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Abstract 

 

Ecosystems provide important functioning and services, like biomass for bioenergy 

production or storage of atmospheric carbon. Two examples of such ecosystems are temperate 

grasslands and tropical forests. Both vegetation are rich of various species, whereby each of 

the respective ecosystem benefits from its species-richness concerning their functioning, i.e. 

productivity. In this thesis both vegetation are in the focus of the investigations. In the first 

chapter, a review of existing grassland and vegetation models provides an overview of 

important aspects, which have to be considered for modelling temperate grasslands in the 

context of biomass production. Based on the review, new conceptual modelling approaches 

for temperate grasslands are proposed. In the third chapter, derived from the suggested 

concept, the process-oriented and individual-based grassland model Grassmind is presented. 

In the fourth chapter, the model Grassmind is used in order to parameterize and simulate the 

annual dynamics of a typical Central European grass species. Grassmind is able to reproduce 

the structure and dynamics of a temperate grass species. With reference to the parameterized 

grass species, a simulation study using defined species groups is performed in order to 

investigate on the effect of the richness of species groups on aboveground productivity. We do 

not observe a significant positive effect of species group richness on productivity, which is 

explained by limitations of using the parameterized grass species as a reference. In the fifth 

chapter, comprehensive investigations are carried out on the example of stem size 

distributions in forests concerning their statistical analyses, i.e. by using maximum likelihood 

estimation. The effects of uncertainties, i.e. binning of measured stem sizes or random 

measurement errors, are examined in detail. Uncertainties bias the analyses of maximum 

likelihood estimations. It is shown, that the use of modified likelihood functions, which 

include either binning or measurement errors, reduce these biases to a large extent. For both 

studies, i.e. modelling of temperate grasslands and analysing stem size distributions of forests, 

the presented investigations are discussed and possible examinations are suggested for future 

research in the last chapter. 
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   Chapter    
 

  

1. Introduction 

Vegetation plays an important role either harvested for purposes like biomass 

conversion to energy products (e.g. electricity) or seen as a key position in storing 

atmospheric carbon sources. The diversity of species in different vegetation types influences 

the potential of such possible uses. Various types of vegetation are present ranging from 

highly diverse forests in the tropics to less species-rich steppes or savannahs to human 

influenced ecosystems in the temperate zone like semi-natural grasslands. This work focuses 

mainly on two of them: (a) species-rich grasslands in the temperate zone and (b) species-rich 

forests in the tropics. Both vegetation types are predominantly characterised by the occurrence 

of various plant species and their interactions. Site-specific factors like climate and soil 

conditions, the biotic environment, and human-based activities have an influence often 

resulting in observable patterns on the ecosystem-level. Two prominent examples represent 

the diversity-productivity relationships in grasslands and the functional relationship of tree 

size distributions in tropical forests. Attempts to understand such emerging patterns of an 

ecosystem’s structure and functioning, profit from simulation models and statistical analysis 

tools. In this work, we address (a) the discrepancies between the variety of existing process-

based modelling approaches or analysis tools and (b) the need for novel attempts for both 

techniques on the example of semi-natural grasslands in Central Europe within the bioenergy 

context and measured tree size distributions of species-rich tropical forests. 

 

1.1 Species-rich temperate grasslands 

1.1.1 Diversity of grasslands in the temperate zone 

There is a large variety of different herbaceous species occurring in temperate 

grasslands. In Central Europe, approximately 80.3 % of the species of vascular plants are 

attributed to herbaceous species (Ellenberg & Leuschner 2010; Ellenberg et al. 1992). Most 

grasslands in Central Europe consist mainly of so-called hemi-cryptophytes – a class of 

species, which have their renewal buds near the soil surface (Ellenberg & Leuschner 2010). 

About 56 % of the herbaceous species are hemi-cryptophytes (Ellenberg & Leuschner 2010; 
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Ellenberg et al. 1992). By their low positioned buds, they are best adapted to the Central 

European climatic conditions (Ellenberg & Leuschner 2010). For example in winter, their 

survival is ensured as a closed snow cover protects their buds (Ellenberg & Leuschner 2010). 

Examples of such species comprise meadow and red fescue (Festuca pratensis and Festuca 

rubra), timothy (Phleum pratense) or perennial and Italian ryegrass (Lolium perenne and 

Lolium multiflorum).  

Different types of grasslands exist in Central Europe – the so-called plant associations. 

About 13.2 % of the European land surface area has been covered in the year 2007 by 

permanent grasslands and meadows (Eurostat Yearbook 2012). Examples are Nardus 

grasslands, dry to semi-dry grasslands and permanent cultivated grasslands (Ellenberg & 

Leuschner 2010; Fig. 1.1). Nardus grasslands are typical for soils with low nutrient 

concentrations, dominated by the tussock-forming species Nardus stricta in combination with 

extensive management (Nitsche & Nitsche 1994; Ellenberg & Leuschner 2010). This 

grassland type is often found on cool and humid sites, for example in North-West-Germany 

and the Netherlands (Ellenberg & Leuschner 2010). Those Nardus grasslands of the lowlands 

and low mountain ranges are characterized by a poor species-richness (Ellenberg & Leuschner 

2010). For example, a subtype of Nardus grasslands, i.e. the Galium-saxatile-Nardus-stricta 

association, of heavy acidic sandy soils reveals only 17 species (Ellenberg & Leuschner 2010; 

Pott & Hüppe 1991). Typical species coexisting with the dominant species Nardus stricta 

comprise Holcus lanatus, Danthonia decumbens and others (Ellenberg & Leuschner 2010). In 

contrast, Nardus grasslands of the high mountain ranges or alpine zone reveal a higher 

species-richness with the typical occurring species Anthoxanthum alpinum, Pseudorchis 

albida and others (Ellenberg & Leuschner 2010; Peppler-Lisbach & Petersen 2001). 

Only a small fraction of grasslands in Central Europe occurs as nutrient-poor, dry or 

semi-dry grasslands, also called xerothermic grasslands (Ellenberg & Leuschner 2010). But 

these types of grasslands are highly important due to their great species-richness. Ellenberg & 

Leuschner (2010) state that more than 10 % of the Central European vascular plants occur 

mainly on nutrient-poor, dry grasslands. For example, on alkaline soils up to 80 species per 4 

m² can be found (Ellenberg & Leuschner 2010; Dengler 2005). This high species-richness is 

explained by resource limitations, which promote weak competitive species and hinder ones 

that are more competitive (Grime 1981; Keel 1995; Ellenberg & Leuschner 2010).  

Species with high competitive strength often occur on permanent cultivated grasslands 

(Ellenberg & Leuschner 2010). This type of grassland forms the majority of all occurring 

types in Central Europe (Ellenberg & Leuschner 2010). About one third of all vascular plants 

are mainly found on permanent pastures (Ellenberg & Leuschner 2010). Extensively 

cultivated grasslands differ from intensively cultivated ones not only according to the 

cultivation intensity, but also according to species-richness. Extensive meadows can show up 
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to 70 vascular species per 20 m², whereby intensively used ones reveal only 25 species per 20 

m² (Ellenberg & Leuschner 2010). About one third to 50 % of species composition is usually 

designated by grass species (Ellenberg & Leuschner 2010; Klapp 1971). A typical example of 

cultivated grasslands is the Molino-Arrhenatheretea grassland association with the presence 

of grass species like Poa pratensis and Anthoxanthum odoratum, herbs like Viccia cracca and 

Lathyrus pratensis or legumes Trifolium pratense (Ellenberg & Leuschner 2010).  

 

 

 

 

 

 

 

 

 

 

Aboveground net productivity rates of the mentioned grassland associations span a 

broad range between 100 and 1500 g dry matter per m² and year (Ellenberg & Leuschner 

2010). For example, dry and Nardus grasslands can yield approximately 100 to 300 g dry 

matter per m² and year, whereby intensively cultivated permanent grasslands can achieve a 

productivity rate of 1000 to 1200 g dry matter per m² and year (Ellenberg & Leuschner 2010). 

This shows that aboveground productivity of grasslands is highly dependent on the species 

diversity and composition, soil properties and human cultivation activities. 

 

1.1.2 The diversity-productivity relationship and its understanding 

Various experimental studies have been performed in the last decades, which 

investigated on the effect of species richness on the aboveground net productivity of grassland 

communities. Large biodiversity experiments have been established across Europe and the 

Figure 1.1: Pictures of the three types of grasslands: (A) Nardus grassland on Mount Oiti, Greece (picture from 

www.foropenforests.org), (B) dry grassland in Beinwil, Switzerland (picture from L. Pfiffner, www.fibl.org), (C) 

permanent cultivated grassland in Germany (picture from Artenagentur, http://artenagentur-sh.lpv.de/) 
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United States of America. In 1994 Tilman and colleagues initiated an experimental design in 

the Cedar Greek Ecosystem Science Reserve in the USA by planting various mixtures of 

different diversity levels (Tilman et al. 2001). The large-scale BIODEPTH network of eight 

European experiments is composed of several investigations of various sites across Europe 

(Kinzig et al. 2002; Spehn et al. 2005; Hector et al. 1999). Study sites range from northern 

areas in Sweden to southern ones in Greece (Diemer et al. 1997; Lawton et al. 1998; Hector et 

al. 1999; Mulder et al. 1999; Scherer-Lorenzen 1999; Spehn et al. 2000a, 2000b, 2005; 

Troumbis & Memtas 2000). The experiments have been designed such that not only the effect 

of species composition, but also site conditions can be investigated (Spehn et al. 2005). The 

latest established large biodiversity experiment - the Jena Experiment, is located in Central 

Germany in Thuringia (Weigelt et al. 2010). Its study design comprises main experiments of 

different species combinations on 20 x 20 m plots and additional small-scale experiments 

(Roscher et al. 2004). Besides the large biodiversity experiments, several small-scale 

experimental studies on the diversity-productivity relationship have also been carried out 

(McNaughton 1993; Swift & Anderson 1993; Naeem et al. 1995, 1996; Hooper & Vitousek 

1997, 1998; Symstad et al. 1998). For example, Naeem et al. (1995, 1996) performed 

greenhouse experiments of random species assemblages from one to 16 species diversity and 

observed a significant positive effect within the diversity-productivity relationship.  

In general, the large biodiversity experiments revealed a positive effect of species 

richness on productivity. Net productivity has been estimated from aboveground biomass of 

the vegetation (Tilman et al. 1997, 2001, 2006b; Weigelt et al. 2009; Spehn et al. 2005). 

Experiments differ in the extent to which productivity increases with higher species-richness. 

For example, Tilman et al. (1997) found from his experimental studies in 1996 an increase of 

mean aboveground biomass from 20 g dry matter per m² for monocultures to 160 g dry matter 

per m² for 32-species-mixtures. For the consecutive years 1997 to 2000, Tilman and 

colleagues observed higher biomass values on average up to 300 g dry matter per m² for 16-

species-mixtures and even steeper slopes of the diversity-productivity relationship for the 

years 1999 and 2000 (Tilman et al. 2001). Similar results have been observed in the Jena 

Experiment, which show for the years 2003 and 2004 an increase of mean productivity from 

500 g dry matter per m² and year for monocultures to 750 g dry matter per m² and year 

(Marquard et al. 2009a). For the consecutive years of observation, mean monoculture 

productivities reduce by one half and average net productivity rates of the 16-species-

mixtures reduce to a range between approximately 400 to 700 g dry matter per m² and year 

(Marquard et al. 2009a; Weigelt et al. 2009). The different study sites of the BIODEPTH 

network show variable results - for some sites positive and for others neutral effects of species 

diversity (Spehn et al. 2005). The site in Germany reveals an increase of aboveground 

biomass from approximately 400 g dry matter per m² for monocultures to 500 g dry matter per 

m² for 16-species-mixtures, increasing even up to 1250 g dry matter per m² for the second and 
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third year of observation (Spehn et al. 2005). In contrast, the site in Greece shows a constantly 

remaining aboveground biomass of 250 g dry matter per m², irrespective of year and species-

richness (Spehn et al. 2005).  

Currently, concepts explaining the mechanisms responsible for the observed effects 

comprise on the one hand stochastic mechanisms and on the other hand deterministic 

mechanisms (Loreau & Hector 2001, Loreau et al. 2001). The stochastic ones include random 

sampling of the species mixtures designed within the experiments (Kinzig et al. 2002; Loreau 

& Hector 2001; Loreau et al. 2001) in combination with the dominance of a highly 

competitive species. That means, with a rising species-richness the probability of the presence 

of higher competitive species dominating the community is increasing (Kinzig et al. 2002; 

Loreau & Hector 2001; Loreau et al. 2001). As a result, biomass of species, suppressed by the 

dominating species, decreases in highly diverse mixtures (Kinzig et al. 2002). This 

mechanism reveals in the diversity-productivity curves, if no multi-species-mixture 

performance exceeds the best monoculture performance (Kinzig et al. 2002; Loreau & Hector 

2001; Loreau et al. 2001). In contrast, the complementarity mechanisms would reveal species 

performances in the mixtures higher than expected from their performance in monocultures 

(Kinzig et al. 2002; Loreau & Hector 2001; Loreau et al. 2001). Complementarity explains 

positive diversity effects by niche differentiation – that means species differ in their functional 

traits, thus occupying different niches in the resource space (Kinzig et al. 2002; Loreau & 

Hector 2001; Loreau et al. 2001). This implies that biomass of single species increases with 

increasing diversity (Kinzig et al. 2002). Incorporated in the complementarity could also be 

facilitation between species. Facilitation occurs for example in grass-legume mixtures. 

Legumes are in symbiosis with rhizobia fixing atmospheric nitrogen. By this, legumes do not 

compete with grass species for soil nitrogen resources, but contribute additional nitrogen to 

soil by death or litterfall. Loreau & Hector (2001) proposed a standard statistical method to 

distinguish selection and complementarity effects within the diversity-productivity 

relationship. Positive complementarity effects can explain a higher importance of interspecific 

interactions rather than intraspecific interactions (Reich et al. 2012). In turn, a negative 

complementarity effect can reveal that intraspecific interactions are more important (Reich et 

al. 2012). In contrast, a positive selection effect can show that the most productive species 

reaches higher productivity values in the mixtures than expected from its monoculture (Reich 

et al. 2012). A negative selection effect reveals that the least productive species exceeds its 

expected monoculture productivity in mixtures (Reich et al. 2012).  

Following the above-mentioned concepts, several studies calculated the 

complementarity and selection effect using the additive partitioning of both biodiversity 

effects proposed by Loreau & Hector (2001). In all biodiversity experiments, generally both 

effects have been observed. Loreau & Hector (2001) applied the additive partitioning first to 

the measurements of the BIODEPTH network experiments. Results differ between the study 
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sites. Generally, positive complementarity effects are revealed, which increased on average 

with species-richness for nearly all site (Loreau & Hector 2001; Spehn et al. 2005). Instead, 

selection effects vary broadly around zero remaining on average constant with increasing 

species diversity (Loreau & Hector 2001; Spehn et al. 2005). The BioCON and BioDIV 

experiments of Tilman et al. (1997; 2001; 2006a; Reich et al. 2001, 2006) show both a 

positive complementarity effect increasing on average with time and species-richness and a 

neutral selection effect slightly decreasing on average with time and species-richness 

(Fargione et al. 2006; Reich et al. 2012). Investigations in the Jena Experiment show on 

average a positive complementarity and selection effect (Marquard et al. 2009a). 

Complementarity effects increase on average with species-richness and time, whereby 

diversity and time have no influence on the selection effect (Marquard et al. 2009a).  

Strategies other than applying the additive partitioning approach by Loreau & Hector 

(2001) comprise detailed individual-level measurements of species. For example, Marquard et 

al. (2009b) measured the density and aboveground biomass on the individual-level of each 

species of the mixtures. They suggest that species, which revealed higher biomass in mixtures 

than expected from their respective monocultures, increased in their densities and thus, play a 

key role in the positive diversity-productivity relationships (Marquard et al. 2009b). 

Nevertheless, the role of single species for the diversity-productivity relationships remains 

almost unknown. 

 

1.1.3 Managing grasslands for biomass production 

In the course of the debate on sustainable energy supply, the observed positive effects 

of biodiversity on the productivity of grasslands open up new perspectives. Currently, the 

worldwide primary energy demands are estimated of more than 400 EJ per year, whereby it 

has been estimated that only 7.5 % can be provided by energy converted from forest biomass 

(e.g. short rotation coppices) and agriculturally produced biomass (McKendry 2002a, 2002b). 

Thereby, biomass derived from crop monocultures like maize, wheat or rapeseed provokes 

conflicts between food and fuel production (Gelfand et al. 2013).  

In 2006 Tilman and colleagues proposed the use of grassland mixtures of high species 

diversity for sustainable biomass production on abandoned land (Tilman et al. 2006b). Within 

the bioenergy context, Tilman and colleagues compared two types of systems: (a) extensively 

managed grassland mixtures denoted as Low-Input-High-Diversity (LIHD) and (b) intensively 

managed mixtures denoted as High-Input-Low-Diversity (HILD) grasslands (Tilman et al. 

2006b). They represent two extreme sides along a management and diversity gradient (Fig. 

1.2). Management options can be applied with different frequency of use and intensity of 
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input. A variety of management options, which differ in frequency and intensity of 

application, ranges from no or low extent (extensive management) to high magnitudes 

(intensive management). Frequency and intensity of management activities generally modify 

competition for resources between all plants (e.g by increasing the availability of light, soil 

nutrients and soil water; Ellenberg & Leuschner 2010). By this, highly productive or 

disturbance tolerant species are favoured, which suppress other species, gradually reducing 

species diversity of the ecosystem (Ellenberg & Leuschner 2010). As a result, LIHD 

grasslands show usually a higher species richness, whereas HILD grasslands tend to have less 

species diversity. Based on the experiments of Tilman et al. (2006b) in the Cedar Greek 

Ecosystem Science Reserve they calculate that the biomass harvests from LIHD grasslands 

can reach a gross energy yield of 68.1 GJ per hectare and year. Further, the use of natural 

grasslands can mitigate greenhouse gas emissions (Tilman et al. 2006b) and decrease 

competition for land as their cultivation is possible on abandoned or agriculturally unsuitable 

land (Tilman et al. 2006b; Gelfand et al. 2013). 

