107 

are persistently wet or dry (Kachanoski and de Jong, 1988). Currently, the number of 108 

publications on TS of soil moisture is growing quickly mainly in applying the TS concept to 109 

select one or more locations out of a larger sampling volume to estimate average soil moisture for 110 

the field to catchment scale (Grayson and Western, 1998; Martínez-Fernández and Ceballos, 111 

2005; Martinez et al., 2008; Schneider et al., 2008; Zucco et al., 2014). However, such a 112 

catchment average soil moisture monitoring (CASMM), introduced by Grayson and Western 113 
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(1998), does not aim to describe the spatial patterns (e.g., zones of saturation), relevant for the 114 

movement of water, and to shed light on the reason for TS and its controls. Therefore, other 115 

sampling techniques are needed that use available knowledge about structure forming processes 116 

allocated to disciplines of pedology, biology, hydrology, and geomorphology, to expand sparse 117 

measurements to a continuous representation of the soil moisture pattern (Schulz et al., 2006). 118 

Recently, this approach has shaped the field of hydropedology (Lin, 2003) that uses pedometrics 119 

to study the spatial patterns of soil properties and the related temporal dynamics of water in the 120 

vadose zone. In this framework, various sampling techniques have been proposed and tested to 121 

efficiently capture catchment/environmental conditions. These include stratified random sampling (SRS) 122 

(McKenzie and Ryan, 1999; De Gruijter et al., 2006), response surface sampling (RSS) (Lesch, 2005) or 123 

conditioned Latin hypercube sampling (cLHS) (Minasny and McBratney, 2006; Schmidt et al., 2014), to 124 

name a few, to find sampling locations assisted and guided by the presence of ancillary data, such as 125 

terrain attributes, geophysical measurements, remote sensing images or vegetation maps. The sampling 126 

points are then chosen to optimize the soil property/ancillary data relationship. Furthermore, Werbylo and 127 

Niemann (2014) tested the effectiveness of SRS and cLHS to select a limited number of points for soil 128 

moisture monitoring based on topographic data and to calibrate two different models to estimate soil 129 

moisture patterns at three catchments.  130 

To find representative sampling locations for soil moisture measurements a priori knowledge of 131 

key drivers of soil moisture patterns is essential. The general idea behind this is based on the soil-132 

landscape paradigm proposed by Jenny (1941) which was further generalized and formulated by 133 

McBratney et al. (2003). In short, the spatial variability of a soil attribute is the result of spatially 134 

referenced soil forming factors (environmental covariates) which can be used to establish soil 135 

spatial prediction functions (McBratney et al., 2003). Considering soil moisture as a dynamic soil 136 

attribute, a general prediction model can be described as  137 
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           [1] 138 

where Q is a set of p environmental variables (i.e., surrogate patterns) that provide information 139 

about the underlying catchment characteristics. They can, for example, be derived from GIS, 140 

proximal soil sensing, and remote sensing. (x,y,z,t) stands for the soil moisture at some spatial 141 

location x,y,(z) at time t. The general problem consists in the definition of zones (clusters) with 142 

similar environmental characteristics which are assumed to show similar hydrological response 143 

(i.e., soil moisture dynamics). In each zone, a soil moisture monitoring location and a set of 144 

collocated environmental variables exist to build a function  which is flexible enough to 145 

describe a nonlinear relationship. Based on this empirical quantitative function, spatial estimates 146 

are made from observation data to infer soil moisture at unsampled locations. To follow this 147 

approach a main task is the identification of representative zones and to derive the soil-landscape 148 

relationships. With the advent of pattern recognition in the late 1960s the usage of the fuzzy 149 

clustering technique has continuously found its way into geosciences. Since then, fuzzy 150 

classification has been applied in many fields to extract knowledge based on ancillary data for 151 

automated landform classification (Burrough et al., 2000; MacMillan et al., 2000) and soil 152 

classification (Odeh et al., 1992; Triantafilis et al., 2013). However, the performance of the fuzzy 153 

clustering also depends on the considered set of factors and is sensitive to the selected number of 154 

clusters (Stevenson et al., 2015; Sun et al., 2012). Fuzzy classes have also been used to identify 155 

sampling locations for mapping soil types (Odeh et al., 1990) and soil moisture  (Van Arkel and 156 

Kaleita, 2014). Furthermore, the study of Schmidt et al., (2014) where a fuzzy sampling scheme 157 

was compared to other sampling schemes supports the usefulness of this method in combination 158 

with nonlinear multiple regression (i.e. random forest) to predict soil properties at the field-scale. 159 
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The general advantage of the fuzzy classification method is that it allows for class overlap to 160 

account for gradual transitions which often occur in the environment (Burrough et al., 2000).  161 

The objectives of this study are to apply a strategic sampling design based on a fuzzy c-means 162 

clustering technique (Paasche et al., 2006) to identify a priori a limited number of representative 163 

sampling locations to monitor near-surface soil moisture dynamics at the small catchment scale, 164 

(ii) to apply the sampling framework to spatially estimate soil moisture pattern on the 165 

measurement date, and (iii) to assess the relative importance of topography for explaining soil 166 

moisture pattern dynamics at the small catchment scale for the catchment under investigation. 167 

168 

169 

Fuzzy c-means clustering technique 170 

The fuzzy c-means (FCM) clustering technique can be applied to stratify a catchment, based on a 171 

set of environmental covariates (i.e., proxies for soil moisture controlling factors), into a specified 172 

number of clusters. In this paper, we call these clusters soil landscape descriptors (SLDs) where it 173 

is expected that samples belonging to each SLD show similar soil moisture response. The 174 

geospatial data of the catchment are arranged in a  matrix X, with element ,  is the 175 

number of data points (pixels) and  is the number of predictor variables (e.g., environmental 176 

variables such as terrain attributes) with  and  The optimal classification for a 177 

selected number of c clusters is iteratively found so that the multivariate within-cluster variance 178 

is as small as possible (Burrough et al., 2000). This is obtained by minimizing the following 179 

objective function (Bezdek, 1974): 180 
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 , where       [2] 181 

denotes the degree of membership of a data point to a distinct cluster and Dij is a selected 182 

distance measure, defined here as Euclidean: . 183 

After selecting the number of clusters and minimizing the objective function (Eq. 2), the final 184 

outcome of the FCM clustering provides a fuzzy membership matrix M with elements and a 185 

matrix of cluster centers V with elements . In fuzzy logic, each element is assigned a partial 186 

membership to all clusters based on their distance to the respective cluster center. The 187 

membership values vary between zero and one; the the value the closer the element is to the 188 

corresponding cluster center. The exponent  determines the degree of fuzziness. For  189 

approaching one, the algorithm resembles a crisp classification algorithm that only allows an 190 

individual pixel/data point to lie in one mutually exclusive cluster , while for larger values it 191 

allows an individual to be partial member of all clusters (i.e., the membership to a specific cluster 192 

is more fuzzy). In our study,  was set to 1.6, which is widely accepted as suitable choice in 193 

literature (Bezdek et al., 1984). The membership of the ith object to the jth cluster is 194 

determined by195 

,          [3] 196 

where the sum of all membership values of an element across all clusters is unity. The cluster 197 

center of the jth cluster for the kth attribute is calculated as 198 

.          [4] 199 

One important issue in all clustering techniques is the choice of an appropriate number of clusters 200 

which is inherently subjective. This is known as “cluster validity problem” which strives to offer 201 
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a quantitative (statistical) measure which indicates how well the algorithm has identified the 202 

structure that is present in the underlying ancillary data. Therefore, many authors have proposed 203 

validity functionals in order to solve the validity problem. The fuzzy performance index (FPI) 204 

and the normalized classification entropy (NCE) are two of these functionals which were found 205 

to be most useful (Roubens, 1982) and are widely used in literature (Burrough et al., 2000; 206 

Triantafilis et al., 2003). The FPI is a measure of the degree of fuzziness and the NCE indicates 207 

the degree of disorganization in the classification. The least fuzzy and disorganized number of 208 

clusters is considered optimal (Odeh et al., 1990). After finding the optimal number of clusters, 209 

defuzzification techniques (Leekwijck and Kerre, 1999) are used to define crisp classes in order 210 

to perform a geoscientific interpretation of every class. The general workflow of this approach 211 

has been used by others (e.g., Paasche and Eberle, 2009) and is displayed in Figure 1.  212 

Our proposed method is based on the work of Paasche et al. (2006) but works in a modified way 213 

(Fig. 2) because the purpose of our sampling strategy is to identify locations that represent the 214 

range of values of each ancillary variable so that the sampling is less likely to be redundant. 215 

Therefore, we consider the FCM clustering as imaging technique using the membership matrix M 216 

and the center matrix V to store the spatial heterogeneity and average cluster-specific 217 

information, respectively. These elements are of central importance because they describe the 218 

complex landscape structure in a reduced form. Using a simple mixing law, the ancillary data can 219 

be reconstructed from the membership and center matrices (Fig. 2). 220 

The reconstructed maps are stored in a matrix B and the reconstructed value of the ith data point 221 

for the kth attribute is calculated as a weighted sum over all clusters: 222 

.           [5] 223 
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Comparing the reconstructed and the attribute data allows the quantification of informational loss 224 

during the clustering procedure. To account for this the total absolute difference (TAD) was 225 

calculated:  226 

         [6] 227 

where and are reconstructed and attribute data points.  228 

A simple L-curve analysis (e.g., Twarakavi et al., 2010) of informational loss over different 229 

numbers of clusters allows for the identification of an optimal number of clusters. L-curve 230 

analysis is a well-established technique to identify the optimal regularization strength for ill-231 

posed discrete optimization techniques (e.g., Lassonde, 2001) which constrains the 232 

spatial/structural complexity of the final solution. In our case, the number of clusters constrains 233 

the complexity of the solution of the cluster analysis and thus the ability to capture the spatial 234 

heterogeneity of all considered ancillary data in the fuzzy membership matrix. The selection of an 235 

optimal number of clusters ensures that sufficient information is stored in the membership matrix 236 

M to reconstruct the complex patterns/structures of the ancillary data. In case the “elbow” point 237 

cannot be detected uniquely by visual inspection it is advisable to better increase the number of 238 

clusters towards a very conservative optimal number of clusters to avoid the risk of losing 239 

structural information and we have followed this strategy in this study. Figure 3 conceptually 240 

shows the TAD relationship for different cluster solutions and the “elbow” point where the 241 

information loss saturates. The fuzzy membership matrix of this optimal solution (copt) is then 242 

further analyzed for the identification of suitable sampling locations (e.g., Hachmöller and 243 