 

 

Figure 1.2: Schematic view of different management option affecting the diversity of grasslands. 

 

Next to the benefits of species diversity for biomass productivity in LIHD grasslands, 

several positive side effects concerning ecosystem functioning reveal with increasing species 

richness. For example, Tilman et al. (2006b) observe also an increase of annual carbon 

sequestration in soil and plant roots with increasing species diversity. Monocultures store 

approximately 0.62 MG per hectare and year in their roots, whereby 16-species-mixture reach 

160 % more carbon storage of atmospheric carbon dioxide (Tilman et al. 2006b). Services 

provided by such ecosystem functions can be broadly classified into provisioning, regulating, 

supporting, and cultural services (according to the TEEB Ecological and Economic 

Foundations; TEEB 2010; de Groot et al. 2002). For example, regulating services include the 

maintenance of natural soil by nutrient regulation and provisioning services comprise the 

energy supply by biomass production (de Groot et al. 2002).  
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Major factors for assessing the relevance of semi-natural grasslands in the bioenergy 

context comprise economic aspects like maximized biomass production, low inputs of energy 

and nutrients as well as low cost for their production (McKendry 2002a, 2002b). These 

aspects are generally dependent on environmental conditions of the biomass producing 

system, on the chemical composition of the produced biomass material and on the conversion 

technology (McKendry 2002a, 2002b). Concerning the two latter ones, herbaceous plants can 

be categorized, for example, into low-moisture-material able for gasification or combustion 

and into high-moisture-material suitable for fermentation processes (McKendry 2002a, 

2002b). Further characteristics of the biomass material influencing the energy potential 

comprise amongst other the calorific value, the ash or residue content and cellulose-lignin 

ratio (McKendry 2002a, 2002b). Including LIHD grasslands in the renewable and sustainable 

energy production, pays additional attention to ecological aspects such as biodiversity. Long-

term advantages of biodiversity, for example increased soil fertility, could affect economic 

aspects indirectly. For example, increasing species diversity could accompany with a 

positively influenced nutrient cycle. By this, lower fertilization would be needed, which in 

turn would reduce costs for purchase and input of fertilizers. 

 

1.2 Modelling the structure and dynamics of grasslands 

Current modelling approaches of grassland ecosystems focus mainly on a few species. 

Interactions and competition is often only considered on the population-level for one or two 

resources. Nevertheless, temperate conditions across Central Europe are characterized by 

changing light, nitrogen and water resource availabilities. For assessing and understanding 

changes in the diversity-productivity relationships as well as its underlying mechanisms like 

complementarity and selection, a detailed view on intra- and interspecific interactions on the 

individual-level is needed. Following the behaviour of single individuals concerning their 

inter- or intra-specific interactions requires process-oriented and individual-based modelling 

approaches. 

Individual-based and process-oriented modelling techniques experienced numerous 

and comprehensive applications to various ecosystems. Typical examples of such applications 

are forest models including gap dynamics. That means, a forest exposed to disturbances like 

falling of big trees or wildfire, is composed of a mosaic of gaps in different successional 

stages (Shugart 1998). Successional stages are differentiated by the temporal rearrangement 

of occurring species and their composition. For example, in forests usually pioneer species 

occupy an area under full sunlight at first. In the shade of such pioneers, shade-tolerant 

species are able to establish, which reach increasing abundance within time. Due to 
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disturbances, for example the falling of large trees, gaps in the canopy with full light 

resources are created, which again firstly are occupied by sun-loving pioneers starting the 

process cycle of succession again. Modelling of such gap dynamics in forests refers to a long 

history. Various works originate in those of Botkin et al. (1972). The model called JABOWA 

introduced the gap-concept, in which the dynamics of individual trees are simulated on 

independent and horizontally homogenous patches (Botkin et al. 1972; Bugmann 2001). 

Several forest gap-models like FORSKA, FORMIX, FORMIND and others developed during 

the last decades based on the origin gap-model but modifying some assumptions (Bugmann 

2001; Pacala et al. 1993; Pacala et al. 1996; Leemans & Prentice 1989; Bugmann et al. 1997; 

Huth et al. 1998; Köhler & Huth 2004).  

This work focuses on modelling of temperate species-rich grasslands following the 

principles of forest gap models. Applying the gap-approach to temperate grasslands turns out 

to be a major challenge. Several characteristics different to forests have to be considered. 

Firstly, temperate grasslands generally contain species of widely varying growth forms. For 

example, some species grow in tussock, while others do form dense sod-forming swards. 

Defining an individual is thus more complicated for temperate grasslands than for forest, in 

which all individual trees can be characterized by a conical stem and crown (Köhler & Huth 

2004). As a secondary aspect, forests and grasslands show contrasting priorities according to 

above- and belowground resource use and competition (Coffin & Urban 1993). For example, 

in forests asymmetric competition for aboveground light plays a major role, whereby in 

grasslands symmetric competition for soil resources is more decisive. Thus, competition for 

belowground resources has to be included in the classical gap approach. Thirdly, a species 

performance is dependent on temporally changing site conditions like seasonal climate or soil 

properties (Breckle 1999). Resource availabilities can further change according to human 

management activities. By these factors, the strength of resource competition of individuals 

switches temporally between soil water, soil nutrients and light. For example, mowing of 

grasslands immediately reduces shading within the canopy and thus, competition for light 

resources becomes less important. Competition for soil water would be dominating in times of 

heavy drought events. 

 

1.3 Analysing the structure and dynamics of species-rich forests 

Species diversity, human management activities, soil and climatic site conditions play 

an important role in shaping an ecosystem’s structure and dynamics. Besides dynamic forest 

models, analyses of structural characteristics are important elements for estimating the 
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functioning of forest ecosystems, for example the aboveground carbon storage in the forest 

community. 

 

1.3.1 A functional relationship for stem size distributions of forests 

Observation studies of uneven-aged forest communities collect structural properties 

usually on discrete observation times or in time intervals. For example, in a Panamanian 

tropical forest the stem diameter at breast height is measured for each tree every five years 

(Hubbell et al. 1999; Condit 1998; Hubbell et al. 2005). Breast height is located at 1.3 m 

aboveground, which is more easily accessible for measurements than the height of a tree and 

thus, replications or time-series observations can be handled less cost- and time-expensive.  

The observed stem diameters are aggregated in a so-called stem size distribution – a 

histogram, which shows the number of stems per hectare within distinct diameter classes of 

certain width. Empirical stem size distributions are observed to follow a skewed decaying 

shape for several examined forests, which is reminiscent of an ‘inverse J’ or an ‘L-shape’ 

(Niklas et al. 2003). Such a decaying distribution shows in detail a huge fraction of trees with 

small stem diameters and a highly variable small fraction of trees with big stem diameter.  

Measurements and analyses of stem size distributions in tropical forests play a key 

role in estimating a forest’s biomass and productivity. Functional relationships exist to 

calculate the biomass content of a single tree by assuming a cylindrical stem (Yamakura et al. 

1986). Using this in combination with the stem diameter distribution of a forest, the forest’s 

biomass can easily be estimated in a non-destructive way. For example, forests in an early 

successional stage consist of a large fraction of small stem diameters and only very few large 

ones, which results in a relatively low biomass compared to late successional forests. These 

are characterized by an increased fraction of larger stems and a decreased amount of smaller 

stem diameters. Similar observations of the decaying shape of stem size distributions across 

several undisturbed natural forests led to the research question, whether general functional 

relationships for stem size distributions in forests exist (Muller-Landau et al. 2006). 

To answer this question, various approaches either in a statistical or in a theoretical 

context emerged. Theoretical approaches include the works of West et al. (2009), Enquist et 

al. (2009), Kohyama et al. (1995; 2003), Kohyama (1991; 1993) and Muller-Landau et al. 

(2006). In this thesis, a statistical analysis is used. In the last decades, statistical analyses have 

primarily been chosen based on plotting histograms of field measurements on double 

logarithmic axes. Field data appeared then as an almost straight line. Such empirical 

observations on double logarithmic axes have led to the assumption of a power-law 
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relationship. A power-law distribution is typically characterized by a probability density 

function, which also appears as a straight line on a double logarithmic scale. In general, linear 

regression analyses have been performed on double logarithmic scales to estimate the slope of 

empirical size distributions (Niklas et al. 2003). Later, maximum likelihood estimation has 

been prioritized, as their estimators are generally unbiased in contrast to those of linear 

regression analyses. 

 

1.3.2 Uncertainties in the analysis of stem size distributions 

During the procedure of observing stem diameters in tropical forests several 

uncertainties could be included in the measurements. These can be broadly classified into 

systematic and random uncertainties. Systematic uncertainties comprise, for example, binning 

of field measurements into stem diameter classes of certain width, i.e. 1 cm or 10 cm. Such a 

systematic classification of field data is often required to perform linear regression analyses. 

An example for random uncertainties includes the deviation of a stem’s cross-section shape 

from a spherical form.  

Difficulties in the observation can lead to biases within the measurements, which may 

propagate across the statistical analyses applied and the resulting conclusions drawn from 

these (Chave et al. 2004). Several investigations have already shown a negative effect of 

increasing binning on the estimation results of the maximum likelihood approach (White et al. 

2008). Modified likelihood approaches including the extent of binning have already been 

proposed, which are able to reduce these negative effects (Muller-Landau et al. 2006). 

However, such investigations have not yet been performed for random measurement 

uncertainties in ecology. 

 

1.4 Research objectives 

Current research on the diversity-productivity relationships in grasslands is mainly 

based on experimental studies. Sufficient simulation studies following an individual’s 

behaviour as well as the role of certain species according to the diversity-productivity 

relationship have not been presented so far. Comprehensive investigations on further 

understanding the emerging effects of diversity on aboveground productivity require 

simulation studies. The main research objectives are: 
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I. To review on various existing grassland models and select suitable modelling 

approaches, which help to investigate on diversity-productivity relationships 

II. To build a simulation model for species-rich temperate grasslands, which is able to 

reproduce the observed structure and dynamics of experimental grassland studies  

III. To investigate on the change of aboveground productivity from monocultures to 2-

species-mixtures in the context of diversity-productivity relationships by using the developed 

grassland model 

Besides our analyses on grasslands, we also investigate methods for analysing the size 

structure of vegetation on the example of species-rich forests. Statistical analyses like 

maximum likelihood estimation used to analyse stem size distributions in tropical forests 

currently lack of including further uncertainties arising in the measurement procedure. 

Thereby, different forms of uncertainties may affect analysis results differently. In this thesis, 

we develop new methods by considering such errors in the analysis. Our research objectives 

are:  

1. To examine the effects of systematic and random uncertainties in measurements of 

stem size distributions on the analysis of assumed functional relationships using maximum 

likelihood estimation 

2. To assess whether we can improve the reliability of maximum likelihood estimation by 

considering uncertainties in the analysis methods 

 

1.5 The chapters at a glance 

1.5.1 Synopsis 

Within the following chapters of this work, we will analyse modelling approaches in 

detail. Based on this review, an individual-based and process-oriented grassland model is 

developed. A simulation study based on a parameterized typical grass species is used to 

provide insights into the processes and mechanisms responsible for the emerging relationships 

between diversity and productivity. Concerning the structure of forests, we will concentrate 

on current measurement techniques, which provoke systematic and random uncertainties. We 

analyse the effect of such uncertainties on the estimation of relationships for stem size 

distributions. Consequently, we will develop new methods for reducing negative effects of 

measurement uncertainties on analysis results and increasing their reliability. A 
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comprehensive discussion of the approaches and methods developed within this thesis is 

presented at the end including future perspectives and application. 

 

1.5.2 Chapter 2 

We review already existing grassland models and beyond, modelling approaches for 

describing vegetation dynamics in general. Thereby, we give an overview on simulation 

models and modelling approaches of species-rich temperate grasslands, which include aspects 

needed to investigate on the diversity-productivity relationships in the context of biomass 

related energy production. We will present new conceptual approaches for individual-based 

and process-oriented modelling of species-rich grasslands, where needed and assess 

comprehensively modelling techniques of already existing models. 

 

1.5.3 Chapter 3 

Based on the literature review in chapter 2, we will present a new temperate grassland 

model in this chapter. The model aims at simulating species-rich temperate grasslands by 

using individual-based and process-oriented modelling approaches. A full description of this 

model is presented in detail in this chapter. We will introduce the modelled geometry of an 

individual plant. Afterwards, we will describe the main modelled processes an individual 

passes through during its life cycle. The grassland model is coupled with a soil model, of 

which a brief overview is given. As a last part, the scheduling of the coupling of both models 

is presented. 

 

1.5.4 Chapter 4 

First, we will parameterize the model for a representative Central European grass 

species. We will test the simulated parameterization with published field data from literature 

and biodiversity experiments with regard to reproducing observed structure and dynamics. 

Based on the parameterization, we perform a simulation study by creating virtual species 

types. The defined species types differ in their functionality of acquiring and competing for 

resources. We will simulate them in monocultures and 2-species-mixtures in order to assess 

the effect of diversity on productivity. 
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1.5.5 Chapter 5 

In chapter 5, we will address statistical methods for analysing stem size distributions 

of tropical forests. For our investigations, we will create virtual field data sets from three 

selected distributions, which are typically used for describing empirical stem size distributions 

of forests. We will consider two different uncertainties. These comprise on the one hand 

binning of field data into stem diameter classes and on the other hand random uncertainties, 

for example caused by measurement errors. We analyse the created data sets using three 

different likelihood functions – one assuming accurately measured stem diameter and two 

other, which each of them includes the respective uncertainty in the estimation method. 

 

1.5.6 Chapter 6 

In the last chapter, we discuss methods and approaches used in this thesis. First, we 

debate chances and limitations of the included modelling approaches of our grassland model 

Grassmind. We present possible extension for future applications. The main results of our 

simulation study using the developed grassland model are discussed with regard to published 

field measurements in the context of diversity-productivity relationships and current 

hypothesis of underlying mechanisms explaining the shape of these relationships. Future 

perspectives of important research questions concerning additional simulation studies of 

diversity-productivity relationships in grasslands will be suggested at the end. Secondly, we 

focus in our investigations on the analysis methods of stem size distributions of forests. 

Concerning our findings in analysing stem size distributions of tropical forests using 

maximum likelihood methods, we discuss their relevance and applicability in practice. An 

outlook on future analysis methods of ecosystem structures will be proposed at last. 
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   Chapter    
 

  

2. A Review of Grassland Models in the Biofuel Context1 

 

Abstract 

Various studies have suggested that semi-natural grasslands could be a more 

ecologically beneficial source for biofuel production than intensively managed monocultures. 

In particular, it has been observed that the high level of species diversity in grasslands has a 

positive effect on several ecosystem functions (e.g. productivity). Ecological models are 

useful tools for analysing the interactions of different processes in grasslands, which are 

assumed to be the underlying drivers of this positive effect. In this paper we present a review 

of the main processes included in existing grassland models and discuss the strength and 

limitations of existing approaches in the context of biofuel production. Most of the existing 

models (a) focus solely on one or a few single species, (b) do not consider competition 

processes adequately, or (c) do not follow the individual’s development in the grassland 

community. This hinders a detailed analysis of the mechanisms and conditions that govern the 

ecosystem functions that are relevant for biofuel production such as productivity, stability, and 

carbon fixation. To bridge this gap, we propose a concept for a novel individual-based 

grassland model for temperate regions. Our approach covers a high number of 

species/functional groups, above- and below-ground intra- and inter-specific competition for 

different resources (light, water, nitrogen, space), and disturbances (due to management or 

climate change). Hence, it could facilitate comprehensive mechanistic analyses of the 

dynamics of semi-natural grasslands and their efficiency in biofuel production. 

 

 

                                                 
1 A review paper with analogous content has already been published (Taubert et al. 2012). 
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2.1 Introduction 

The global demand for renewable biofuels continues to grow. Currently, intensively 

managed monocultures of energy crops such as rapeseed, soybean or maize are often used to 

meet this demand. This leads to land-use conflicts and propagates competition between food 

and fuel production (Koh & Ghazoul 2008). A new path has been proposed by Tilman and 

colleagues. (Cedar Creek Ecosystem Science Reserve USA; Tilman et al. 2001). Tilman et al. 

(2006b) also suggest using multi-species mixtures of perennial grassland species (Low-Input 

High-Diversity (LIHD)) for biofuel production. Other biodiversity experiments, such as the 

Jena Experiment, substantiate these results by observing equal productivity of LIHD grassland 

mixtures and High-Input Low-Diversity (HILD) grassland mixtures (Weigelt et al. 2009). 

However, whether LIHD grasslands are better able to meet energy demands than crop 

monocultures also depends on the soil properties of the land used, on the regional climate and 

on the management strategy. Furthermore, it can be assumed that the results of these 

experiments cannot be simply transferred to natural systems (Grace et al. 2007). In addition, 

climate change, especially the expected increase in drought events in Central Europe, may 

cause additional effects (IPCC 2007). Hence, reasonable statements on the potential of 

grasslands for biofuel production under changing conditions are needed. Experiments 

addressing this question can be supported by simulation models.  

Here, we review 13 existing grassland models. These models are used (a) to simulate 

productivity and dynamics of grasslands and (b) to analyse the grassland’s response to 

changing factors and disturbances. However, most of the investigated models fit only partially 

into the biofuel context. For example, the Hurley-Pasture model is too complex in its entire 

model structure for simulating species-rich sites (Thornley & Verberne 1989; Thornley 1998). 

This is reflected in a higher degree of detail (e.g. structural and substrate mass is 

distinguished) and thus, a higher number of parameters. Another limitation of several 

grassland models is the exclusion of one or more resources from the modelled competition 

processes. As an example, the model of Schippers & Kropff (2001) is developed to include 

inter-specific competition for light and nitrogen, but not for water. However, due to the 

expected increase of drought events in Central Europe (Beniston et al. 2007; IPCC 2007), 

competition for limited water also becomes an important factor for grassland model 

development. In this study we present in detail grassland models which provide sufficient 

modelling approaches for essential processes, reveal their lack of additional important 

characteristics in terms of biofuel production, and propose new conceptual approaches for 

certain processes.  

This review results in our proposal for a new grassland model concept called 

Grassmind, consisting of approaches adopted from already existing grassland models and 
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novel approaches for modelling specific vegetation processes. A new perspective for 

simulating temperate, species-rich grasslands can thus be provided. Our model concept 

focuses on the one hand on the full involvement of characteristics and processes which were 

partly absent in existing grassland models. On the other hand, proven modelling approaches 

for processes from existing models are partially adopted (e.g. production and allocation). 

 

2.2 Review and evaluation methods 

We investigated 19 vegetation models, 13 of which describe the dynamics of 

grasslands (see Appendix A1 for a detailed list). Because global vegetation models also 

include grasses, and forest models often use simple approaches, we consider these 

additionally in our review of specific processes. The review is conducted by (1) describing the 

main aspects of the grassland models such as focus and structure and (2) evaluating the 

models with regard to their potential use for simulating LIHD and HILD grasslands. For this 

evaluation, we used patterns we identified as being important to be reproduced by a grassland 

model in the biofuel context. 

Temperate grasslands are important in the biofuel context as they produce harvestable 

biomass. As is typical for temperate regions, the above-ground biomass production of the 

ecosystem shows inter-seasonal variability. So, e.g. the influence of the abiotic environment 

on seasonal and inter-annual variations of net ecosystem CO2 exchange, leaf area index or 

nitrogen content were investigated in some studies (Flanagan et al. 2002). This climatically 

dependent variability arises mainly from the growth of plant tissue, the establishment of new 

plants and their tillers, and the mortality of plants and their tillers by self-thinning and harvest. 

Several studies showed that the dynamics of tiller density, species abundances or other 

vegetation characteristics is highly dependent not just on the abiotic environment, but also on 

management activities such as sowing, mowing, plant removal or fertilization. For example, 

the studies of two grass species populations showed a decline in tiller density after harvest and 

an increase following the winter season until the next harvest (Lonsdale & Watkinson 1983).  

Concerning LIHD or HILD grasslands in the biofuel context, different species 

abundances and cover can be expected, especially when induced under different management 

regimes. With no or rare management considered, one can initially expect to observe an 

increasing number of grasses and a decreasing number of small herbs and legumes in 

grasslands (Deák et al. 2011; Török et al. 2011). With no or rare mowing, grasses grow higher 

than small herbs and thus shade them the more they grow. Smaller species get less light for 

photoproduction and may die due to lowered net primary production. The fewer legumes in 
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the grassland, the less nitrogen is fixed by them in the soil. As a consequence, a lack of 

nitrogen for grasses might occur (Temperton et al. 2007). It can be assumed that grass species 

suffer from such a nitrogen deficiency, leading to higher stress and thus higher mortality. 

Dying grass shoots, which contribute to the litter pool, create gaps with high incoming 

irradiance intensity, giving legumes the opportunity to establish. So, a state of equilibrium of a 

grass-legume community with reduced occurrences of herbs and a high variance of the 

equilibrium due to the interplay of the grasses and legumes can be expected. With 

management, different results would be expected. Mowing offers small herbs a greater chance 

of survival due to equal non-attenuated irradiance input for all species, which means 

competition for light, is of minor importance. Due to their more horizontal leaf position some 

herbs and legumes usually have higher light absorption rates and thus may have an advantage 

over grasses (Lantinga et al. 1999). In the case of infrequent mowing and non-limiting water 

and nitrogen resources in soil, a well-mixed community of species sown can be presumed. 

With their shoots growing more and more, light competition is reactivated and may become 

dominant again. In the case of frequent mowing and additional supply of e.g. fertilizers, 

grasses may become dominant due to an increased vegetative propagation. Following these 

patterns specific criteria for our evaluation of grassland models can be defined: 

 (1) Species-richness (or functional group richness)  

(2) Resource limitations (water, nutrients, light, space)  

(3) Complex above- and below-ground competition processes between individual species 

for these resources 

(4) Management activities disturbing or supporting the system 

(5) Simplicity of the model, meaning the inclusion of essential, but not all aspects 

(6) Linkage of competition for resources.  

Following our set-up criteria, we explored the reviewed grassland models in further 

detail. In doing so, we identified the key processes and characteristics for simulating LIHD 

and HILD grasslands. We then determined whether or not one or more of the existing 

grassland models provide sufficient information for modelling the processes adequately (in 

terms of our criteria). If not, we propose new conceptual approaches for modelling those 

processes or integrating specific characteristics. 
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2.3 Brief review of grassland modelling concepts 

2.3.1 Description of existing grassland models and evaluation of their potential in the 

biofuel context 

The 13 grassland models varied broadly in their objectives, structure and complexity. 

The objectives range from detailed reproduction of the architecture of plants to the analysis of 

below-ground resource use or impacts of climate change or management on grasslands. The 

structural design of the models including their time steps, main variables, abiotic factors, 

considered competition processes and management activities are listed in Table 2.1 and Table 

2.2. 

The Hurley Pasture Model comprises a dynamic, mechanistic ecosystem model with a 

great deal of complexity (Thornley & Verberne 1989; Thornley & Cannell 2000; Thornley 

1998). The process-based model structure simulates daily fluxes of carbon, nitrogen and soil 

water by coupling soil, plant and grazing sub-models. Central variables of, e.g. the plant sub-

model, comprise structural dry matter, carbon and nitrogen substrate, and leaf area, 

additionally structured by age and plant components. As a result, the plant sub-model already 

covers 21 state variables and 60 parameters inducing a high degree of complexity, which may 

cause difficulties in the parameterization of species-rich sites (Thornley & Cannell 2000). 

Therefore, in simulation studies of the Hurley Pasture Model only a generic C3 grass species 

was assumed (Thornley & Cannell 2000; Thornley 1998).  

The daily working PaSim model is based to a large extent on the Hurley Pasture 

Model, but it also includes certain processes such as leaf stomatal resistance or the dynamic 

change of a plant’s fractional nitrogen content in greater detail (Riedo et al. 1998, 2000). 

Additionally, some new aspects, e.g. the reproductive developmental stage and the non-linear 

temperature dependence of the shoot and root growth rates, were introduced. As in the Hurley 

Pasture Model, a plant’s state is described by the structural dry matter of the plants in different 

compartments (e.g. leaves, stem, and sheaths) as well as the nitrogen content. Due to the high 

degree of complexity, as in the Hurley Pasture Model, simulation studies assumed only a 

single species representing a kind of a mean species for the entire community. 
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Table 2.1: Overview of the reviewed models concerning time step, model structure, main variables and 

management activities considered. 

Model Timestep Individual-(I) or 

population-(P) based 

calculations 

Spatially 

explicit 

Main variables Management 

activities 

considered 

Schippers & 

Kropff 

daily P � above- and below-ground 

biomass and nitrogen 

content 

cutting, 

fertilization 

Hurley-Pasture 

model 

minutes 

(variable) 

P � above- and below-ground 

biomass and nitrogen 

content, leaf area 

fertilization, 

cutting, grazing 

PaSim minutes 

(variable) 

P � above- and below-ground 

biomass and nitrogen 

content, leaf area 

cutting, 

fertilization, 

grazing 

Coughenour et 

al. 

2 days P � above- and below-ground 

biomass 

- 

Detling et al. daily P � above- and below-ground 

biomass 

irrigation, 

fertilization 

Coffin & 

Lauenroth 

annual I � number of individuals, 

above-ground biomass 

- 

Duru et al. daily P � leaf area index, above-

ground biomass 

cutting 

Acevedo & 

Raventos 

0.1 months I � above-ground shoot or leaf 

length 

- 

LINGRA daily P � above- and below-ground 

biomass, tiller number, 

leaf area index 

cutting, irrigation 

GEM days 

(variable) 

P � above- and below-ground 

biomass and nitrogen 

- 

GREENLAB days to years 

(variable) 

I � above-ground biomass, 

physiological age 

- 

Reuss & Innis daily P � above- and below-ground 

nitrogen, biomass 

fertilization 

GraS-Model daily P � above-ground occupied 

area/cover 

cutting, grazing 

and trampling 

 

In a less complex way, the process-based GraS-Model simulates daily species-specific 

vegetation cover dynamics (Siehoff et al. 2011). Different single species as well as various 

plant groups (e.g. tufted plants or erect forbs) are simulated on the population-level by 

coupling a simple plant competition model and a land use model, each of them raster-based. 

Utilization indicator values for trampling, cutting and grazing allow the incorporation of 

management activities. However, in this model species compete only for space, but the 
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influence of different abiotic factors as well as competition between species for e.g. soil water 

would lend further insight. 

 

Table 2.2: Overview of abiotic factors considered in the reviewed models, the resources species compete for and 

the number and type of species represented (single species (S) e.g. Lolium perenne, plant functional types (PFT) 

e.g. grasses or legumes, or generic mean species (GMS) for an entire community). For each model the number of 

simulated species is given in brackets. 

Model Abiotic factors included Modelled intra-

/inter-specific 

competition for 

which resources 

Species representation 

S PFT GMS 

Schippers & 

Kropff 

radiation, air temperature, soil nitrogen content light,             

nitrogen 

�(3)   

Hurley Pasture 

Model 

radiation,  air and soil temperature,  soil water and 

nitrogen content, wind speed, atmospheric CO2 

concentration, precipitation, vapour pressure, 

(non-symbiotic and symbiotic N fixation) 

light,                    

nitrogen,                 

water 

  �(1) 

PaSim radiation, air and soil temperature, soil water and 

nitrogen content, wind speed, atmospheric CO2 

concentration, precipitation, vapour pressure, snow 

cover, (symbiotic nitrogen fixation) 

light,                    

nitrogen,                  

water 

  �(1) 

Coughenour et al. soil nitrogen content light,                    

nitrogen 

 �(3)  

Detling et al. radiation, air and soil temperature, soil water 

content, precipitation, photoperiod 

light �(1)   

Coffin & 

Lauenroth 

air temperature, precipitation water  �(15)  

Duru et al. radiation, air temperature, soil water, nitrogen and 

phosphor content, seasonality 

light  �(3)  

Acevedo & 

Raventos 

- - �(1)   

LINGRA radiation, air temperature, soil water content, 

precipitation 

light,                        

water 

  �(1) 

GEM radiation, air and soil temperature,  soil water and 

nitrogen content,  wind speed,  atmospheric CO2 

concentration, precipitation, vapour pressure, 

(symbiotic N fixation) 

nitrogen,                 

water 

�(1)   

GREENLAB air temperature, soil water content - �(1)   

Reuss & Innis air and soil temperature, soil water content, soil 

nitrogen content, (symbiotic N fixation) 

nitrogen   �(1) 

GraS-Model - space  �(10)  
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In contrast, the grassland model developed by Schippers & Kropff (2001) does include 

such abiotic factors as radiation and temperature. This daily working model also shows a less 

complex model structure including dry mass of the plants in different compartments (flower, 

shoot, root, and reserves) and nitrogen content as state variables. This lower level of 

complexity allows the simulation of several single species competing with each other. 

Competition processes are considered to take place above-ground for light and below-ground 

for nitrogen. An extended spatially explicit model version enables an individual-oriented 

modelling concept based on the self-thinning law (Yoda et al. 1963). Overall, this model 

provides a potential tool for simulating species-rich herbaceous communities. The model of 

Schippers & Kropff (2001) does not consider water stress and competition for water between 

individuals, which would also be of great interest.  

The LINGRA grassland model, on the other hand, includes water stress by using a 

water shortage factor, which influences light-use efficiency (Schapendonk et al. 1998). The 

calculation of light-use efficiency is part of the source-sink concept of the model. Within this 

scope, light-use efficiency is used for simulating the daily source carbon flow, while 

temperature-driven leaf area and tiller dynamics are used for modelling the daily sink carbon 

flow. Interactions between both fluxes are integrated via the plant’s storage pool. Simulation 

studies were carried out for single species populations throughout Europe. The model shows 

some important characteristics needed for simulating LIHD and HILD grasslands. Tiller and 

leaf area dynamics are modelled dependent on radiation intensity, temperature, soil water 

content and defoliation. Although water stress is considered, the inclusion of nitrogen stress as 

well as inter-specific competition for water and nitrogen between individual tillers would 

increase the informative value of the model.  

Also based on the light-use efficiency concept, the model of Duru et al. (2009) follows 

a contrary strategy. They focus mainly on the daily accumulation of above-ground herbage 

mass by taking into account the temperature-driven growth of green leaf area and the 

reduction of leaf area due to senescence. Factors considering water and nutrient stress are 

integrated by limiting the growth of herbage mass. Simulations showed herbage growth 

accumulation of a community consisting of three plant functional groups, but do not include 

an individual’s tiller dynamic and resource use. However, this would be interesting for a 

detailed view of intra- and inter-specific competition processes between individual tillers, 

especially for water and nitrogen.  

The model developed by Coughenour et al. (1984) considers senescence and 

maturation. It simulates the daily primary production of biomass of perennial grasses. For 

modelling processes like photosynthesis or senescence potential rates are modified with 

reduction factors. Additionally, a shoot sub-model including different stages of aging allows 

the simulation of tiller dynamics per plant. Simulations were carried out using three different 
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height groups (plant functional types) of tufted perennial grass species. Species that differ in 

growth form and characteristics are currently not included in this model. However, this would 

be useful for simulating European species-rich grasslands.  

Semi-arid models like the individual-oriented model of Coffin & Lauenroth (1990) 

focus mainly on competition for water resources between individual plants and a resulting 

water stress affecting the number of individuals per plant functional group. It uses the gap 

approach usually applied in forest models and focuses on below-ground resource use of 5 

resource groups, which again were divided into 15 plant functional/species groups for 

simulation. Dynamics are simulated annually by the resource space proportionally assigned to 

the individual plants in the community and the below-ground gaps in the resource space 

produced by dying individual plants. As it is a semi-arid grassland model, the resource space 

is mainly determined by the soil water content or precipitation. However, for temperate 

regions competition for nitrogen and light and the resulting effects on the individual’s growth 

and survival are as important as competition for water resources.  

Detling et al. (1979) incorporate in their model structure the intra-seasonal impact of 

temperature, moisture, light and nitrogen on the biomass dynamics of the species Bouteloua 

gracilis. The daily simulated processes covered in the model comprise among others spring 

regrowth and the translocation of carbohydrates between leaves, crowns and roots. These are 

important aspects for temperate regions. The model is tested for one species only. But the 

consideration of detailed inter-specific competition for e.g. water, light, nitrogen and space 

would be revealing.  

The GEM model (Hunt et al. 1991) presents a producer-decomposer model 

comprising (1) the impact of abiotic factors on the primary production sub-model and (2) 

feedbacks of the nitrogen flux. The model includes a water sub-model, a plant sub-model, a 

decomposer sub-model as well as a fauna sub-model and is designed for investigating climate 

change impacts on the daily carbon and nitrogen dynamics. Simulation studies were only 

carried out using a dominant single species and do not examine the inter-specific competition 

processes of species-rich communities. 

 

2.3.2 Identification of key processes and comparison of suitable process modelling 

approaches 

After reviewing and evaluating existing grassland models, we were able to identify the 

processes and characteristics that should be included in the context of LIHD grasslands for 

biofuel production. The inclusion of abiotic factors in the production and their reduction due 
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to limitations is important for tracking an individual’s dynamic in the community and thus for 

evaluating population-based tiller and vegetation cover dynamics. Mortality is as important as 

plant production. Important mortality aspects are mainly crowding mortality (e.g. self-

thinning) and mortality due to harvest (i.e. mowing). The potential to simulate species-rich 

herbaceous communities induces several important mechanisms. Central European 

herbaceous species differ widely in characteristics such as growth form and architecture, 

temporal reproduction, and strategy depending on (a) allocation of produced biomass via 

photosynthesis in terms of their life cycle and (b) inter- and intra-specific competition for 

resources in a species-rich, competitive environment. Thus, a suitable model should allow the 

inclusion of these different growth forms and architectures. In the context of biofuel 

production senescence plays an important role. In terms of different biofuel production 

technologies, only certain proportions of fresh green biomass and/or senescent biomass can be 

used. Species differ in their ability to maintain senescent biomass as standing dead material 

within the community dependent on their architectural stability. 

2.3.2.1 Resource-dependent production 

Among the most common concepts for modelling the production process are those that 

calculate gross photosynthesis and net photosynthesis. Gross photosynthesis models constitute 

primarily the Farquhar photosynthesis model (Farquhar et al. 1980; LPJDGVM, Sitch et al. 

2003) and the single-leaf photosynthesis model based on the light response function 

(Thornley & Johnson 1990; FORMIND, Köhler & Huth 2004; Seib-DGVM, Sato et al. 

2007). The Farquhar model calculates assimilation in a detailed biochemical way, whereas the 

approach using the light response function performs a more aggregated calculation of the 

single-leaf photosynthesis integrated over the canopy or individual’s projection area. Another 

option is to use just an average gross photosynthetic rate per unit leaf area (Coughenour et al. 

1984) as is done in net photosynthesis models, which are mainly based on such a potential net 

photosynthetic rate (Detling et al. 1979). Other models just calculate the absorbed amount of 

radiation, which is subsequently converted to organic dry matter either after subtracting 

maintenance costs (Schippers & Kropff 2001) or directly using the light-use efficiency 

(LINGRA, Schapendonk et al. 1998; Duru et al. 2002, 2009). There are also models that 

aggregate several production processes by focusing on the relative growth rate of the plant’s 

biomass or size (Coffin & Lauenroth 1990) or growth equations for biomass or size (Acevedo 

& Raventós 2002; Damgaard et al. 2002; Damgaard & Weiner 2008). The latter ones take an 

equation-based approach rather than a process-based approach as described above. 

All the above mentioned production model types can be multiplied by the respective 

reduction factors for irradiance, water, nutrients, temperature, age, etc. The concepts differ 

widely in models depending on the goal of the study. But all these reduction factors either 
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decrease from 1 to 0 with decreasing availability of the respective resource (e.g. for water; 

Granier et al. 1999; Reuss & Innis 1977) or reach an optimum in the middle of their range 

between 0 and 1 (e.g. for temperature; Larcher 1976).  