Paasche, 2013). Note, for the case of noise-free ancillary data, one could rank the sampling 244 

locations according to the values of maximal membership to a cluster. For example, the point, 245 

where maximal membership to a cluster is achieved would be the most appropriate one for soil 246 
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moisture sampling. However, the ancillary data are not free of noise components which are not 247 

specifically known for every data point. According to the principles of error propagation, this 248 

noise will propagate into the membership values not allowing for a strict ranking of optimal 249 

sampling locations. Thus, we are only searching for a point with high membership value to a 250 

cluster but not for the point with highest membership. Practically, this makes our approach very 251 

applicable to regions of rough and hardly or inaccessible terrain, since the condition to sample a 252 

very specific point in the study region is not restricted to a single sampling location but rather to a 253 

subset of points. Therefore, the memberships of copt are used to identify areas within the zones 254 

which have at least a membership of 0.8 to a corresponding class. For each class a minimum of 255 

one location is selected to form a sparse set of sampling points. 256 

Estimation of soil moisture patterns 257 

Following Paasche et al. (2006) and (Hachmöller and Paasche, 2013) we use sparse 258 

measurements and the fuzzy membership matrix describing the spatial heterogeneity of the 259 

attributes to estimate soil moisture spatial patterns . This is done by calibrating each cluster with 260 

a point soil moisture measurement thus extending the center matrix V achieved by clustering the 261 

ancillary/physiographic data sets. This extension is done by adding a column to the matrix 262 

containing the measured soil moisture value for each cluster obtained from the sampling locations 263 

derived with the FCM clustering. Taking the fuzzy membership matrix as spatial weighting 264 

information (equation 5) for the soil moisture information stored in the extended center matrix A 265 

we achieve a spatially continuous prediction of soil moisture distribution (Fig.2). This approach 266 

holds if the variable of interest is related to at least one of the underlying physiographic attributes 267 

influencing the pattern in the fuzzy membership matrix. Prediction is done without knowing or 268 

specifying the exact relation of the target value (i.e., soil moisture) to any of the underlying 269 
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ancillary data. However, since only structural heterogeneity described by the membership values 270 

is used to guide the prediction of the spatial distribution of the target value, this approach will 271 

likely fail, if the ancillary database does not reflect the various dependencies of the target value. 272 

273 

The Schäfertal research site (11°03 E, 51°39 N) is a small low-mountain catchment and is part of 274 

the long-term Earth observation network TERENO (Zacharias et al., 2011). It is located on a 275 

plain in the Lower Harz Mountains in central Germany, approximately 150 km southwest of 276 

Berlin (Fig. 4). The Schäfertal catchment has a humid continental climate and the mean annual 277 

air temperature is 6.8 °C ranging from -1.8 °C in January to 15.5 °C in July (Ollesch et al., 2006). 278 

Mean annual precipitation is about 630 mm (time series 1968-2006) which is low compared to 279 

other low mountain-areas in Germany due to the leeward position of the region on the eastern 280 

slope of the Harz Mountains (Reinstorf, 2010). From April to September, the climatic water 281 

balance yield according to the closest weather station, 9 km away, in Harzgerode, is negative (-64 282 

mm) whereas the long-term mean of the annual climatic water balance is +126 mm (Abdank et 283 

al., 1995). 284 

The size of the agriculturally used catchment is 144 ha. Its elevation ranges from 393 m a.s.l. 285 

from the outlet of the catchment to 445 m a.s.l. on the highest ridge. The catchment is V-shaped 286 

with a first order stream in the valley and with gentle to moderate slopes (up to 20%) on both 287 

sides of the stream. The site is characterized by four distinct landforms: 1) north-facing slope, 2) 288 

south-facing slope, both intensively used for agriculture, 3) valley bottom with pasture or 289 

meadow and 4) topographic depressional areas (swales) disrupting the slopes on both sides of the 290 
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stream. In autumn 2012, parts of the grassland area in the western part of the catchment were 291 

transformed into arable land. 292 

The catchment is underlain by Devonian greywacke and shale which are covered by a complex of 293 

periglacial layers with different fractions of silt and rock fragments (Altermann, 1985). Different 294 

soils evolved according to the sequence of the cover layer and landscape position. The dominant 295 

soils comprise Luvisols and Cambisols on the hillslopes and peaty Gleysols in the valley bottom 296 

(Borchardt, 1982). 297 

Material and Methods 298 

Selection of ancillary data 299 

To capture the spatio-temporal variability of soil moisture in the Schäfertal catchment the 300 

sampling needs to be driven based on the digital implementation of external drivers of soil 301 

formation that control processes of water redistribution. Therefore, the selection of appropriate 302 

ancillary data requires understanding of the physical significance of patterns of specific 303 

environmental variables to provide information which is in some way related to soil moisture 304 

(Grayson et al., 2002). We follow a very simple approach and use topographic information for 305 

this purpose. Recalling the soil-landscape paradigm (Hudson, 1992), topography at the small 306 

catchment scale is an integral factor that has a lasting influence on the effects of gravitation, 307 

water, biota, microclimate and soil formation and is therefore one of the most widely used static 308 

factors that affects runoff processes (Western et al., 1999a; Beaudette et al., 2013). Of course 309 

there is no reason per se to expect that topography solely explains soil moisture variability. 310 

Previous studies show that in some settings the use of terrain indices perform well, while in other 311 

settings they have been shown to perform poorly (Western et al., 2004). So we are well aware 312 
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that topography is not the only factor controlling soil moisture pattern dynamics but we can test 313 

how much of the soil moisture pattern can be described in our research catchment by following 314 

this rather simple approach. To this end, we used a digital elevation model (DEM) to derive 315 

terrain attributes that may be related to key hydrological processes controlling the spatial 316 

distribution of soil moisture in the Schäfertal catchment.  317 

Digital Terrain Modelling 318 

Terrain information was obtained from a high-resolution  m2 digital elevation model 319 

(DEM1) derived from an airborne laser scanning (LIDAR) of the Schäfertal catchment 320 

(GeoBasis-DE / LVermGeo LSA, 2009). Such a high resolution DEM was used to describe the 321 

spatial arrangement of topographic structures (e.g., swales) in detail as they are relevant for soil 322 

moisture redistribution and to approximate the sampling support for soil moisture measurements. 323 