In the context of biofuel production, we propose as part of our conceptual model 

Grassmind the single-leaf photosynthesis approach integrated over the individual leaf area 

(Thornley & Johnson 1990). An individual can produce biomass via photosynthesis of its 

above-ground green shoot parts. So it is not only the producing green parts that compete for 

light, but also the senescent or dead shoot parts. These can no longer produce biomass via 

photosynthesis, but they can shade the green parts which are still producing. Reduction factors 

according to soil water and soil nitrogen availability as well as air temperature can be 

sufficiently taken into account by multiplication with the gross primary production: 

)()()( nitrogensoilRetemperaturRwatersoilRR NTW ⋅⋅= , (2.1)

whereby WR  is an increasing function from 0 to 1 of increasing available soil water (e.g. 

Granier et al. 1999), TR  is a function accounting for unfavourable temperatures (e.g. 

Schippers & Kropff 2001), and NR  is an increasing function of available soil nitrogen 

content. It can be clearly seen, that WR  and NR  are greatly influenced by competition with 

other individuals and abiotic conditions. In contrast, the reduction factor TR  only reflects 

abiotic stress situations. 

2.3.2.2 Respiration 

There are numerous possibilities accounting for the different levels of detail describing 

respiration. Most models only distinguish between growth respiration and maintenance 

respiration (Hurley Pasture, Thornley & Verberne 1989; Thornley 1998; LPJ-GUESS, Smith 

et al. 2001; LPJ-DGVM, Sitch et al. 2003). Three different concepts for modelling such 

respiration sub-processes can be distinguished (Thornley & Cannell 2000): (a) Most 

commonly assumed is the priority of maintenance respiration over growth respiration and its 

proportionality to plant biomass (FORMIND, Köhler & Huth 2004; LPJ-DGVM, Sitch et al. 

2003). Therefore, the produced biomass is primarily used for maintaining all important plant 

processes; the remaining biomass is utilized for growth of new plant tissue. (b) Secondly, 

growth respiration can also be assumed to have priority over maintenance respiration. After 

reducing assimilation for growth processes, the produced organic material is partially used for 

maintaining already existing components and processes (Thornley & Cannell 2000). (c) 

Thirdly, the concept of plant tissue partially feeding back to assimilation can be applied, 

whereby both are then used to fulfil total respiration costs (Thornley & Cannell 2000). In the 
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context of biofuel production, we propose using the concept of primarily maintaining already 

existing green plant tissue and secondly creating new plant tissue: 

( ) ( )( )alive
root

green
shootTmBg BBfrPRrNPP +⋅⋅−⋅⋅−= 1 , (2.2)

whereby NPP is the net primary production, gr  is a dimensionless growth respiration factor, 

mr  is the maintenance respiration rate. As part of the Grassmind model concept we consider 

that maintenance is only needed for living green plant parts, which means green shoot 

biomass green
shootB  and living root biomassalive

rootB . Further, the function Tf  can account for 

increasing demands for maintenance with increasing temperature (e.g. Schippers & Kropff 

2001) and R  consists of the three dimensionless reduction factors considered for the plant 

production (cf. Eq. 2.1). 

2.3.2.3 Allocation strategies 

Dependent on the type of respiration modelled, biomass produced by photosynthesis 

can be subsequently allocated to different plant pools where new tissue is growing. There can 

be differences in the pools considered ranging from one plant pool to several ones describing 

different components of a plant such as the leaves or the stem. In grassland models these 

different pools mostly comprise above- and below-ground plant parts, storage or reserve 

organs, and reproduction pools. The degree of resolution differs in the models. 

Differentiations from coarse pools such as above- and below-ground pools to more detailed 

ones such as leaf lamina or sheaths are possible (Hurley Pasture, Thornley & Verberne 1989; 

Thornley 1998). There is also the possibility to distinguish different ages of plant parts, to 

which different amounts of produced biomass can be allocated (Detling et al. 1979).  

 Besides the number of pools the model takes as a basis, different allocation strategies 

can be assumed. For example, a grassland model of annual species would assume a strategy 

that allocates more biomass to reproductive parts than to storage organs. On the contrary, a 

model of perennial species would imply that greater amounts are allocated to reserves than to 

the reproduction pool. Mostly allocation strategies are modelled statically, that means the 

allocation fractions remain constant over time (FOREST-BGC, Running & Gower 1991). 

Other concepts include the compliance of functional relationships between the pool masses 

summarized in the pipe theory (LPJ-GUESS, Smith et al. 2001; LPJ-DGVM, Sitch et al. 

2003; Seib-DGVM, Sato et al. 2007) or the source-sink strength of the plants (Coughenour et 

al. 1984; Schippers & Kropff 2001). However, especially in the context of climate change, a 

dynamic allocation process that adapts to climatic or managerial changes might be important 

(Detling et al. 1979). Nevertheless, in most cases not enough information is available for 

modelling the adaption process.  
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In the context of biofuel production and in the course of the development of the 

Grassmind concept, we propose to assign the following state variables to an individual: (a) 

above-ground shoot biomassshootB , (b) below-ground root biomassrootB , (c) storage biomass 

storeB  and (d) reproduction biomassrepB . Geometrical properties of an individual describing its 

spatial structure should be related to some of those state variables (Fig. 2.1). The calculated 

net primary production NPP of Eq. (2.2) can be allocated to those plant pools. Thereby, the 

connection of an individual between its above-ground shoot biomass shootB  and its below-

ground root biomass rootB  should be assumed to follow a species-specific allometric 

relationship that remains constant over time (Niklas 2005): 

b
rootshoot BaB ⋅= , (2.3)

whereby a  and b  are species-specific parameters. The remaining biomass can then be 

partitioned between the storage pool and the reproduction pool. Dependent on the species’ 

strategy or life cycle, an individual either invests more in its reproduction or more in the 

storage of biomass for maintaining itself in times of stress. For example, an annual species 

would invest more biomass in its reproduction. In contrast, a perennial species would invest 

more in the storage biomass to ensure its maintenance over its entire life span. There is a 

necessity for an individual to use its storage biomass in times when its gross primary 

production BP  cannot meet the required maintenance respiration. 

2.3.2.4 Architecture (allometry and geometry) 

Forest models and global vegetation models use allometric relationships and an 

underlying geometric architecture (FORMIND, Köhler & Huth 2004; LPJ-GUESS, Smith et 

al. 2001; Seib-DGVM, Sato et al. 2007; SILVA, Pretzsch et al. 2002). Usually grassland 

models try to avoid modelling the architectural characteristics of their plants. This results 

mostly from the great diversity of different growth forms and characteristics of herbaceous 

plant species, especially in temperate ecosystems. As a consequence, processes are often 

modelled on the population level, making it difficult to explore individual plant or tiller 

development. However, a few models do include geometry in their model framework 

(Acevedo & Raventós 2002; Schippers & Kropff 2001; Yan et al. 2004). Hence, for example, 

the transformation of the above-ground accumulated biomass into cuboids for all shoots using 

a species-specific relationship between height and width and the self-thinning rule is possible 

(Schippers & Kropff 2001). Of course, geometrical parameters are difficult to estimate on the 

individual level due to a lack of field data. 
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Figure 2.1: The individual’s and community architectural concept. (A) On the left side an individual is 

presented. Its above-ground shoot is covered by a cylinder of height h and width w. Within the cylinder the shoot 

parts are divided between green photosynthetic active parts and orange senescent parts. The below-ground root 

system is characterized by its total root length and rooting depth, whereby the system is also divided between 

living (brown) and dead (orange) parts. (B) On the right side the community consisting of several individuals on 

a gap is demonstrated. The different colours of the shoots indicate different species or plant functional types. The 

individuals may overlap concerning their geometry (cylinder), whereby three different forms can be 

differentiated: (i) sensitivity: individuals do overlap in a way that either one of them or both suffer due to their 

sensitivity to space competition, (ii) complementarity: individuals do overlap in a way that both of them can 

share space efficiently without suppressing each other, (iii) mutualism: individuals do not overlap in the true 

sense, they moreover support each other. This support by holding each other upright is essential for their 

competitive strength; otherwise they would fall to the ground. 

 

In the development of the conceptual framework of the individual-based model 

Grassmind, we propose a novel view of individuals in grasslands. The assignment of an 

‘individual’ is thereby chosen contrarily to other models, where it is assumed as a plant 

individual in the biological or genetic sense. Here, we propose a plant’s ramet or tiller to be 

treated as a kind of virtual individual. This may simplify the structure of an individual-based 

grassland model, because a differentiation between sod-forming and bunch-growing grasses is 

not necessary. 

We further assume that the individual’s above-ground shoot is covered by a cylinder of 

certain height and width, following a species-specific relationship which is constant over time 

(adapted from Schippers & Kropff 2001; Fig. 2.1). This relationship is an important factor for 

the individual’s competitive strength in the light and space competition process within the 
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community. The volume of the covering cylinder cylinderV  includes the shoot biomass of plant 

tissue corrected by a factor Sf  accounting for free space within an individual’s shoot system: 

Scylindershoot fVB ⋅= . (2.4)

The shoot system of an individual captures a region which represents simply the 

ground area of the covering cylinder. Please note, that the shoot system contains free space 

between its leaves, the extent of which depends on the particular species. The depth of an 

individual’s roots rootdepth  can be modelled via a functional relationship to the above-ground 

volume of the shoot covering cylinder (Schenk & Jackson 2002): 

2
1

r
cylinderroot Vrdepth ⋅= , (2.5)

whereby 1r  and 2r  represent species-specific parameters. Therefore, the assumption that all 

individual ramets or tillers are treated equally as biologically individual plants is needed. 

Ramets, which are usually connected via below-ground rhizomes, are now considered to have 

their own individual rooting system, rooting as deep as the biological mother plant would. 

The nitrogen absorption from soil is modelled using the total root length of the system 

(Schippers & Kropff 2001). The greater the summed up lengths of all root sections of an 

individual’s root system, the higher its absorption rate. For calculating an individual’s root 

length the below-ground root biomass is simply multiplied by the specific root lengthSRL. It 

also has to be considered that most of the nutrients are available in the upper horizon of the 

soil. Shallower root systems with high total root length have greater advantages in the 

absorption of nutrients over those with less root length in the upper soil (Garwood & Williams 

1967a, 1967b). As a consequence, the vertical distribution of the rooting system in soil is 

important for both the competition for water and nitrogen of an individual. Thus, it can be 

seen that factors specifying the competitive ability of an individual in the competition process 

for nitrogen and water are strongly related to the root system. The deeper the below-ground 

system of an individual is rooting, the greater is its access to water resources in soil. 

Especially in times of drought its competitive strength in the water competition process will 

be higher.  

Changes in the geometry and allometry of an individual can occur when grasslands are 

cut. This activity changes the species-specific functional relationships between height and 

width as well as between above- and below-ground biomass, which are assumed to remain 

constant over time. To be consistent with the proposed conceptual structure and for the sake of 

simplicity, we assume that the produced biomass is allocated solely to the shoot system until 

the original relationship between above- and below-ground biomass is reached. Additionally, 

the biomass allocated to the shoot should only affect the growth in height, but not the width of 
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the individual, as long as the original height-to-width ratio is not reached. Subsequently, the 

growth of height and width as well as the allocation fractions to above- and below-ground 

biomass pools follow the original system. 

2.3.2.5 Mortality and senescence 

In most models only one type of mortality is considered. But there can be different 

reasons for mortality. Plants die off, for example, because they have reached their maximum 

age, from heat stress, frost or drought. These causes of mortality can be modelled either by 

testing whether net primary production falls below a threshold (LPJ-GUESS, Smith et al. 

2001; LPJ-DGVM, Sitch et al. 2003) or by directly considering temperature thresholds 

(Schippers & Kropff, 2001). When mortality occurs, usually the entire plant dies off. But 

there are also models that distinguish between shoot and root mortality. This is based on the 

assumption that roots are less sensitive to e.g. freezing (Hunt et al. 1991).  

Senescence is mentioned explicitly in only a few models and is mostly included in the 

mortality rate (Coughenour et al. 1984; Detling et al. 1979). It has to be considered that dead 

plant material contributes to the dynamics of grassland communities (Deák et al. 2011). There 

are different ways of handling dead plant material. Some models assume that it goes directly 

into the litter pool, while others assume that it remains standing above ground (Detling et al. 

1979). Standing dead material can afterwards be transferred to the litter pool e.g. as a function 

of precipitation (Detling et al. 1979).  

In the context of biofuel production, we propose considering multiple mortality 

sources in the course of the Grassmind model concept. For example, it is important to 

differentiate mortality due to harvest from basic mortality due to fulfilled life span as well as 

from crowding mortality. We propose to model crowding mortality by using the geometrical 

framework of covering cylinders with their individual ground or projection area. Considering 

all individual shoots on an area, the community coverage communitycov  cannot just be calculated 

by adding up all individuals’ coverage or projection areas (Fig. 2.1). This would lead to an 

overestimation by ignoring leaf overtopping and overlapping of individuals. To account for 

this, the individual shoot coverage cov  is modified using a species-specific “overlapping 

factor” overlapf : 

∑ ⋅=
isindividual

ii
overlapcommunity f covcov . (2.6)

This correction factor overlapf  gives a broader perspective on the interactions between species 

and their competition for space (Fig. 2.1). Some species are sensitive to space competition 

(‘sensitivity’), others complement each other by leaf overtopping (‘complementarity’) and 
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some species are only competitive when they are held up by other ones (‘mutualism’). The 

latter case can usually be seen in grass tillers, which cover a small area, but have a great 

height. 

By using this framework, crowding mortality can be carried out by setting species-

specific and total thresholds for the community cover on a predefined area. Tillers or shoots 

are deleted from the area until community cover falls below the defined thresholds. Under 

certain conditions this can be interpreted as self-thinning (Hernández-Garay et al. 1999; Kays 

& Harper 1974; Matthew et al. 1995; Yoda et al. 1963).  

In terms of senescence the transformation process is modelled using a linear rate 

dependent on the leaf life span. To ensure the conformity of the modelled geometry, we 

assume that the senescent or dead shoot parts are still standing within the shoot’s geometry. 

The same process of transforming living parts of an individual to dying ones is also assumed 

to be existent in the below-ground root system. So, using a linear rate dependent on the root 

life span, living root parts are transformed to dying root parts at each time step. The dying 

root sections can no longer take up water or nitrogen. In contrast to the above-ground 

senescent shoot parts, the belowground dying root parts are assumed to go directly into the 

belowground litter pool. 

2.3.2.6 Temporal reproduction 

Nearly all models make use of environmental conditions, which have to be fulfilled for 

e.g. successful establishment of new individuals (FORMIND, Köhler & Huth 2004; LPJ-

DGVM, Sitch et al. 2003). Therefore, models that operate on the population level can assume 

e.g. tiller reproduction rates (LINGRA, Schapendonk et al. 1998) whereas individual-based 

models usually simulate the seedling establishment of individual plants (Coffin & Lauenroth 

1990). In the context of biofuel production and for reproducing patterns of tiller dynamics in 

temperate grasslands it is important to consider establishment via vegetative and generative 

reproduction. Environmental factors such as temperature, water and nutrient availability and 

irradiance determine seedling germination. Further, species-specific differences in the 

temporal initiation of generative and vegetative reproduction may depend on environmental 

conditions such as the photoperiodic length of a day. 

2.3.2.7 Storage use 

The use of biomass from the storage pool, if considered at all, is often included for 

regrowth in spring or in times of stress e.g. after cutting (Detling et al. 1979; Schippers & 

Kropff 2001). Thereby, the uptake is not only possible from storage organs or reserves, but 
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also from the roots (Detling et al. 1979). The process of reserve uptake is mostly initiated by 

some event such as the exceedance of a temperature threshold (Detling et al. 1979) or the 

occurrence of a cutting event (LINGRA, Schapendonk et al. 1998). In the context of biofuel 

production, especially with regard to mowing or other stress situations, it is important to 

include the process of storage use of individuals. For simplicity it can be assumed that an 

individual needs to use its storage biomass in times when its gross primary production BP  

cannot meet the required maintenance respiration or in spring for regrowth. 

2.3.2.8 Inter- and intra-specific competition and their linkages 

The reviewed grassland models provide a differentiated view of competition. Limited 

resources are only considered to affect the growth of individuals or the entire community. 

However, in most models detailed inter- and intra-specific competition between individual 

plants or shoots is not described sufficiently. A few models include competition processes, but 

focus solely on specific resources. For example, the model of Schippers & Kropff (2001) 

includes inter-specific competition for nitrogen and light. Species compete for light by 

shading other ones due to their leaf area index, while they compete for nitrogen due to their 

total root length relative to the sum of all other species. Another example is shown by the 

model of Siehoff et al. (2011) where species explicitly compete for space based on their 

potential growth rates, their current occupied area and the available space. Table 2.2 

summarizes the abiotic factors that may limit growth and the resources for which species 

explicitly compete for all of the reviewed models. It also shows the number and type of 

species represented (i.e. single species, plant functional types or a generic mean species) for 

the entire community in the model simulations.  

As part of the conceptual framework of Grassmind, we propose that individuals are 

competing for water, nitrogen, light and space. The uptake or use of resources of the 

individuals should be linked. Gross primary production strongly depends on how well the 

demand for water and nitrogen can be met by the soil. If an individual produces a lower 

amount of biomass due to reduced incoming linear rate dependent on the root life span, living 

irradiance or less leaf area, its demand for water and nitrogen is reduced. The other way 

around, an individual is forced to reduce its photosynthetic production when uptake of water 

or nitrogen is limited. Uptake of soil nitrogen is highly dependent on the uptake of soil water 

resources. Resource limitations can occur due to the presence of several competitors or due to 

environmental changes. If limitations are caused by other individuals competing for the same 

resources, then the limited resources have to be distributed among the individuals following 

certain rules. These rules can be defined by the species-specific traits characterizing their 

success in competition with other species (Fig. 2.2). So, e.g. in times of drought individuals 

with deep rooting systems may have an advantage in the water competition process, whereas 
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individuals with fine shallower rooting systems may absorb more nitrogen in the upper soil 

layer. Competition for space (crowding) is also an important factor in grassland communities. 

Whether and how individuals compete for space is highly dependent on the overlapping of the 

different plants within the community. Crowding can result in an increase in individual shoot 

mortality. 

 

Figure 2.2: Exemplary representation of an individual‘s traits characterizing its success in resource uptake and 

in competition with other individuals. The above-ground traits are reflected (a) in the height-to-width ratio of the 

cylinder covering the shoot, (b) in the leaf life span LLS  of the green shoot parts transferred to senescent ones, 

(c) in photosynthetic parameters as the maximum photosynthetic rate pm and the initial slope of the light 

response curve α , (d) in the leaf angle, (e) in the “overlapping factor” overlapf  accounting for leaf overlapping 

between individuals and (f) the relationship between root and shoot biomass using the parameter a  and b . For 

success in below-ground competition (g) the total length of all branches of the root systems rootlength , (h) the 

rooting depth rootdepth , (i) the vertical distribution of root biomass in soil, (j) the root life span RLS, (k) the 

water- and nitrogen-use-efficiency (WUE  and NUE ) are important traits of an individual. 

 

2.4 Discussion 

We reviewed 13 existing grassland models concentrating on how suitable they are for 

simulating species-rich temperate grasslands in the context of biofuel production. In the 

course of the process-oriented review we presented conceptual approaches for a novel 

grassland model, where needed from our perspective.  

Existing grassland models do not cover the entire range of essential processes needed 

for investigating the suitability of species-rich grasslands for biofuel production. In particular, 
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how exactly individuals interact when competing for water, nitrogen, light and space 

constitutes an important aspect, which has not been modelled sufficiently in recent models. 

The proposed modelling approaches of the Grassmind concept combine detailed competition 

modelling with simplified plant growth modelling adopted from recent grassland models. In 

doing so, a special emphasis is placed on competition for light, water, nitrogen and space, 

which operates on the individual-level.  

Parameterizing vegetation models can always be difficult due, for instance, to 

restrictions in the availability of field data. Concerning grasslands, measurements of the entire 

above-ground biomass, coverage and leaf area index on the community or population level 

have been published (Tilman et al. 2001; Weigelt et al. 2010) or even performed. This is 

where the parameterization of detailed competition processes or individual-based growth and 

death processes can get complicated. To address these problems, either calibration of the full 

model or separate sub-models, if at all possible, or modern modelling techniques such as 

inverse parameterization using MCMC methods or pattern-oriented modelling are useful tools 

(Hartig et al. 2011; Grimm & Railsback 2012).  

From our perspective there is a need for a new grassland modelling approach which 

offers new possibilities for analysing theoretical concepts and empirical results on the 

relationship between biodiversity and ecosystem functions (e.g. productivity). The detailed 

modelling of competition processes raises opportunities to investigate niche differentiation, 

sampling or facilitation theories in species-rich grasslands (Kinzig et al. 2002; Loreau et al. 

2001). Such a model like the Grassmind concept might contribute to a more comprehensive 

understanding of the mechanisms underlying the positive effect of biodiversity on ecosystem 

functioning.  

In the context of climate change, increasing drought events in Central Europe also 

have to be considered (Beniston et al. 2007; IPCC, 2007). In periods of drought, nutrients like 

nitrogen barely infiltrate deeper soil layers. Deep-rooting plants with a high fraction of roots 

in deeper soil layers may then be at a disadvantage compared to shallow-rooting plants 

(Garwood & Williams 1967a, 1967b). Although they have access to more soil water 

resources, their uptake of nitrogen can be very low. In contrast to long drought periods, 

extreme rainfall events with a high amount of precipitation can lead to nutrient leaching. 

Thus, not only climate but also management plays an important role in the development of 

grasslands. In particular, management is responsible for obtaining Low-Input High-Diversity 

(LIHD) or High-Input Low-Diversity (HILD) grasslands.  

With moderate mowing and fertilizer application only when absolutely essential, 

LIHD grasslands can be created. Here, we expect increased light competition with decreasing 

management activity. In contrast, increasing the mowing frequency per year along with 
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fertilization or irrigation would result in HILD grasslands. A grassland model such as the 

Grassmind concept could also be used to elaborate guidelines for the management of 

grasslands in Central Europe according to a combination of biofuel production and nature 

conservation. As already mentioned, LIHD grasslands were proposed as a biofuel resource to 

be seriously considered as an alternative to monocultures of annual energy crops (Tilman et 

al. 2006b).  

In Central Europe biogas production systems, or biogas plants, are used mainly by 

farmers. Currently, these systems are mostly fed with fresh maize biomass. The use of LIHD 

grasslands for these production systems may be difficult due to the different temporal niches 

of various grassland species. Some species become senescent or die at a time when others are 

still green and alive. Beside innovative biofuel production technologies, an alternative way to 

produce biofuel is the traditional biomass combustion of lignified plant material. Concerning 

grasslands, this should be done at the end of the vegetation period, when nearly all plants are 

senescent or dead, but still standing. However, different temporal niches may also pose a 

problem for this system of production. Plants that become senescent at a much earlier stage 

may already be decomposed and no longer standing, while at the very same time others have 

just become senescent or have transformed into dead material.  

To confront these problems, the proposed Grassmind conceptual framework provides 

an opportunity to look at certain community compositions in terms of their suitability for 

biofuel production. Such grassland communities could then be used for different biofuel 

production systems, e.g. in spring after the first cut for biogas production and in late 

summer/autumn after the second cut for combustion. The results from this type of model can 

also contribute to a more diverse use of land (Jordan et al. 2007). While some areas can be 

planted traditionally with annual crops, the use of other land areas with species-rich, semi-

natural grasslands can open up new opportunities. The negative effects of the high input 

needed for the cultivation of monocultures may be compensated on a regional scale by the 

positive effects of low-input systems. 
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3. Grassmind – Model description2 

3.1 Overview 

The model Grassmind is designed in order to simulate species-rich, temperate 

grasslands on a daily basis to identify their potential for biomass production. The model 

focuses on competition between species or functional groups for the aboveground resources 

light and space as well as for the belowground resources water and nitrogen. Grassmind is 

coupled with the soil model Candy, which simulates carbon, nitrogen and water dynamics in 

soil, also on a daily basis (Franko et al. 1995).  

Grassmind is an individual-based, process-oriented vegetation model following the 

gap approach typically applied in forest models (Shugart 1998; FORMIND, Köhler & Huth 

2004). Just as on a gap in a forest, all individuals interact and compete for resources on a 

patch, without further assignment of explicit spatial positions for each individual on the patch. 

Individuals consist of an aboveground shoot (i.e. stem and leaves) and a belowground root 

system (i.e. root branches). Individuals of different age or species/functional group can differ 

in the size of these components.  

We simulate a landscape of quadratic patches, with a patch size (area = 10000 cm²). 

The time step is set to one day (∆t = 1). The main processes calculated on the individual- as 

well as population-level are simulated within one time step according to a specific schedule 

(Fig. 3.1; Fig. 3.2). These processes comprise: (a) reproduction of new individuals and their 

(b) emergence as seedlings, (c) mortality of individuals including competition for space, (d) 

photosynthesis, which can be reduced due to shading and leads to the gross primary 

production, (e) competition for water and nitrogen, (f) maintenance and growth respiratory 

costs, (g) senescence of leaves and root branches and (h) the allocation of the resulting net 

primary production leading to the growth of an individual. 

                                                 
2 This model description is based on a concept proposal, which has been published online (Taubert et al. 2012, 

supplementary material). 
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Figure 3.1: Block diagram of one time step (one day) in Grassmind. The block diagram shows the main 

processes acting on the individual- and population-level. Further, links to external climate data, the soil model 

Candy and management activities are presented. Arrows indicate an input. 

 

In the beginning, recruited seeds (e.g. sown or produced via an individual’s 

reproduction one time step before) emerge as new seedlings. After the emergence of new 

seedling, mortality of already established as well as newly emerged individuals is considered. 

Those individuals, which survive, can shade each other. As individuals can differ in their 

height, the incoming radiation is reduced from the top to the bottom of a patch stepwise to a 

certain extent, which is determined by calculating the light climate using an aboveground 

discretization. Limited space conditions are calculated based on the fraction each individual is 

covering on a patch. Requirements exceeding the available space can result in a higher 

mortality in the next time step. Based on the calculated light conditions, each individual 

performs photosynthesis resulting in its gross primary production. This gross productivity can 

be exposed to temperature, water and nitrogen limitations. Limitations of water and nitrogen 

can also be caused by reduced resource availabilities due to competition with other 

individuals on a patch. As well, respiratory costs can be changed due to daily air temperature. 

The net primary production of an individual is calculated by the difference between the 

(eventually reduced) gross production and respiratory costs. Before the net production is used 

for growth or reproduction, older leaves and root branches become senescent. That means 

leaves get yellow and root branches partly die. Yellowed leaves are still part of the shoot, 

whereby dead root branches are directly starting to decompose. After senescence, net 

productivity is allocated to reproduction of new seedlings and growth of the respective 
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individual, the latter one resulting in new geometrical properties of an individual’s shoot and 

root. At last, management activities (e.g. mowing down to a height of 10 cm) are performed. 

 

 

Figure 3.2: Flow diagram of one time step (one day) in Grassmind. The left flow diagram shows the main 

processes acting within one time step. The right life cycle illustrates again the main processes. 

 

3.2 The geometry of an individual 

The following main state variables are supposed to be associated with an individual: 

(1) aboveground shoot biomass shootB  [g dry matter (DM)], (2) belowground root biomass rootB  

[g(DM)] and (3) reproduction biomass repB  [g(DM)]. The aboveground shoot biomass is 

divided into biomass of fresh green leaves green
shootB [g(DM)] and biomass of senescent yellow 
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leaves sen
shootB  [g(DM)]. Further state variables, which describe the geometry of an individual, 

can be derived from relationships with species-specific attributes (Fig. 3.3). 

 

 

Figure 3.3: Display of the state variables, which correspond with the geometrical characteristics of an 

individual. The presented state variables can be derived from the aboveground shoot biomass and the 

belowground root biomass. 

 

3.2.1 The aboveground shoot 

We model the aboveground shoot of an individual as encased by a cylinder. The 

volume of the encasing cylinder cylinderV  [cm³] is directly related to the shoot biomass: 

S

shoot
cylinder f

B
V = , 

(3.1)

where the species-specific correction factor Sf  [g(DM)/cm³] accounts for free space within the 

cylinder not filled with biomass. The species-specific constant height:width ratio defines the 

height h  [cm] and width w  [cm] for a given cylinder volume.  

The space an individual shoot occupies on a patch is determined by the ground area 

cov  [cm²] of the encasing cylinder. To calculate a patch’s community cover CC  

[cm²(cov)/cm²(area)], - that is the area occupied by all individuals relative to the patch area, it is 
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necessary to take leaf overtopping or overlapping among individuals into account. For this, 

each individual shoot cover is corrected by a species-specific overlapping factor Of  []. This 

factor accounts for overlapping in an implicit manner since the individuals do not have 

spatially explicit positions within the patch. The corrected covers of all individuals on the 

patch are summed up and normalized by the patch area: 

( )∑ ⋅⋅=
sindividualall

Ofarea
CC cov

1
. 

(3.2)

The leaf area of the aboveground shoot is obtained by multiplying the biomass shootB

with the constant specific leaf area SLA [cm²(leaves)/g(DM)] leading to the leaf area index L  

[cm²(leaves)/cm²(cov)]: 

cov

SLAB
L shoot ⋅= . 

(3.3)

 By using only the green shoot biomass green
shootB  instead of shootB  in Eq. (3.3), we obtain 

the green leaf area indexgreenL  important for photosynthesis. 

3.2.2 The belowground root 

We assume a species-specific allometric relationship between an individual’s 

aboveground shoot biomass shootB and belowground root biomass rootB – determined by the 

parameters 1s  and 2s  (cf. Niklas, 2005): 

2

1
s

rootshoot BsB ⋅= . (3.4)

 

As a reasonable approximation, we set 2s to 1 and define 1s  as the species-specific shoot:root 

ratio as in literature often these ratios are determined from field measurements. 

The individual’s ability to access and compete for soil nitrogen and water resources 

strongly depends on its root system. In addition to the root biomass, the root system’s vertical 

distribution in soil is important. Shallow and highly branched root systems are beneficial for 

nutrient uptake as most nutrients predominantly occur in the upper soil layers (Garwood & 

Williams 1967a, 1967b). In contrast, deeper root systems strongly increase the access to soil 

water resources, particularly during drought periods.  

To calculate the rooting depth rootdepth , which is required for water uptake (cf. Sec. 

3.3.8), we adapt the approach of Schenk & Jackson (2002), to functionally relate rooting 

depths to the aboveground ellipsoidal canopy volume. Using the same relationship for the 
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volume of an individual’s aboveground shoot cylinder (Eq. 3.1) and including the shoot:root 

ratio (Eq. 3.4) leads to: 

2

1
1

r

root
S

root B
f

s
rdepth 








⋅⋅= , 

(3.5)

where the species-specific parameters 1r  and 2r  define the dependence of the rooting depth on 

root biomass. Each individual has an own rooting system, irrespective of the fact, whether the 

individual has been recruited via generative or vegetative reproduction. The total branching 

root length rootlength  [cm], which is required for nitrogen uptake (cf. Sec. 3.3.9), is related to 

the root biomass via the specific root length SRL [cm/g(DM)]: 

SRLBlength rootroot ⋅= . (3.6)

 

3.3 Model processes 

In the following, we are going to describe details of the modelled processes important 

within the life cycle of an individual. These have already been introduced shortly at the 

beginning (cf. Sec. 3.1; Fig. 3.1; Fig. 3.2). 

 

3.3.1 Reproduction 

We do not distinguish between vegetative and generative reproduction. We assume 

that the single seed biomass produced via generative reproduction equals the biomass 

investment also required for vegetative reproduction of one individual (e.g. by rhizomes or 

stolones).  

The number of potential seedlings seedN  produced by a reproductive individual is 

dependent on the individual’s net production allocated to its reproduction pool repB  and the 

species-specific single seed biomass seedB  [g(DM)]: 

seed

rep
seed B

B
N = . 

(3.7)

These potential seedlings can emerge in the next time step dependent on a species-

specific germination rate (cf. Sec. 3.3.2). Only for seeds sown on a bare field, we include a 

time emt  [days] since the sowing date sowt , that is needed for a single seed to germinate in soil 

until its emergence (at time sowt + emt ). 
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3.3.2 Emergence of new individuals 

Only a limited number seedN̂  of potential seedlings seedN  (cf. Sec. 3.3.1) can germinate 

successfully within the same patch: 

%
ˆ germNN seedseed ⋅= , (3.8)

where %germ  denotes the germination rate [1/day]. Environmental conditions are not 

considered for the germination process, so the germination rate can be interpreted as a 

constant success rate. Those of the potential seedlings, which cannot germinate successfully, 

i.e. ( )%1 germNseed −⋅ , are assumed to die immediately. The successfully germinated seedlings 

have an initial height minh . Further geometrical properties can be derived from minh  (cf. Sec. 

3.2). 

 

3.3.3 Mortality 

3.3.3.1 Crowding mortality  

On a patch, only a finite number of individuals is able to survive due to limited space. 

Typically, the so-called self-thinning law of a community regulates the number of individuals. 

Numerous studies promote a power-law describing the number of surviving individuals 

according to their mean weight (Lonsdale & Watkinson 1982, 1983; Matthew et al. 1995).  

Based on an indicator CM  (cf. Sec. 3.3.5), crowding mortality is either triggered or 

not. If space is limited, that means 1<CM , a certain number of individuals crowdN  are 

removed stochastically so that the factor CM  exceeds the threshold of one: 

( )Ccrowd MNN −⋅= 1 . (3.9)

3.3.3.2 Base mortality 

Besides crowding, mortality is modelled using a rate bm  [1/day]. The value of this rate 

depends on the age of an individual: 
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(3.10)

A basic mortality rate basicm  [1/day] is used for reproductive individuals, whereas a 

special mortality rate is used for seedlings. Individuals in the seedling state, which are not yet 

reproducing, have a higher mortality seedm  [1/day]. The time, at which individuals start to 

reproduce, is modelled by reaching a certain age (i.e. the parameter repage ). Further, based on 

the species-specific lifespan life  [years] of a reproductive individual, the rate bm can be set to 

one. For example, annual species die after one year. Thus, bm  is set to one, if the age [years] 

of an annual individual exceeds one year. Analogously, for bi-annuals and perennials bm  is set 

in a similar way, as bi-annuals die after two consecutive years, and perennial species may 

persist for several years. 

 

3.3.4 Light climate 

An increasing number of individuals on a patch differing in height, results in shading 

among the individuals. Therefore, the global radiation 0I  [µmol(photons)/m²/s] coming in 

above the highest individuals is increasingly attenuated down the bottom of the patch. To 

calculate light conditions in different heights on a patch, the aboveground space is divided 

into layers of constant width h∆  [cm]. For each individual, its height h  determines the 

highest layer maxl  it covers completely by its shoot: 








∆
=

h

h
lmax . 

(3.11)

Since the leaf area L  is uniformly distributed in vertical direction within an individual’s 

encasing cylinder (cf. Sec. 3.2), the individual’s leaf area index contribution iL̂  

[cm²(leaves)/cm²(area)] is also assumed to be uniformly distributed among the covered height 

layers max,...,1 li = : 













>

≤≤∆⋅⋅

=

max

max

,0

0,
cov

ˆ

li

lih
h

L

Li , 

(3.12)
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where cov is the ground area of the individual’s encasing shoot cylinder. Summing up these 

leaf area contributions for all individuals on a patch results in the patch-based community leaf 

area index iLAI  [cm²(leaves)/cm²(area)] for each height layer i : 

∑ ⋅⋅=
sindividualall

ii Lk
area

LAI ˆ1
, 

(3.13)

where k  denotes the species-specific light extinction coefficient and area is the area 

expansion of the patch (cf. Sec. 3.1). The light extinction coefficient is a species-specific 

constant parameter and thus, includes the assumption of constant leaf angles along the stem of 

an individual’s shoot.  

To determine the irradiance SI  [µmol(photon)/m²/s] at the top of an individual, the 

patch-based leaf area indices iLAI  of all height layers above the individual’s height are 

summed up. Light attenuation through these height layers is then calculated using the 

approach of Monsi & Saeki (1953): 











∑−

>⋅= max

0
li

iLAI

S eII , 

(3.14)

where 0I  [µmol(photon)/m²/s] is the non-attenuated incoming photosynthetic active radiation 

(PAR) modelled as the daily average photosynthetic active radiation from sunrise to sunset. 