To reduce the amount of noise in the LIDAR data and to better represent primary topographic 324 

attributes within the catchment, a  m2 filter window was applied to the original DEM 325 

using ArcGIS 10.1 (ESRI, Redland, CA). By choosing this filter window, we calculated the mean 326 

elevation of all cells within the window and applied the mean value to the corresponding center 327 

cell. For practical reasons, the smoothed DEM was additionally resampled into a  m2 DEM 328 

(DEM2) with bilinear interpolation. For hydropedological applications, a wide range of terrain 329 

attributes are available that describe relevant features in the catchment with respect to soil 330 

moisture redistribution (Moore et al., 1991; Behrens et al., 2010) and we assume that they are 331 

useful for the identification of representative monitoring locations. We derived four topographic 332 

attributes: slope, elevation, total annual incoming solar radiation (TIR) and SAGA wetness index 333 

(SWI). Each attribute independently contributes information about local and contextual landscape 334 

conditions and is commonly used in the literature (Western et al., 1999a; Wilson et al., 2005; 335 
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Takagi and Lin, 2012). By this means, the elevation was used to describe landscape position and 336 

the gravitational potential energy that drives water flow. The slope is indicative to represent the 337 

hydraulic gradient that drives surface and near-subsurface fluxes (Western et al., 1999a). The TIR 338 

was used as an index for evapotranspiration and microclimate and the SWI to represent zones of 339 

surface saturation. Note that we used SWI instead of topographic wetness index (TWI) as 340 

introduced by Beven and Kirkby (1979). The SWI is a modified version of the TWI to account 341 

for a more realistic prediction for cells situated in valley floors with small vertical distance to a 342 

channel (Böhner and Selige, 2006). All terrain attributes were calculated with SAGA-GIS 343 

(System for Automated Geoscientific Analyses) (see Wilson and Gallant (2000) for algorithms).  344 

These computations yielded gridded data sets of 4 attributes (Fig. 5a-d) with a spatial resolution 345 

of 2 m and form the input data for the fuzzy c-means cluster algorithm. 346 

Selection of Sampling Locations for Estimation of Soil Moisture Patterns 347 

The FCM clustering was conducted separately for the arable land and for the grassland. We 348 

derived 20 clusters for arable land and 10 clusters for grassland, respectively. Figure 6 shows the 349 

distribution of clusters with the clusters for both land uses being merged in one map. Taken 350 

together, they form the 30 SLDs for the Schäfertal catchment. Then, each cluster was assigned 351 

with at least one “sparse” measurement point. In this study, we determined altogether 50 352 

measurement points for TDR by placing two measurement points in each cluster on the arable 353 

land (hillslope areas) and one in each grassland cluster (riparian zone). The two measurement 354 

locations for the arable land were chosen as the total area is much larger than that of grassland 355 

and this way to account for within cluster variation and to avoid local extrema which would 356 

influence the interpolation. For a catchment area of ~1.5 km2 a number of 50 measurement points 357 

is “sparse” in the sense that this number would be way too small for an interpolation of soil 358 

Page 16 of 49



 

17 

 

moisture maps based on geostatistical approaches such as kriging. Nevertheless, conducting the 359 

analysis with 30 measurement points (one per cluster) would also be feasible. 360 

For validation of the soil moisture maps, we used an independent set of 44 TDR measurement 361 

points distributed all over the catchment. Thirty of these locations were obtained from simple 362 

random sampling across the whole catchment and 14 points were available from a Latin 363 

hypercube sampling which was available from an already running time series of measurement 364 

campaigns and was designed to provide local ground truth (soil moisture and vegetation 365 

parameters) for remote sensing measurements. However, all these measurement points were 366 

independent from the locations determined for the FCM sampling. 367 

In combination with the calibration points a total of 94 monitoring locations were determined for 368 

the catchment (Fig. 7), which lead to a measurement effort of a half day work. Each sampling 369 

point was georeferenced with a Leica GPS1200 (Leica, Heerbrugg, Switzerland) with a lateral 370 

and vertical resolution of 0.1 m, and the locations were marked. The near-surface (0-10 cm) 371 

volumetric soil moisture was sampled using a portable TDR100 time domain reflectometer 372 

(TDR) (Campbell Scientific, Logan, UT) with a custom-made three-rod probe, with a basic 373 

accuracy of  m3/m3. Before measuring, TDR probes were calibrated for soil moisture 374 

estimation with measurements in water and air. Volumetric soil moisture  [m3/m3] was 375 

calculated using the CRIM (Complex Refractive Index Model) formula according to Roth et al. 376 

(1990). Furthermore, soil temperature was measured with a DT-300 handheld LCD-thermometer 377 

(Voltcraft, Hirschau, Germany), with a basic accuracy of  °C, in 3-6 cm depth. The 378 

temperature data were used for temperature correction of the dielectric permittivity of water w. 379 

The dielectric permittivity of the soil matrix s was set to an estimated value of 4.6 [-]. The 380 

porosity of the soil was estimated based on soil information data (Borchardt, 1982) and was set to 381 
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0.4 for Cambisols and Luvisols on the slopes, and to 0.6 and 0.75, respectively, for the Gleysols 382 

in the lower relief positions near the channel and for the peat soils. At each point, campaign-383 

based TDR measurements were conducted to acquire local soil moisture contents based on the 384 

average of three replicate TDR measurements.  385 

Soil Moisture Measurement Campaigns and Timing 386 

From spring to autumn 2013 five measurements campaigns (T1 to T5) were conducted in the 387 