Photosynthetic active radiation can be derived from the global radiation (cf. Sec. 3.4.1). Thus, 

competition for light between individuals is considered. Species growing higher receive more 

light and reduce the light received by smaller individuals via shading (Fig. 3.4). Noteworthy, 

not only green but also standing senescent shoot leaves contribute to shading. To reduce the 

effect of shading we weight the patch-based leaf area indices iLAI  each by a factor of 1/9, 

which equals a subdivision of a 1 m² patch into 9 sub-patches of homogeneous leaf area 

distribution.  
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Figure 3.4: Illustration of light competition between individual species of different heights. Aboveground space 

is divided into height layers of width h∆ . Here, B is higher than A (cf. vertical black arrows) and receives the 

unreduced incoming irradiance 0I . A is shaded by those parts of B’s leaf area that are higher than A, hence 

receiving the reduced irradiance SI  (Eq. 3.14). The height layers marked in light grey are shaded by B only, 

whereas those in dark grey are shaded by A and B. Each individual’s leaf area is uniformly distributed among the 

respective height layers covered. 

 

3.3.5 Space conditions 

The indicator CM  triggering crowding mortality is calculated as the reciprocal of the 

coverage of the community CC on a patch: 

1−= CCM C . (3.15)

Noteworthy, the coverage of the community CC includes species-specific overlapping 

factors, thus influencing also the process of crowding on a patch. Crowding mortality is then 

triggered earliest in the subsequent time step (cf. Sec. 3.3.3). 

 

3.3.6 Gross primary production 

Gross biomass production of an individual is modelled via photosynthesis. Following 

the approach of Thornley & Johnson (1990), we calculate the gross photosynthetic rate for a 

single leaf using a saturation function: 
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max

max

pI

pI
P

Leaf

Leaf
Leaf +⋅

⋅⋅
=

α
α

. 
(3.16)

Here, α  is the species-specific initial slope of the light response curve 

[µmol(CO2)/µmol(photon)], maxp  is the species-specific maximum gross photosynthetic rate 

[µmol(CO2)/m²/s], and LeafI  is the incoming irradiance on the leaf surface [µmol(photon)/m²/s]. 

The latter is derived by correcting the incoming irradiance SI  at the top of an individual (cf. 

Sec. 3.3.4): 

SLeaf I
m

k
I ⋅

−
=

1
, 

(3.17)

where k  is the species-specific light extinction coefficient and m  the transmission 

coefficient. To obtain the gross photosynthetic rate shootP  [µmol(CO2)/m²/s] of an entire 

individual shoot, the single-leaf photosynthesis (Eq. 3.16) is integrated over the individual’s 

green leaf area index greenL (cf. Sec. 3.2.1): 

∫=
greenL

LeafShoot LdLPP
0

~
)

~
(  

(3.18)

leading to: 

( ) ( )
( )






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1

1
ln

max

max

α
α

. 
(3.19)

Multiplying the gross photosynthetic rate (Eq. 3.19) by three conversion factors leads to the 

potential gross primary production potGPP  [g(DM)/day] of an individual shoot per day: 

( ) areadayODMLeafShootpot IPGPP ϕϕϕ ⋅⋅⋅= , (3.20)

where 6104463.0 −⋅⋅=ODMϕ  [g(DM)/µmol(CO2)], dayday length⋅⋅= 6060ϕ  [s/day] with 

daylength  as the number of hours per day from sunrise to sunset, and cov=areaϕ [cm²]. 

 

3.3.7 Temperature effects 

Photosynthesis and respiration are sensitive to temperature changes (Larcher 2001). 

Gross primary production (Eq. 3.20) is reduced for air temperatures T  [°C] below a threshold 

of 10 °C according to Schippers & Kropff (2001; cf. also Larcher 1976): 
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(3.21)

Maintenance respiration rm increases with air temperature according to Schippers & Kropff 

(2001, cf. Larcher 1976): 
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(3.22)

 

3.3.8 Water competition 

The individual’s uptake of water resources from soil is modelled taking into account 

its demand on the one hand and the soil water available on the other hand. The individual’s 

water demand demandθ  [mm/day], which is equal to its potential transpiration, is modelled 

using the water-use efficiency concept: 

WUE

GPPpot
demand =θ , 

(3.23)

where potGPP  is the gross primary productivity (cf. Sec. 3.3.6) and WUE [g(DM)/kg(H2O)] the 

water-use-efficiency parameter. By coupling Grassmind with the soil model Candy (Franko et 

al. 1995), the soil is divided into layers of constant width s∆  = 10 cm down to a soil depth of 

2 m.  

Required water demands of all individuals can be restricted either by (a) the sum of 

interception and potential evapotranspiration or (b) by the difference of soil water content and 

permanent wilting point (Fischer et al. 2013, accepted). We assume an interception of zero for 

grasslands. In the first case, if the required water demands of all individuals on a patch exceed 

the potential evapotranspiration (PET), the water demands are reduced linearly by the 

reciprocal of PET to the required water demands. In the second case, if the difference of soil 

water content and permanent wilting point is lower than the required water demands, these 

water demands are set either to zero (if soil water content is below permanent wilting point) 

or reduced linearly by the reciprocal value of the respective difference to the required water 

demands (Fischer et al. 2013, accepted). 
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After the restriction of the water demands by the potential evapotranspiration and 

permanent wilting point, we calculate on the individual-level how much soil water an 

individual can take up by competing with other individuals on a patch. Using the vertical soil 

discretization of the soil model Candy, we calculate for each individual the soil layermaxs , the 

individual roots into dependent on its rooting depths: 










∆
=

s

depth
s root

max . 
(3.24)

Soil water uptake is also dependent on the individual’s vertical root distribution within 

soil (Gerwitz & Page 1974) besides its rooting depth. For simplicity, roots are assumed to be 

equalled vertically distributed among the soil layers the individual is rooting into. Thus, we 

divide the demand of the individual demandθ  by number of soil layersmaxs : 

maxs
demandj

demand

θθ = , 
(3.25)

where j
demandθ  [mm/layer/day] denotes the individual’s demand per soil layer j . Using the 

individual’s demand per soil layerjdemandθ , we can calculate the patch-based total water 

demand j
totalθ  [mm/layer/day] of all individuals for a specific soil layer j : 

( )∑
<

=

maxsjwith
patchaon

sindividualall

j
demand

j
total θθ . (3.26)

To determine the fraction of demanded water an individual can take up from soil while 

competing with other individuals, the calculations of Granier et al. (1999) are used. Therefore, 

a rooting zone is determined for each individual. It represents the composition of the 

respective soil layers max,...,1 sj =  the individual is rooting in (Fig. 3.5). 
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Figure 3.5: Illustration of the rooting zones of two different individuals. Horizontal light grey shadow marking 

the first three soil layers indicates the rooting zone A of individual A. In this example, the rooting zone of 

individual B covers the entire soil. Vertical dark grey shadows around the roots indicate the division of root 

branches equally among the soil layers in the respective rooting zone. 

 

For an individual’s rooting zone, the fraction of demanded water, which can be taken 

up, is determined individually based on the remaining soil water content remθ  

[mm(H2O)/day], which would remain if the patch-based total demands per soil layer j
totalθ  

would be subtracted from the available soil water content: 

( )∑
<

−=
maxsj

j
total

j
soilrem θθθ , (3.27)

where j
soilθ  [mm/layer/day] is the volumetric soil water content in layer j . The remaining soil 

water content remθ  represents that content, which would remain in an individual’s rooting 

zone, if the total potential water demands of all individuals also rooting into these layers 

would be taken up. Using the potentially remaining soil water content, the fraction of an 

individual’s demanded water, which can actually be taken up, is then determined by: 

( ) ( )








≤
≤≤

<
−−=

remMSW

MSWremPWP

PWPrem

PWPMSWPWPremWR

θθ
θθθ

θθ
θθθθ

,

,

,

1

0

, 

(3.28)

where the dimensionless factor WR  increases from 0 to 1 (Granier et al., 1999). If water 

demands exceed accessible soil water resources, demands cannot be fulfilled and the fraction 

WR  is less than one. For example, if the remaining soil water content would fall below the 

permanent wilting point PWPθ  [mm/d], the fraction WR  is set to zero. If available soil water 

resources would merely last for fulfilling partial water demands, uptake is linearly reduced.  
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The threshold defining the exceedance of accessible water resources is determined by 

the so-called minimal soil water content MSWθ [mm/day]: 

( )PWPFCPWPMSW θθθθ −⋅+=
3

1
, 

(3.29)

where FCθ  [mm/day] denotes the field capacity. The actual water uptake uptakeθ  [mm/day] of 

an individual is calculated using the calculated fraction WR : 

demandWuptake R θθ ⋅= . (3.30)

The consumption of soil water by the individuals influences the soil water content and 

thus, the availability of resources in the next time steps. 

 

3.3.9 Nitrogen competition 

3.3.9.1 Nitrogen non-fixing species 

Similar to the water uptake, nitrogen uptake is dependent on the available nitrogen 

content, the individual’s availability to take it up and its demand. To calculate the demand 

demandN  [kg(NO3N)/cm²] (i.e. mineral nitrogen NO3N), an approach based on the nitrogen-use 

efficiency concept is used comparable to water demands (cf. Sec. 3.3.8). The amount of 

nitrogen demands cannot always be met by the soil. Soil nitrogen availableN  [kg(NO3N)/cm²], 

which is potentially available for absorption by an individual, is calculated by: 

( )∑
<

−⋅=
max

min
sj

jjavailable NNFN , (3.31)

where availableN  [kg(NO3N)/cm²] denotes the available nitrogen resources in soil, the individual 

has access to, minN  [kg(NO3N)/cm²] represents a minimum amount of inaccessible soil 

nitrogen and jF  represents a competition factor. The factor jF regulates the amount of 

nitrogen an individual can access by competing with other individuals. jF is defined as the 

percentage of root branch lengths of the individual in relation to all other individuals per soil 

layer j : 


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By this, it is assumed, that the individual’s total root branches rootlength  are divided 

equally among the soil layers in its rooting zone composed of the soil layers max,...,1 sj = , the 

individual is rooting in (Fig. 3.5). The potential nitrogen uptake uptakeN  [kg(NO3N)/cm²] is then 

defined as: 

( )availabledemanduptake NNN ;min= . (3.33)

A nitrogen reduction factor NR  [ ]1;0∈  can then be calculated by: 


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demand
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demand
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N N

N

N

N
R ;1min . 

(3.34)

Similar to soil water, soil nitrogen resources are also influenced by consumption of all 

individuals. As water is a means of transport for nitrogen uptake, actual soil nitrogen uptake 

uptakeN̂  of an individual is modelled proportionally to its soil water uptake: 

demandNWuptake NRRN ⋅⋅=ˆ . (3.35)

3.3.9.2 Nitrogen fixing species 

Symbiotic nitrogen fixation, e.g. by legumes, is modelled using the following two 

assumptions: 

• Species able to be in symbiosis with rhizobia, which fixes atmospheric nitrogen, never 

compete for nitrogen with other individuals. Thus, they never experience nitrogen 

limitation (reduction factor NR  always equals one). 

• Receiving unlimited nitrogen, individuals have to pay for with carbon. A specific 

fraction %rhiz  of their net primary production NPPis given away to rhizobia. This 

amount of carbon is in turn missing for structural growth or recruitment, but 

productivity is not reduced due to nitrogen limitation. 

Both aspects are considered for nitrogen-fixing species throughout the entire 

simulation. Positive effects of nitrogen-fixing species within a mixture appear as the nitrogen-

fixing species do not take place in the nitrogen competition process and thus, more nitrogen 

resources in soil are available for other individuals. Further, nitrogen-fixing species release 

their nitrogen amount to soil by death. This results in an extra supply of available nitrogen in 

soil (Liu et al. 2011). 
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3.3.10 Respiration 

We consider respiratory costs for maintenance of structural tissue (i.e. shoot and root 

biomass) and for growth of new biomass. Maintenance costs mainr  [g(DM)/day] are modelled 

proportionally to the green shoot biomass green
shootB  [g(DM)] and living root biomass rootB  

[g(DM)]: 

( )root
green
shootTmmain BBfrr +⋅⋅= , (3.36)

where mr  is a constant maintenance respiration rate [1/day] and the factor Tf  accounts for 

changing demands for maintenance respiration with varying air temperature (cf. Sec. 3.3.7). 

Growth respiratory costs are modelled by a constant parameter gr  []. 

 

3.3.11 Net primary production 

An individual’s produced gross primary production potGPP  is used for (a) respiratory 

costs, (b) growth of an individual’s shoot as well as root and (c) reproduction. Losses due to 

maintenance and growth respiration (cf. Sec. 3.3.10) lead to the individual’s net primary 

production NPP [g(DM)/day]: 

( )mainactg rGPPrNPP −⋅−= )1( , (3.37)

where actGPP  [g(DM)/day] represents the actual gross primary production. The potential 

gross primary production (Eq. 3.20) can be reduced according to environmental limitations 

leading to the actual gross primary production: 

potTNWact GPPRRRGPP ⋅⋅⋅= , (3.38)

where WR , NR , and TR  (all [ ]1;0∈ ) account for reductions due to soil water limitations ( WR ; 

Eq. 3.28), soil nitrogen limitations (NR ; Eq. 3.34), and temperature influences (TR ; Eq. 3.21), 

respectively. 

 

3.3.12 Senescence of leaves and root branches 

All individual (i.e. seedlings and reproductive individuals) are subject to tissue 

turnover by partly yellowing of leaves and dying of root branches. The transformation rate 
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from green to yellow (senescent) shoot biomass sen
shootB [g(DM)] is set to the reciprocal value of 

the leaf life span LLS  [days]. Senescent shoot leaves may not photosynthesize any longer (cf. 

Sec. 3.3.6), but may still shade other leaves (cf. Sec. 3.3.4) as they are maintained within an 

individual’s shoot geometry. The transfer of senescent shoot biomass into the litter pool only 

occurs if an entire individual is dying due to mortality (cf. sec. 3.3.3). 

Equivalent to leave senescence, the transformation rate of root branches into dead root 

biomass is set to the reciprocal value of the root life span RLS [days]. Dead parts are not 

maintained within an individual’s root system and geometry, as they are transferred directly to 

the belowground litter pool. 

 

3.3.13 Allocation of net primary production 

For reproductive individuals, the net primary production NPP (Eq. 3.37) is allocated 

to the structural growth of shoot biomass and root biomass and to reproduction as follows:  

• The fraction allocated to shoot growth shootalloc  is a species-specific parameter. 

• The fraction allocated to root growth rootalloc is derived from the fixed species-specific 

shoot-root ratio 1s  (Eq. 3.4): 

            
1s

alloc
alloc shoot

root =  
(3.39)

• The remaining fraction is allocated to reproduction: 

            ( ) NPPallocallocB rootshootrep ⋅−−= 1 . (3.40)

For seedlings, the fraction allocated to reproduction is zero. Hence, the fraction 

allocated to shoot growth is set such that the total net production NPP is used (i.e.

1=+ rootshoot allocalloc ). This modifies the allocation rates as follows: 

1

1

1 s

s
allocshoot +

= . 
(3.41)

The fraction allocated to root growth is then derived as in Eq. (3.39). As soon as an individual 

leaves the seedling’s stage (i.e. its age exceedsrepage ; cf. Sec. 3.3.3), the above-described 

allocation scheme including reproduction is used. 
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3.3.14 Growth of an individual 

The described allocations of net primary production and the senescence 

transformations result in the following changes in the individual’s biomass pools: 

green
shoot

sen
shoot B

LLSt

B ⋅=
∆

∆ 1
 

(3.42)

green
shootshoot

green
shoot B

LLS
NPPalloc

t

B ⋅−⋅=
∆

∆ 1
 

(3.43)

rootroot
root B

RLS
NPPalloc

t

B ⋅−⋅=
∆

∆ 1
 

(3.44)

Based on the change of the biomass pools shootB and rootB , the geometrical state variable of an 

individual are updated (cf. Sec. 3.2). 

 

3.3.15 Management 

Management currently comprises only mowing. If mowing is planned on a specific 

date, the height of all individuals on a patch greater than the cutting height, for example 10 

cm, is decreased leading to a modified height:width ratio. Based on the changed height of an 

individual, its aboveground biomass is also changed accordingly. For the consecutive time 

steps, growth of aboveground biomass only attributes to height growth until the time step at 

which the original height:width ratio is reached again. 

 

3.4 Model inputs and outputs 

3.4.1 Input parameter 

The grassland model Grassmind has 37 parameters in total, whereby five of which 

attribute to technical adjustments. Of the remaining 32 parameters, only nine are not species-

specific. Technical parameters are listed in Table 3.1. In Table 3.2 the geometrical parameters 

and in Table 3.3 all other process parameters of Grassmind are shown. 
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Table 3.1: Technical parameters of the grassland model Grassmind. 

Parameter Unit Description value 

∆t days time step of Grassmind 1 

∆h cm discretization of aboveground space 1 

area cm x cm area expansion of a patch 100 x 100 

∆s cm discretization of belowground space 10 

depthsoil cm soil depth 200 

 

Table 3.2: Geometrical parameters of the grassland model Grassmind. 

Parameter Unit Description 

hmax cm maximum height of an individual 

hw cm/cm height:width ratio of an individual’s encasing cylinder 

fs g (DM)/cm³ shoot correction factor 

fO - overlapping factor 

SLA cm²/g (DM) specific leaf area 

SRL cm/g (DM) specific root length 

r1,r2 - parameters of the rooting depth power-law relationship 

s1 g (DM)/g (DM) shoot:root ratio of biomass parts 

 

Table 3.3: Process parameters of the grassland model Grassmind. Parameters, which are not species-specific, are 

written in bold. 

Process Parameter Unit Description 

Recruitment and emergence 

of new seedlings 

Bseed g (DM) seed biomass 

tem days time until emergence of a 

seedling since sowing 

germ% - germination rate of seeds 

agerep years age at which recruitment 

starts 

hmin cm minimum height of a 

seedling at establishment 

tsow Date initial sowing date 

Mortality LLS days leaf life span (start of 

yellowing leaves) 

RLS days root life span 

life years life span of the individual 

mbasic 1/year basic mortality rate of 

mature individuals 

mseed 1/year mortality rate of established 

seedlings 
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Photosynthesis pmax µmol (CO2)/m²/s maximum gross leaf 

photosynthesis 

 α µmol (CO2)/ µmol (photons) initial slope of light response 

curve 

Photosynthesis 

Competition  

k - light extinction coefficient 

 m - transmission coefficient 

 WUE g (DM)/ kg (H2O) water-use-efficiency 

coefficient 

 NUE g (DM)/ kg (N) nitrogen-use-efficiency 

coefficient 

Competition 

Respiration 

Nmin kg(N)/cm² minimum remaining soil 

nitrogen content per soil 

layer 

nfix yes/no ability for symbiotic 

nitrogen fixation 

rhiz% - fraction of NPP given away 

to rhizobia (symbiosis) 

rm 1/day maintenance respiration 

rate 

rg - growth respiration factor 

Growth allocshoot - allocation rate of NPP to 

shoot growth 

 

External climatic data are needed on a daily basis. For the coupling interface of the 

grassland model Grassmind and the soil model, global radiation should be provided in 

[J/cm²/d], precipitation in [mm/d] and daily air temperature in [°C]. The grassland model 

itself needs a modification of the global radiation as photosynthesis is calculated based on the 

photosynthetic active radiation (PAR) in [µmol (photons)/m²/s]. Therefore, global radiation is 

converted into PAR by assuming that PAR is approximately half of the global radiation. Day 

length and potential evapotranspiration are calculated based on external climatic data 

(Forsythe et al. 1995; Franko et al. 1995). 

Further input parameters comprise management data and soil parameters (for an 

overview of soil parameters cf. Sec. 3.5.1). Management input parameters currently comprise 

only those concerned with mowing like the date of the event and the height, to which the 

sward is cut down. Further management options comprise, for example fertilization (with 

date, amount and type, i.e. organic or inorganic), irrigations (date and amount), ploughing and 

others. 
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3.4.2 Output variables 

Typical output variables of the grassland model Grassmind comprise state variables 

like the number of individuals, the aboveground green and senescent shoot biomass, the 

belowground root biomass, the leaf area index, as well as geometrical characteristics like 

height and coverage. Rates like productivity, carbon sequestration in soil or soil resource 

consumption can also be observed. Different variables can be calculated (a) on the individual-

level, (b) on the population-level as the sum of all individuals per species and (c) on the 

community-level as the sum of all individuals. 

 

3.5 Coupling Grassmind with a soil model 

We coupled the grassland model Grassmind with an already existing soil model. We 

choose the extensively studied model Candy (Franko et al. 1995). For both models, a dynamic 

link library (DLL) was created. Via an interface, the exchange of dynamic variables between 

both models is scheduled. 

 

3.5.1 A brief summary of the soil model 

The simulation model Candy is a one-dimensional soil model simulating the daily 

dynamics of nitrogen and carbon in soil (Franko et al. 1995). Besides, the water and heat 

balance in soil is calculated. It covers different horizons down to a soil depth of 2 m. 

Calculations are based on the division of soil in layers of 10 cm. Soil horizons group soil 

layers of homogenous properties like texture. Table 3.4 gives an overview of the soil 

parameters needed for the parameterization of each soil horizon. The ones marked in grey can 

be derived from others (Maidment 1993). 

 

Table 3.4: Soil parameters of the soil model Candy. 

Description Unit 

Sand content % 

Silt content % 

Clay content % 

Bulk density g/cm³ 

Particle density g/cm³ 

Field capacity Vol% 
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Permanent wilting point Vol% 

Saturated water conductivity mm/day 

 

Soil water dynamics are calculated using a capacity approach, whereby soil 

temperature is simulated using a one-dimensional heat conduction equation (Franko et al. 

1995). For the simulation of the dynamics of carbon in soil, a differentiation between soil 

organic matter (SOM) and primary organic matter (e.g. root tissue, litter or organic fertilizer) 

is made. Soil organic matter (SOM) is in turn divided into active SOM and stabilized SOM, 

which are both included in the carbon turnover process. Soil nitrogen is divided into the 

inorganic compounds nitrate and ammonium.  

Within the soil model Candy, carbon (C) turnover is prioritized before nitrogen (N) 

turnover. Carbon turnover processes are described by first-order kinetics dependent on soil 

moisture, soil temperature and aeration. Nitrogen turnover is derived from carbon turnover 

and C/N ratios of the specific carbon pools resulting in nitrogen-immobilization, nitrogen-

mineralization or no change of the specific nitrogen pools (Franko et al. 1995). 

 

3.5.2 An interface for linking both models 

The interface for scheduling the exchange of important dynamic variables between the 

grassland and soil model is designed and implemented in Delphi using Embarcadero 2010. 

Input parameters for both models as well as climate and management data are organized in a 

Microsoft Access database. The following flow diagram shows the schedule of exchange of 

the dynamic variables of each model via the interface (Fig. 3.6). 
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Figure 3.6: Flow diagram of the interface program showing the scheduled exchange between the grassland 

model Grassmind and the soil model Candy as well as input by the database. Within the second box the 

abbreviation GUI stands for graphical user interface. 
1
climate data from the external database and exported to 

Grassmind: global radiation, precipitation, air temperature, potential evapotranspiration. 
2
soil data exported to 

Grassmind: permanent wilting point, field capacity, soil water content, mineral and ammonium nitrogen content, 

each per soil layer. 
3
mowing information exported to Grassmind: date of mowing and height, to which the 

grassland is mown.  
4
vegetation data exported to Candy: maximum grassland height, mean rooting depth, 

coverage on the patch, uptake of soil water and mineral nitrogen per soil layer, litterfall of green, senescent 

leaves and dead root branches. The lower horizontal grey shadow marks the steps executed in a daily time loop (

tt ∆+ ). Boxes above are processes, which are run only once at the beginning of the program. 
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   Chapter    
 

  

4. Simulating the Structure and Dynamics of Temperate Grasslands 

in the Context of Diversity-Productivity Relationships  

 

Abstract 

The role of species diversity on ecosystem functions like productivity is an important 

field in current research. Several field experiments show positive effects of increasing 

species-richness on the productivity of grasslands. However, simulation studies on these 

relationships are rarely performed. We use the individual-based grassland model Grassmind to 

simulate mixtures of temperate herbaceous species. We parameterize and calibrate the model 

for a selected Central European grass species using published field data. This species acts as a 

reference type for additionally defined species groups. These differ in their characteristics in 

acquiring resources individuals compete for, e.g. light, soil water and soil nitrogen. We 

analyse the role of these species types in 2-species-mixtures under extensive management in 

the context of diversity-productivity relationships. We can reproduce the monoculture 

structure and dynamics of the parameterized grass species well according to density of 

individuals, percentage of ground area covered by the community, maximum height and leaf 

area index of the community. The simulated monocultures and 2-species-mixtures of the 

defined species types show in the mean no effect of diversity on productivity, but for selected 

2-species-mixtures slight positive or even negative effects can be observed. We conclude that 

the individual-based and process-oriented grassland model Grassmind is able to reproduce the 

monoculture structure and dynamics well. Further investigations on the role of certain species 

and their traits in shaping the diversity-productivity relationship are required. 

4.1 Introduction 

Semi-natural grasslands are rich in species diversity. On a local scale the number of 

vascular species can exceed those of tropical forests (Wilson et al. 2012). For resolutions 

smaller than 50 m², semi-natural temperate grasslands of Central Europe, Baltic and Argentina 

under chronic mowing or grazing, provide the highest richness of all vegetation types across 
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the world (Wilson et al. 2012). For example, dry sandy grasslands in Germany show on 1 cm² 

5 species (Wilson et al. 2012; Dengler et al. 2004). In 2007 in Europe about 13.2 % of the 

land surface area has been covered by grasslands (Eurostat Yearbook 2012). Among all 

grasslands mostly semi-dry and dry grasslands or those in the higher mountains provide a 

high species-richness in Central Europe (Ellenberg & Leuschner 2010; Wilson et al. 2012).  

The diversity of grasslands has received increasing interest in the last decades by the 

setup of large biodiversity experiments, for example in the United States of America, Europe 

and Germany (Tilman et al. 2001; Hector et al. 1999; Spehn et al. 2005; Weigelt et al. 2010). 

Those experimental studies show commonly a positive effect of species-richness or functional 

group richness on the aboveground productivity of grasslands (Reich et al. 2012; Spehn et al. 

2005; Loreau & Hector 2001). Even under different management regimes, ranging from no 

fertilization and one cut per year to 200 kg/ha/yr fertilization and four cuts per year, a positive 

effect increasing with species-richness remains (Weigelt et al. 2009). Moreover, those 

experiments with no fertilization show equal or even higher productivity values than those 

with high fertilizer input and frequent mowing (Weigelt et al. 2009). Further benefits of 

species diversity are also demonstrated on other ecosystem functions like carbon sequestration 

in soil and roots (Tilman et al. 2006b).  

Hypotheses have been developed for understanding the underlying mechanisms, which 

induce these effects (Loreau et al. 2001; Loreau & Hector 2001; Kinzig et al. 2002). In 

general, these comprise stochastic selective mechanisms (e.g. sampling; Tilman 1988; Loreau 

& Hector 2001; Loreau et al. 2001; Kinzig et al. 2002) and deterministic complementarity 

mechanisms (e.g. niche differentiation and facilitation; Tilman 1988; Loreau & Hector 2001; 

Loreau et al. 2001; Kinzig et al. 2002). By using the additive partitioning approach as 

proposed by Loreau & Hector (2001), the selection and complementarity effect can be 

investigated independently. A selection effect would be observed if no multi-species-mixture 

exceeds the highest monoculture productivity, thus promoting the relevance of intraspecific 

interactions (Loreau et al. 2001, Loreau & Hector 2001; Kinzig et al. 2002). In contrast, a 

complementarity effect would be observed if the productivity of species exceeds that expected 

from the monoculture performance, thus promoting the relevance of interspecific interactions 

(Loreau et al. 2001; Loreau & Hector 2001; Kinzig et al. 2002). In biodiversity experiment, 

generally both effects are observed. In most experimental studies, a positive complementarity 

effect increasing with species-richness and time (Reich et al. 2012; Spehn et al. 2005; Loreau 

et al. 2001; Loreau & Hector 2001) and a neutral selection effect mainly remaining constant 

over diversity levels and time reveal (Reich et al. 2012; Spehn et al. 2005; Loreau et al. 2001; 

Loreau & Hector 2001). For the BioCON and BioDIV experiments, for example, results can 

be explained by accumulated complementarity in resource use due to increasing functional 

diversity and feedback effects, especially concerning soil nitrogen (Reich et al. 2012).  
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In this study, the individual-based and process-oriented grassland model Grassmind 

(Taubert et al. 2012) is used, which is designed for simulating species-rich temperate 

grasslands including management. It is coupled with the soil model Candy simulating the 

daily dynamics of carbon-, nitrogen- and water-dynamics in soil (Franko et al. 1995). The 

model framework allows investigating the structure and dynamics of temperate grasslands. 

Using published field data of the Jena biodiversity experiment in Germany, we parameterize 

the model for a typical Central European grass species. This species serves as a reference 

type, from which we derive additional species types. We simulate different combinations of 2-

species-mixtures from monocultures. Our analyses focus on the following questions:  

• Can we reproduce the structure and dynamics observed in grassland field experiments 

by using the individual-based simulation model Grassmind? 

 

• How does aboveground productivity change from monocultures to 2-species-

mixtures? 

 

4.2 Material and methods 

4.2.1 The grassland model Grassmind 

We use the individual-based grassland model Grassmind for simulating species-rich 

temperate grasslands (Taubert et al. 2012). The grassland model follows the principles of the 

gap-approach typically applied in forest modelling (Köhler & Huth 2004; Bugmann 2001). 

Within a gap, here called patch, individuals do not have a spatially explicit position, but 

compete for resources equally (Shugart 1998). Resources considered in the model comprise 

light, space, soil water and soil nitrogen. A full description of the grassland model is presented 

in chapter 3.  

To account for the importance of soil resources and dynamics, we couple the grassland 

model with the soil model Candy (Franko et al. 1995). The soil model simulates the daily 

dynamics of water, carbon and nitrogen (Franko et al. 1995) and provides the grassland model 

each day with information on available soil resources. Exchange between the below-ground 

resource availabilities and above-ground vegetation characteristics are managed by an 

interface written in Delphi including both models as dynamic link libraries. 
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4.2.2 Field data and site-specific conditions 

We parameterize the grassland model for the grass species Festuca pratensis, which 

occurs typically in Central Europe (Ellenberg & Leuschner 2010). We choose site 

characteristics like climate, soil properties and management based on a biodiversity grassland 

experiment in Central Germany (Jena Experiment; Jena, Germany, 50°55´N, 11°35´E), for 

which field measurements are published (Weigelt et al. 2010, Heisse et al. 2007, Roscher et 

al. 2004). In the following paragraphs, we present detailed information used for the 

parameterization similar to the field experiments. 

4.2.2.1 Field observations 

In the field, seeds of the monoculture Festuca pratensis had been sown between 11 

and 16 May 2002 and have been observed for six consecutive years (Heisse et al. 2007; 

Weigelt et al. 2010). From the published field measurements, we use the monthly estimated 

coverage of the community on the ground area and number of individual shoots (Heisse et al. 

2007) as well as twice a year measured aboveground biomass, community leaf area index, 

maximum height and community coverage (Weigelt et al. 2010). Repeated measurements are 

only available for aboveground biomass and sward height (Weigelt et al. 2010). Although 

field measurements are available until the year 2008, we exclude data from 2008 because the 

coverage of weeds on the monoculture plot of Festuca pratensis exceeds 70% (Weigelt et al. 

2010). For the years 2002 to 2007, the coverage of weeds had been below 20 % (Weigelt et al. 

2010). 

4.2.2.2 Climatic conditions 

Precipitation, global radiation and air temperature have been measured by two weather 

stations located near the experimental plots of the biodiversity experiment. Data from 

November of 2003 onwards are available from the weather station of the Max-Planck-

Institute (MPI) for Biogeochemistry (MPI for Biogeochemistry, Jena, Germany). As our 

simulation starts on 16 May 2002, the missing climate data from 1 January 2002 onwards are 

substituted by data from the weather station of the Ernst-Abbe-Fachhochschule Jena (FH 

Jena), also located near the experimental plots (Ernst-Abbe-Fachhochschule, Jena, Germany). 

For consistency, we use weather data from the FH Jena for the years 2002 and 2003 and from 

1 January 2004 onwards those of the MPI for Biogeochemistry. Within the measurements 

from the MPI of Biogeochemistry, there are missing values from 17 to 21 May 2007, which 

we also substitute using measurements from the FH Jena. 
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4.2.2.3 Soil properties 

In general, the soil of the Jena Experiment is classified as Eutric Fluvisol (Oelmann et 

al. 2007). Although the area had been agriculturally managed intensively in the last decades, 

an influence of former fertilization is not assumed (Oelmann et al. 2007). From Steinbeiss et 

al. (2008) detailed information on the soil texture in the upper horizon (down to 30 cm) is 

available. Based on this and some assumptions, we estimate soil properties for the 

experimental monoculture plot of Festuca pratensis (Appendix A2). The estimated soil 

attributes of the experimental plots seem to be similar to soil attributes of an experimental site 

in Eastern Germany (Bad Lauchstädt, Saxony-Anhalt, Germany; Franko et al. 1995), for 

which a parameterization of the soil model Candy is already available (Franko et al. 1995). 

4.2.2.4 Management 

The management activities in our simulations are similar to those of the Jena 

biodiversity experiment (Weigelt et al. 2010). In the experimental plots, mowing of the 

grassland to a height of 10 cm and weeding each twice a year has been performed (Roscher et 

al. 2004, Heisse et al. 2007). Within our model, we do not consider weeding. For the first 

year, mowing was done eight weeks and 15 weeks after sowing (assumed exact dates: 11 July, 

24 September; Roscher et al. 2004, Heisse et al. 2007). For the consecutive years (2003 to 

2007), we assume mowing to occur on the fifth of the months, for which mowing has been 

planned (as in some publication mowing is stated as done in early June or early September; 

Weigelt et al. 2010, Roscher et al. 2004). 

 

4.2.3 Simulation studies 

4.2.3.1 Monoculture of Festuca pratensis 

In our simulation experiments, we sow seeds on 16 May 2002 and simulate in total 

100 m² of the monoculture of Festuca pratensis until the end of year 2007. We chose this 

grass species because much information is available from literature. The grassland model 

Grassmind requires in total 39 parameter values, whereby five of them attribute to technical 

adjustments. From the remaining 34 parameter values, 17 of them are available from literature 

for the grass species Festuca pratensis (Appendix A2). The unknown parameter values have 

been estimated by inverse parameterization using (a) information from literature (Hauck et al. 

1997) and (b) field data from the Jena biodiversity experiment as described in section 2.2.1 

(Appendix A2). Thereby, we estimate in a first step maximum leaf photosynthetic rate by 
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reproducing the photosynthetic curve of a single leaf under increasing light conditions (Hauck 

et al. 1997) using the functional approach of Thornley & Johnson (1990). Afterwards, we 

calibrate the remaining parameters of geometry (four parameters), growth (six parameters), 

reproduction (two parameters) and mortality (two parameters) processes stepwise by hand, 

trying to reach the data points of the field measurements. An initial value for the parameter 

estimation and calibration of water-use-efficiency (WUE) was used (mean value for legumes 

1.4, available from Larcher 2001). 

4.2.3.2 Two-species mixtures 

Using the reference of the grass species Festuca pratensis (the species Festuca 

pratensis acts as a reference type) we define additional species groups by changing specific 

physical attributes of the reference type. We investigate on the change of productivity values 

from monocultures to 2-species-mixtures. 