Schäfertal catchment. The timing of the five field campaigns was designed to capture a range of 388 

soil moisture states. The moisture contents covered a wet (April-May 2013) moisture state due to 389 

the late snow melt in 2013 and an intermediate (September-October 2013) soil moisture state 390 

typical for fall conditions in the Lower Harz Mountains. A dry state could not be captured for the 391 

entire catchment due to limited access to the cropped fields during the summer. 392 

All points were measured within a few hours (< 6h) to minimize the effect of evapotranspiration 393 

and drainage processes on the soil moisture measurements. The measurement campaigns were 394 

further optimized by calculating the shortest route for visiting each point with the Concorde 395 

Travelling Salesman (TSP) Solver (Applegate et al., 2001, see 396 

www.math.uwaterloo.ca/tsp/concorde/).  397 

The temporal persistence of soil moisture patterns was tested by calculating the non-parametric 398 

Spearman rank correlation coefficient rs for the various sampling dates (Vachaud et al., 1985). 399 

The Spearman rank correlation coefficient for soil moisture values measured at observation times 400 

 and  is computed as 401 

         [7] 402 
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where n is the number of point soil moisture observations in the catchment,  is the rank of  403 

at location i at observation time u. The closer  is to unity, the more temporally stable are the 404 

patterns. In this respect, our intention to apply this coefficient is to check for temporal changes in 405 

soil moisture spatial organization which would not be explainable by the static topographic data 406 

used in our FCM clustering procedure. 407 

FCM validation and estimation error 408 

To assess the prediction accuracy of this nonlinear estimation technique we calculated the Nash–409 

Sutcliffe coefficient of efficiency (NSE) (Nash and Sutcliffe, 1970) and the root mean square 410 

error (RMSE). Therefore, the independent validation data set composed of 44 soil moisture 411 

observation points over the whole catchment was used. The NSE was used to explain how well 412 

the model matches the observed soil moisture pattern. The RMSE indicates the accuracy of the 413 

model to match the observed soil moisture. The NSE is defined as 414 

         [8] 415 

where a is the number of data points in the validation data set, t is the tth observed soil moisture, 416 

t is the predicted soil moisture of the tth observation and  is the average of the observations.  417 

The RMSE is determined by 418 

.        [9] 419 

The statistic software R (R Development Core Team, 2012) and the R package e1071 version 420 

1.6-1 (Meyer et al., 2014) was used to carry out the FCM clustering and to perform all statistical 421 

analyses. 422 
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423 

Soil moisture measurements 424 

The main statistics of the five selected TDR sampling campaigns are provided in Table 1. The 425 

first TDR campaign was conducted on April 17, 2013 right after the snowmelt, and was followed 426 

by a second campaign on April 23, 2013 after one week of drying, and a third one on May 8, 427 

2013 three weeks later with a small amount of rain between the second and the third campaign. 428 

The fourth campaign was conducted on September 25, 2013 followed by the fifth measurement 429 

on October 2, 2013 after one week of drying. T1 to T3 represent a wet moisture state and show 430 

high spatial mean soil moisture values (0.34, 0.26, and 0.27 m3/m3, respectively) throughout the 431 

catchment whereas T4 and T5 represent an intermediate state with moderate spatial mean soil 432 

moisture values (0.19 and 0.18 m3/m3, respectively). The spatial patterns of the five TDR 433 

measurement campaigns are displayed in Fig. 8.  434 

All five measurement dates show a valley-dependent pattern of soil moisture with higher values 435 

occurring in the valley bottom. However, the pattern for the wet moisture states (T1 to T3) is 436 

more pronounced with higher ranges between 0.49 to 0.55 m3/m3 and higher standard deviations 437 

from 0.09 to 0.11 m3/m3 for soil moisture contents (Tab. 1). The very high moisture contents in 438 

the valley bottom (> 0.5 m3/m3) highlight locations with a peaty soil layer and high porosities at 439 

the top of the soil profile that are in strong contrast to the soil moisture of the mineral soils with 440 

lower porosities which, however are also at or close to saturation right after the snowmelt (0.3 to 441 

0.4 m3/m3) (Fig. 8a-7c). Moreover, soil moisture values are higher on the north-exposed slope 442 

than on the south-exposed slope which cannot be explained by topography only and which is also 443 

contradictory to what would be expected from atmospheric forcing. The pattern for the 444 
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intermediate state (8d-8e) is less prominent with smaller soil moisture ranges between 0.36 and 445 

0.37 m3/m3 (Tab. 1) than the one observed during the wet state that displays strong alignment 446 

along the valley and converging hillslopes. 447 

Estimated soil moisture patterns 448 

Figure 9 shows the soil moisture patterns for all five sampling campaigns estimated for the entire 449 

catchment area with the FCM clustering approach using 50 TDR measurement points for 450 

calibration based on the topography-based sampling scheme (Fig. 2).  451 

All estimated patterns show the topographic dependence of soil moisture with increasingly wet 452 

areas in the depression lines (swales) and in the valley bottom. For the measurement dates T1 to 453 

T3 (Fig. 9a–9c) they also indicate the difference in soil moisture between the northern and the 454 

southern hillslope with higher soil moisture contents predicted for the northern slope. To test how 455 

well topography is suited to reproduce the observed soil moisture patterns, the prediction 456 

accuracy was estimated using the Nash-Sutcliffe Coefficient of Efficiency (NSE) based on the 457 

measurements at the 44 validation points. The predicted and observed soil moisture values for the 458 

five measurement dates are displayed in Figure 10. In addition to that, Table 3 shows the 459 

performance when the validation is separately conducted for arable land and grassland (riparian 460 

zone) and for the whole catchment. For the measurement dates T1 to T3 during the wet state, the 461 

FCM SEA performs well for the whole catchment and shows high NSE values (T1: 0.78; T2: 462 

0.73; T3: 0.59) (Fig. 10). In contrast, the FCM performance is weaker during intermediate soil 463 

moisture states on dates T4 and T5 (T4: 0.34; T5: 0.41). The RMSE for the whole catchment 464 

yielded for all five sampling dates similar results with moderate accuracy (0.05–0.06 m3/m3). 465 

However, there is a strong contrast in the performance between the two land use types. For arable 466 

land the estimates are almost always more accurate than for grassland with much smaller RMSE 467 
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(Table 3). For the wet state, T1 to T3, arable land outperforms grassland and shows more 468 

consistent NSE values than grassland. For the intermediate state, T4 to T5, the performance for 469 

both land use types decreases and shows negative NSE values for grassland and a negative and a 470 

positive NSE value for arable land. Note that negative NSE values indicate that the observed 471 

average soil moisture is a better estimate of the observed pattern than the estimated pattern 472 

obtained with the FCM SEA. 473 

Temporal stability of soil moisture patterns 474 

Table 2 provides an overview of the Spearman rank correlation coefficients calculated for all 475 

measurement dates. For the wet soil moisture state (T1 to T3) the spatial patterns show a high 476 

rank correlation ( 0.87) indicating that the patterns are very similar during this time. 477 

Comparison of the moisture patterns of the wet state (T1 to T3) with the intermediate state (T4 478 

and T5) results in significantly lower rank correlations ( 0.66), while the moisture patterns 479 

during the intermediate states exhibit again a higher rank correlation ( 0.79). This analysis 480 

shows that the soil moisture patterns in the Schäfertal reorganize from the wet to the intermediate 481 

state. 482 

483 

Controls of spatio-temporal organization of soil moisture for the wet and intermediate states 484 

For the Schäfertal catchment, the performance of the FCM SEA decreases as the catchment 485 

becomes drier (Fig. 10). Moreover, there is significant shift in NSE values between the wet and 486 

the intermediate soil moisture conditions, indicating that the relative importance of topography 487 

diminishes and the relative importance of factors such as soil heterogeneity (i.e., texture, 488 

structure) and vegetation (i.e., crop type, land use, density) become increasingly important and 489 
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drive soil moisture variation. Additionally, we attribute the shift to the fact that 490 

evapotranspiration is the controlling factor fostering vertical flow processes within the soil profile 491 

during the summer and fall months. This would also support the work of Albertson and Montaldo 492 

(2003) who provided a theoretical framework that demonstrated that vegetation can reduce soil 493 

moisture spatial variability as soon as a positive covariance between transpiration and the soil 494 

moisture field emerges. Since the estimated spatial pattern described from the fuzzy membership 495 

information relies on topographical attributes only we are not able to reproduce this pattern re-496 

organization. 497 

For the wet state, the FCM SEA based on a combination of single terrain attributes already 498 

explained between 59% and 78% of soil moisture variability. The predicted patterns of soil 499 

moisture (Fig. 9) reflect the terrain features well showing high soil moisture in the riparian zone 500 

(valley) and converging areas (swales/hollows). Our findings correspond well to the hydrotope 501 

map of the Schäfertal (Borchardt, 1982) that indicates a shallow groundwater table close to the 502 

surface in the central part of riparian zone and in the converging areas. Additionally, field 503 

observation shows failed sprouting due to waterlogging with the beginning of the growing season 504 

in the converging areas. For this reason, there is evidence that the estimated maps produce a 505 

realistic pattern under wet conditions and thus topography is an important control for soil 506 

moisture patterns during these times in the Schäfertal catchment. 507 

For dryer states our proposed terrain-driven sampling and estimation approach performs less 508 

accurate but is still capable of explaining between 34% and 41% of total variance. This is still 509 

relatively good compared to most other studies which rarely explained more than 50% of soil 510 

moisture variability using topographic data (Western et al., 1999a; Takagi and Lin, 2012; Wilson 511 

et al., 2005; Beaudette et al., 2013). However, for both moisture states the accuracy of the 512 
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estimated soil moisture is moderate with an average RMSE of 0.06 m3/m3. Our proposed FCM 513 

SEA showed seasonality in the prediction accuracy that is in line with the studies that used terrain 514 

indices to explain soil moisture variability. However, it should be noted that at our site, the FCM 515 

SEA performance is better and more accurate (small RMSE) for arable land than for the 516 

grassland areas in the valley bottom (Fig. 10, Table 3). We presume that this is due to the fact 517 

that topography is less prominent in the riparian zone and expect other factors such as 518 

groundwater influence and soil properties to be more important. Moreover, these areas show also 519 

small-scale variability in soil moisture due to microtopography which is caused by hummocks 520 

and depressions of the grassland patches which is not captured by the DEM.  521 

Our temporal stability analysis on the observed soil moisture patterns provides an additional 522 

explanation for the seasonality in the prediction accuracy of the FCM SEA. The analysis shows 523 

that temporal re-organization of the soil moisture spatial pattern occurs during the year in the 524 

Schäfertal catchment. There is at least a transition from a highly organized pattern during wet 525 

conditions towards a more uniform distribution under intermediate conditions. Previous studies 526 

that examined seasonal changes in near-surface soil moisture spatial organization attributed the 527 

reorganization of soil moisture patterns to variable rates of evapotranspiration and root water 528 

uptake by plants (Hupet and Vanclooster, 2002; Baroni et al., 2013), a change from 529 

predominantly lateral soil water movement to predominantly vertical soil water movement 530 

(Grayson et al., 1997; Western et al., 1999a), or to simply soil textural differences (Famiglietti et 531 

al., 1998).  532 

The results have implications for our FCM SEA and demonstrate that the actual SLDs (Fig. 6), as 533 

expected, are not suitable to explain temporal dynamics for the entire range of soil moisture. This 534 

agrees with the findings of Takagi and Lin (2012) who stated that a soil-landform unit (SLU) is 535 
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not a reasonable indicator of soil moisture spatial organization under dry conditions while 536 

different SLUs can show the same moisture content. It is clear from our analysis and others 537 

(Wilson et al., 2004) that to make a good state-space prediction of soil moisture, we need a better 538 

a priori stratification of the catchment from SLUs towards meaningful hydrological response 539 

units (HRUs). There is no doubt that other proxy data related to processes that control the spatial 540 

distribution of soil moisture should be included in the FCM SEA. In particular the integration of 541 

(static) soil and (dynamic) vegetation properties is an important step while they strongly affect 542 

soil moisture variation (Baggaley et al., 2009; Hu and Si, 2014). In addition, dynamic soil 543 

moisture patterns obtained from a time-lapse sequence of SAR data and cosmic-ray probes 544 

(Zreda et al., 2008) as an emerging technology may also provide useful information to further 545 

constrain the locations of HRUs in our research catchment. 546 

Nevertheless, our proposed FCM SEA is promising for collecting data in small catchments in an 547 

efficient way to characterize and analyze temporal dynamics of soil moisture. It provides a 548 

synergistic integration of various proxy data which can be related to soil moisture. Based on a set 549 

of surrogated patterns, hydrologically relevant structures were explored with the FCM clustering 550 

technique which is a common technique in pattern recognition science. The explored patterns 551 

represent SLDs, and in a best case HRUs, which are described by fuzzy membership maps. In 552 

each SLD at least one representative sampling point is selected, and taken together they allow in 553 

combination with the fuzzy membership maps a realistic estimation of the actual soil moisture 554 

pattern. The main advantage of the FCM SEA is the small number of measurement points that 555 

form the basis to characterize and predict soil moisture patterns. Earlier studies that made 556 

measurements on regular grids like in the Tarrawarra catchment (10.5 ha, ~500 points) or that 557 

used common geostatistical techniques (such as kriging) like in the Shale Hills catchment (7.7 ha, 558 

Page 25 of 49



 

26 

 

~189 points) need hundreds of points to obtain estimates of the spatial distribution of soil 559 

moisture (Western et al., 1998b; Lin et al., 2006). For the FCM SEA a smaller number of 560 

observation points is needed (144 ha, ~50 points) to estimate soil moisture maps. Thus, FCM 561 

SEA is a promising approach providing at least as accurate results for wet moisture states than 562 

traditional techniques but with considerably less effort. However, for the intermediate state and 563 

especially for the grassland areas the FCM SEA performance is poor and demonstrates the lack of 564 

topographic data to explain soil moisture variability. On the other hand to take more than one 565 

sample out of each cluster might be of benefit to further improve the prediction accuracy. At 566 

present only one sampling point was selected per cluster in the grassland areas and two sampling 567 

points per cluster for arable land to calibrate the FCM interpolation method. Our results show that 568 

the small scale variability of soil moisture is much higher and especially in clusters that show 569 

large within-cluster variability it is advisable to increase the number of sampling points. To test 570 

the performance of FCM SEA in a broader sense and for other sites the use of comprehensive 571 

datasets from existing networks can motivate further research to verify the estimated maps for 572 

different soil moisture states. In addition, with the FCM SEA we could suggest how to reduce the 573 

number of existing measurement points in the networks and make the observations more efficient 574 

with respect to measurement costs and maintenance effort. Nevertheless, this requires initially a 575 

very good prediction of the soil moisture maps and for the moment we first need to improve our 576 

method by adding additional variables (e.g. soil texture, land use) to reach this goal, which is an 577 

ongoing work in the Schäfertal catchment. At the moment there is still some work to be done and 578 

one should also not forget that the performance of the method might be site specific with respect 579 

to the information/attributes required to estimate good soil moisture maps. At one site, the 580 
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clustering might work well with topographic data only while at other sites other properties (e.g., 581 

texture) might be responsible for driving soil moisture dynamics. 582 

When further improved with additional variables such as soil texture and vegetation and carefully 583 

validated, such predicted maps might become useful for validation and calibration of remote 584 

sensing data (see e.g. Crow et al., 2012) and distributed models, while in future remote sensing 585 

might replace time consuming measurements. For the moment, ground based measurements are 586 

still indispensable and our proposed framework might become valuable to accompany remote 587 

sensing campaigns and modeling approaches to provide insights into the hydrological behavior of 588 

small catchments. 589 

A priori knowledge in terms of a careful and hypothesis-driven selection of soil-moisture 590 

controlling variables is a first step to increase the sampling efficiency for soil moisture 591 

monitoring and to test the ability of the integrated data to describe the temporal dynamics of soil 592 

moisture. In a second step and based on the previously obtained results, a posteriori knowledge is 593 

gained and can be included in the next step by adding further proxy data that account for 594 

processes which were missing in the first step. Therefore, we see our proposed FCM SEA as a 595 

new learning framework for understanding the function of hydrological systems. 596 

597 

In this paper we applied a terrain-based FCM sampling and estimation approach (FCM SEA) to 598 

identify and characterize temporal dynamics of soil moisture in a small-scale catchment. A set of 599 

topographic attributes was selected (i.e., elevation, slope, SWI, TIR) to represent lateral flow and 600 

topographically modulated evaporative forcing. Based on this data set the FCM SEA identifies a 601 

priori an appropriate number of representative monitoring locations by stratifying the landscape 602 
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in SLDs (unique combinations of topographic attribute values). At these points, near surface soil 603 

moisture (0-10 cm) was measured at five different sampling dates and the FCM SEA method is 604 

able to predict reasonable soil moisture patterns. 605 

For the Schäfertal catchment results indicate that there is a transition between states characterized 606 

by a re-organization of the soil moisture pattern. During wet conditions, there is high degree of 607 

spatial organization which decreases as the soil gradually dries (intermediate conditions).  608 

The independent validation revealed that the FCM SEA performed well and was able to explain 609 

0.59% to 0.78% of the spatial variability of soil moisture under wet conditions, whereas under 610 

intermediate conditions its explanatory power decreased. However, the terrain-based FCM SEA 611 

was still able to account for more than 34% of the variability. Therefore, for the Schäfertal 612 

catchment, the FCM SEA is promising and superior to most studies that generally explained 613 

<50% variance.  614 

We attribute the formation of the two distinct soil moisture patterns to a combination of several 615 

factors: (i) under wet conditions topography is the major control and drives water redistribution 616 

due to surface and subsurface lateral flow; (ii) at intermediate states the relative importance of 617 

other factors such as soil texture and vegetation become increasingly important. However, a 618 

detailed investigation of the relative contribution of these factors has not been done so far and 619 

will be part of future studies.  620 
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636 

Figure 1 Flow chart illustrating the use of the FCM cluster analysis for data/ model integration 637 

which is traditionally used for classification purposes. 638 

Figure 2 Flow chart illustrating the FCM clustering technique used to find the adequate number 639 

of clusters for a strategic sampling and to regionally predict the target value (e.g., soil moisture). 640 

Figure 3 Total absolute difference (TAD) for different number of clusters. Red line indicates 641 

appropriate number of clusters according to elbow method.  642 

Figure 4 Location, topography and initial land use of the Schäfertal catchment. Meanwhile the 643 

grassland between the two roads has been transformed into arable land. Topographical data: 644 

DGM1  GeoBasis-DE / LVermGeo LSA [2012, A13-6001119-2012] 645 

Figure 5 Terrain attributes (a) elevation, (b) SAGA wetness index , (c) slope, and (d) annual 646 

potential incoming solar radiation derived form a 2-m DEM for the Schäfertal catchment. White 647 

lines represent creek and roads that were masked and not used in the analysis. Topographical 648 

data: DGM1  GeoBasis-DE / LVermGeo LSA [2012, A13-6001119-2012] 649 

Figure 6 Map of the 30 SLDs obtained with the FCM SEA. 650 

Figure 7 Distribution of the soil moisture measurement locations. Black: Locations obtained from 651 

the FCM clustering technique (see Fig. 2) used for calibration (50 points). Red: Independent 652 

locations used for validation (44 points). White lines represent creek and roads. 653 

Figure 8 Observed soil moisture patterns in the Schäfertal catchment for five occasions. Each dot 654 

represents the average volumetric soil moisture of three replicate TDR measurements in the top 655 

10 cm of the soil profile. 656 
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Figure 9 Predicted maps of volumetric soil moisture content using the FCM interpolation method 657 

(Fig. 2) for different moisture states. 658 

Figure 10 Comparison between the predicted volumetric soil moisture using the FCM 659 

interpolation method and the observed soil moisture for the five sampling dates (a-d). Horizontal 660 

bars indicate ±1 standard deviation of the observed soil moisture. (NSE: Nash-Sutcliffe 661 

coefficient of efficiency; RMSE: root mean square error) 662 

Table 1 Main characteristics of the selected measurement campaigns in the Schäfertal 663 

    
Soil Moisture [m3/m3] 

Antecedent 
Precipitation 

 
Campaign 

 
Date 

Sample 
Size 

 
Mean 

 
Median 

Standard 
Deviation 

 
Min 

 
Max 

 
Range 

5 Days, 
[mm] 

T1 17/04/2013 94 0.34 0.29 0.11 0.22 0.71 0.49 15.0 
T2 23/04/2013 94 0.26 0.23 0.12 0.14 0.69 0.55 0 
T3 08/05/2013 94 0.27 0.24 0.09 0.16 0.69 0.53 8.8 
T4 25/09/2013 94 0.19 0.17 0.07 0.12 0.48 0.36 0 
T5 02/10/2013 94 0.18 0.16 0.07 0.10 0.47 0.37 0.6 

 664 

Table 2 Spearman rank correlation coefficients between dates for the entire study period 665 

Date 17/04/2013 23/04/2013 08/05/2013 25/09/2013 02/10/2013 

Campaign T1 T2 T3 T4 T5 

T1 1    

T2 0.95 1    

T3 0.87 0.92 1   

T4 0.57 0.49 0.48 1  

T5 0.66 0.62 0.59 0.79 1 

 666 

Table 3 Performance of the FCM SEA for the validation of arable land, grassland and the whole 667 

catchment. (NSE: Nash-Sutcliffe coefficient of efficiency; RMSE: root mean square error) 668 
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  validation for  

arable land 

validation for 

grassland  

validation for whole 

catchment (see Fig. 10) 

Campaign Date NSE RMSE NSE RMSE NSE RMSE 

T1 17/04/2013 0.54 0.05 0.50 0.08 0.78 0.06 

T2 23/04/2013 0.52 0.04 0.37 0.10 0.73 0.06 

T3 08/05/2013 0.56 0.03 0.06 0.11 0.59 0.06 

T4 25/09/2013 -0.35 0.04 -0.28 0.09 0.34 0.06 

T5 02/10/2013 0.28 0.03 -0.31 0.09 0.41 0.05 
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