We choose the reference type Festuca pratensis as the first species group and derive 

three additional groups differing in their characteristics to acquire resources (Fig. 4.1). The 

defined species groups show different attributes for rooting depth, total root branch length and 

specific leaf area. Rooting depth of group 2 is increased (by 100 %), so this species group 

receives an advantage compared to the other ones by accessing deeper soil water resources. In 

contrast, the third defined species group has higher specific root length compared to the other 

groups (700 % increase), which increases its ability to take up nitrogen resources. At least, the 

fourth species group is characterized by an increased specific leaf area (10 % increase), which 

advantages this group in absorbing light resources compared to the other species groups. 

Trade-offs within the change of the specific parameters for the groups are not considered. 
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Figure 4.1: Summary of the defined species groups and their change according to the reference species Festuca 
pratensis (“Increase of … by …”). 1Parameter 1r is adjusted for deeper rooting depths to twice as high as the 
reference species. 2Parameter SRLis changed eight times higher than the reference species, which can be 
interpreted as an increase in root surface area, i.e. longer root branches. 3The parameter SLAis increased by 
10% compared to the reference species. 

 

We simulate monocultures and all combinations of 2-species mixtures using the 

defined species groups on 50 m² in total. For each simulation of a mixture the initial number 

of seeds to be sown of the respective species group is calculated based on the germination rate 

and the number of species sown as done in the field experiments in year 2002 (Roscher et al. 

2004, Heisse et al. 2007). By this, a total number of 1000 individuals per patch (1 m²) 

germinating at the beginning of the simulation are ensured with equal abundances of the 

respective species groups at seedlings emergence. Simulations have been performed for the 

period starting at the sowing date in May 2002 until the end of year 2005. Site-specific 

conditions according to climate, soil properties and management activities are chosen as 

explained in section 4.2.2. 

4.2.3.3 The effects of diversity on productivity 

We investigate on the increase of productivity from monocultures to 2-species-

mixtures. Net productivity is taken only from the last simulated year. We calculate 

aboveground net productivity from the simulations similar to observations in the field 

experiments (Weigelt et al. 2010). That means, aboveground biomass is observed twice a year 

directly before a mowing event (assumed exact date: 25 of the respective month). Both 

observations are summed up for the annual aboveground biomass in [g(DM)/m²/yr] to estimate 

the annual net productivity rate.  

 

Increase of Rooting depth Specific root length Specific leaf area

by ... 100 % 700 % 10 %

Group 1

reference

Group 2

soil water 

advantage

Group 3

soil nitrogen

advantage

Group 4

light resource

advantage
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4.3 Results 

4.3.1 Can we simulate the observed structure and dynamics of experimental 

grasslands using the model Grassmind? 

In year 2002, individual seedlings emerge two weeks after sowing with a cover of 

approximately 20 % of the ground area (Fig. 4.2). As seedlings are exposed to a higher 

mortality than a mature individual, within the next two weeks the seedling density and 

community coverage decrease down to approximately 150 individuals per m² and 10 %. The 

remaining individuals reach the stage of reproductive ability at about mid of June (not 

distinguished between vegetative and generative type). During this period, the density of 

individuals and the community coverage are rapidly increasing up to approximately 2700 

individuals per m² and 100 % until the end of August (Fig. 4.2). With an increasing fraction of 

yellowed leaves per individual, reproduction decreases, which results in a decrease of density 

down to 1500 individuals per m² but a constantly remaining community coverage at 100 %. 

By the start of winter (when daily temperatures, day length and daily radiation have been 

decreased), the photosynthetic production of an individual is lowered down and no significant 

changes in the density of individuals and community coverage can be observed anymore. In 

general, we can observe for both simulated dynamics a good match to the field data (Fig. 4.2). 

 

Figure 4.2: Simulation of the parameterized species Festuca pratensis using the grassland model Grassmind 

compared to observation data for (A) density of individuals and (B) community cover of individuals. 

Simulations are run 100 times. Solid green line represents the average of 100 m² and light green shadows behind 

indicate their standard deviation. For the community cover no data from October to December are available. 
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For the following years 2003 to 2007, the leaf area index and grassland’s maximum 

height increase during the vegetation period of favourable climatic conditions and decrease 

according to mowing events (Fig. 4.3). Few field data values cannot be reached entirely, but 

the general trend of the simulated leaf area index of approximately 2 and the dynamics of the 

grassland height ranging between 60 and 10 cm match well the field measurements. 

Community cover of total aboveground biomass, including green and yellowed leaves, in 

general increases in the first year of establishing to 100 % coverage of the ground area and 

remains at that level (Fig. A7.1). Within the growing periods in spring and summer, higher 

variations in total community cover can be observed (Fig. A7.1). As leaves get senescent by 

starting yellowing in late summer, the community cover is decreasing in late summer down to 

approximately 20 % and again increasing in spring (here community cover includes only 

green leaves; Fig. A7.1). Community cover of green leaves reaches maximum values of about 

70 to 80 % (Fig. A7.1). In general, we can also observe good matches between simulated and 

observed community cover despite some small discrepancies, especially in the year 2007 (Fig. 

A7.1). 

 

Figure 4.3: Comparison of the simulated and measured community leaf area index and maximum height of the 

sward for the parameterized species Festuca pratensis. Black points represent the field observations and vertical 

black lines denote the range from the minimum to the maximum value. Solid green line shows the average of 

100 m² simulation and the light green shadow behind denotes the standard deviation. 

 

Simulations of aboveground biomass, including green and yellowed leaves, increase 

since emergence of seedlings up to approximately 200 g dry matter per m² (Fig. A7.2). 

Mowing events rapidly reduce aboveground biomass by approximately 20 to 50 g dry matter 

per m² (Fig. A7.2). During spring and summer biomass is accumulated quickly again, 

reaching around 200 g dry matter per m² with ± 50 g dry matter per m² (Fig. A7.2). Observed 
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and simulated aboveground biomass differ for the years 2003 and 2004, for which extreme 

values of 600 to 800 g dry matter per m² have been measured (Fig. A7.2; Weigelt et al. 2010). 

 

4.3.2 How does aboveground productivity change from monocultures to 2-species-

mixtures? 

By looking into detail in the species-mixture combinations, we can compare the 

annual productivity of monocultures with the respective combinations of the 2-species-

mixtures (Fig. 4.4). Some of the simulated 2-species-mixtures show a higher or lower 

productivity compared to the best or worst monoculture productivity of the respective species 

groups included in the mixture. Nevertheless, the change of productivity from a specific 

monoculture to its corresponding 2-species-mixture is on average below 10 g(DM) per m² and 

year. 

 

Figure 4.4: Comparison of the monocultures with the 2-species-mixtures of the defined species groups for 50 
m². For the monocultures, each species group is represented by a point. For the 2-species-mixtures, each 
combination of the respective two simulated species groups is represented by two semicircles filled with the 
corresponding colours. We indicate three examples of species-mixtures by solid lines (group 1 and 4), dotted 
lines (group 3 and 4) and dashed lines (group 2 and 4). 

 

We select three examples of the 2-species-mixture, for which the mean annual 

aboveground productivity on 50 m² changes compared to both respective monoculture 

productivities (Fig. 4.4). The first selected species-mixture includes the nitrogen favourable 
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group 3 and the light favourable species group 4, which shows an annual productivity 5 

g(DM)/m²/yr higher than the monocultures of group 3 and 10 g(DM)/m²/yr higher than the 

monoculture of group 4 (Fig. 4.4). The second selected species-mixture shows in contrast an 

annual productivity lower than those of the monocultures of the reference species group 1 and 

the light favourable group 4 (Fig. 4.4). This 2-species-mixture is on average 10 g(DM)/m²/yr 

lower than both monoculture productivities (Fig. 4.4). The third selected species-mixture 

includes the deep rooting species group 2 and the light favourable species group 4. The 

mixture shows an annual productivity approximately as high as the monoculture of species 

group 4 (Fig. 4.4).  

4.4 Discussion 

We use the individual-based grassland model Grassmind for simulating monocultures 

and 2-species mixtures. Simulations concerning a monoculture of a typical Central European 

grass species Festuca pratensis as reference type show a good match in comparison with field 

measurements. Based on the reference species, we defined additionally species types and 

carry out investigations concerning the change of annual aboveground productivity from 

monocultures to 2-species-mixtures. 

When parameterizing the grassland model for the reference grass species Festuca 

pratensis some field observations are not exactly reached. Several factors may influence the 

results like (a) uncertainties in the field observations and (b) assumptions of the model. Field 

measurements of the biodiversity experiment are collected in different ways and sub-areas of 

the plots for the consecutive years (Weigelt et al. 2010). For example, different investigators 

contributed measurements of the years 2002 to 2008 working at different temporal and spatial 

scales. Measurement and mowing dates are not documented exactly and thus, only could 

approximately be assumed for the parameterization of Grassmind. Although weeding was 

performed twice a year, the coverage of weeds increased with increasing years of the 

experiment (Weigelt et al. 2010). This aspect, i.e. the invasion of weeds or weeding as a 

management activity, is not included in the grassland model Grassmind, which can cause 

some mismatches with our simulation results.  

Further, not for all input parameters of our simulation model is field data available. A 

number of parameter values are found in literature, but can be based on experiments, which 

differ in design and environmental constraints. Despite this, some plant attributes like the 

specific leaf area or specific root length may change during the lifetime of an individual 

(Schippers & Olff 2000), which we assume to remain constant over time in our grassland 

model. Such variations in input parameters may have an additional influence on the 

simulation results. By performing a local sensitivity analysis of the grassland model 
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Grassmind based on the parameterization of Festuca pratensis, we observe a high sensitivity 

of the shoot allocation rate and geometrical parameters (Appendix A3). Especially, the 

allocation rate of productivity attributed to the growth of aboveground biomass shows a high 

sensitivity for all measurement dates from 2002 to 2007 (Fig. A7.4). Trying to reach the few 

extreme measured biomass values in year 2003 and 2004 would also induce a change of other 

well reproduced values in the years 2005 onwards. Further, increasing the accumulation of 

biomass, e.g. by adjusting the fraction of net productivity allocated to shoot growth, induces 

an increase in leaf area index (Fig. A7.8). This in turn would result in mismatches with field 

data of leaf area (Fig. 4.3 A). Thus, we have not included measurements of the years 2003 and 

2004 for calibration. Inverse parameterization algorithms could be helpful in such cases 

(Grimm & Railsback 2012; Hartig et al. 2011). 

Based on the monoculture simulation of the grass species Festuca pratensis, we carry 

out a simulation study of 2-species-mixtures. In contrast to field observations of the planted 

biodiversity experiments (Loreau & Hector 2001; Reich et al. 2012; Spehn et al. 2005; 

Fargione et al. 2006), our simulations show in the mean no positive effect on productivity 

from monocultures to 2-species-mixtures, but an increased variability of productivity values 

for the 2-species-mixtures. These discrepancies may be caused by the attributes we have 

changed compared to the reference species Festuca pratensis. In measurements of Marquard 

et al. (2009b), it is revealed that the grass species Festuca pratensis is on average 

underyielding in diverse mixtures. That means, the reference species we used for our analysis 

as a basis shows in highly diverse mixtures less productivity than expected from its 

monoculture performance (Marquard et al. 2009b). Marquard et al. (2009b) revealed that the 

positive effect in diversity-productivity relationships is mainly driven by the increasing 

density of overyielding species in mixtures. In contrast to the underyielding species Festuca 

pratensis, which we used, predominantly herbs and legumes turned out to be overyielding 

species (Marquard et al. 2009b). So, our findings of the species-mixtures simulations using 

the defined species groups could suffer from attributes similar to those of Festuca pratensis. 

Those traits we have changed for the defined species groups, cannot explain positive effects in 

diversity-productivity relationships alone. Considering a higher density of additionally 

parameterized herbs and legumes in future analysis may yield positive effects in productivity 

with increasing diversity as more attributes will be presumably different compared to Festuca 

pratensis. Further, we created these types without considering trade-offs explicitly. Trade-offs 

are usually considered within such studies, so that no supercompetitive species is included 

(Kinzig et al. 2002). For example, species with higher specific leaf area may have shorter 

lifespans (Reich et al. 1998). In pursuing future theoretical simulation studies using the 

grassland model Grassmind, such trade-offs should be included. 

We can conclude that our developed individual-based and process-oriented grassland 

model Grassmind is able to reproduce the monoculture structure and dynamics of the grass 
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species Festuca pratensis well. Further parameterization of additional species, especially 

herbs and legumes, substantiate either the modelling approaches of Grassmind or lead to 

required modifications of modelling parts in Grassmind. Concerning our simulation study of 

defined species types, we can conclude that different trends (e.g. positive, negative and 

neutral) in simulated monocultures compared to their corresponding 2-species-mixtures can 

be observed, but in the mean we got no trend for all species combinations. This might indicate 

that observed diversity-productivity relationships cannot be explained entirely by three 

physical functionalities in acquiring resources, species compete for. Future analyses on the 

role of certain species traits in shaping the diversity-productivity relationship in grasslands are 

required. 
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   Chapter    
 

  

5. On the Challenge of Fitting Tree Size Distributions in Ecology3 

 

Abstract 

Patterns that resemble strongly skewed size distributions are frequently observed in 

ecology. A typical example represents tree size distributions of stem diameters. Empirical tests 

of ecological theories predicting their parameters have been conducted, but the results are 

difficult to interpret because the statistical methods that are applied to fit such decaying size 

distributions vary. In addition, binning of field data as well as measurement errors might 

potentially bias parameter estimates. Here, we compare three different methods for parameter 

estimation – the common maximum likelihood estimation (MLE) and two modified types of 

MLE correcting for binning of observations or random measurement errors. We test whether 

three typical frequency distributions, namely the power-law, negative exponential and Weibull 

distribution can be precisely identified, and how parameter estimates are biased when 

observations are additionally either binned or contain measurement error. We show that 

uncorrected MLE already loses the ability to discern functional form and parameters at 

relatively small levels of uncertainties. The modified MLE methods that consider such 

uncertainties (either binning or measurement error) are comparatively much more robust. We 

conclude that it is important to reduce binning of observations, if possible, and to quantify 

observation accuracy in empirical studies for fitting strongly skewed size distributions. In 

general, modified MLE methods that correct binning or measurement errors can be applied to 

ensure reliable results. 

 

                                                 
3 A research paper with analogous content has already been published (Taubert et al. 2013). 
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5.1 Introduction 

Strongly skewed size distributions occur in a wide range of natural systems. Examples 

include search patterns in animals known as Lévy flights (Edwards et al. 2007; Edwards 

2008; Sims et al. 2008; Reynolds et al. 2009; Reynolds et al. 2012), frequency distribution of 

earthquake magnitudes (Gutenberg & Richter 1954) and fire sizes (Clar et al. 1996; Reed & 

McKelvey 2002), and the relation of species abundances to their individual body size (White 

et al. 2007; Enquist et al. 2009; West et al. 2009), in particular, stem size distributions of trees 

(Shinozaki et al. 1964; Shimano 2000; Enquist & Niklas 2001; Muller-Landau et al. 2006; 

Wang et al. 2009). Several studies, for example the self-organized criticality (e.g. applied to 

forest fires), or metabolic theories, focus on the nature of the processes that underlie such size 

distributions and make specific predictions about the functional form and associated 

parameters (Enquist et al. 2009; West et al. 2009; Drossel & Schwabl 1992; Turcotte & 

Malamud 2004; Stegen & White 2008). For example, Enquist & Niklas (2001) propose a 

power-law distribution with a scaling parameter 2=α  for the stem size frequency 

distribution of natural forests (Enquist et al. 2009). 

When testing theoretical predictions, we have to consider that field data contain 

uncertainties. For example, in forest science field data on tree size are typically analysed by 

constructing a stem size frequency distribution which summarizes the number of trees in 

different measured stem diameter classes (Fig. 5.1 a). Such a classification of the measured 

data into diameter classes of a certain width is also called binning of data. Thus, results of 

analyses depend on the class width, whereby in forestry widths of 5 cm or 10 cm are often 

used. Besides the influence of binning, uncertainties in field data can also arise from 

irregularities or errors that occur during the measurement process (Chave et al. 2004). Such 

measurement errors typically lead to a symmetric variation around the true value. Both 

binning and measurement errors change the functional shape of the analysed frequency 

distribution (Fig. 5.1 b, 5.1 c). 
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Figure 5.1: Outline of tree size measurements in forests. (a) In general, the stem diameter of a tree is measured 

at breast height (1.3 m). Each tree in the area of interest is tagged, recorded and measured. Using a specific class 

width (here 1 mm) each measured stem diameter is classified in its corresponding class. This results in a number 

of stems per class and is summarized in a stem size distribution. (b)-(c) Change of the functional form of the 

stem size distribution of stem diameters under binning or including measurement errors. (b) Change of the stem 

size distribution using binning of measured stem diameters with bin widths of 1 cm and 5 cm. (c) Change of the 

stem size distribution adding random measurement errors of standard deviations 1=σ  cm and 5=σ  cm to 

the recorded stem diameters. 

 

Two methods are mainly used to estimate the parameters of size distributions - 

maximum likelihood estimation (MLE) and linear regression. Linear regression can only be 

applied to pre-binned data and thus, leads to serious complications not only in assessing 

parameters (Edwards 2008; White et al. 2008), but also in determining the correct 

corresponding distribution as the best fit using the coefficient of determination r
2
 (Franziska 

Taubert, unpublished data). Instead, MLE is known to be the most accurate approach to date 

as it does not require pre-binned data and thus, shows numerous advantages, for example, low 

bias and low variance of parameter estimates (Edwards 2008; White et al. 2008; Clauset et al. 

2009). Nevertheless, linear regression is still used (Sims et al. 2008; Enquist et al. 2009). 

However, even when MLE is applied, difficulties may also arise when there are observation 

uncertainties in the data. 

In this study we analyse how parameter estimation and the selection of the true 

corresponding frequency distribution are affected by (a) binning and (b) random measurement 

errors. As far as we know, no previous study has systematically examined the effect of 

binning and random measurement errors on MLE parameter estimates and distribution 

selection results for decaying size distributions in ecology. To account for binning and to 

correct random measurement errors, we propose modified MLE methods. Using large virtual 
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data sets produced from three distributions (power-law, negative exponential and Weibull 

distribution) we also test whether potential effects can be corrected by these modified 

methods. We investigate the following questions: 

• Which effects do observation uncertainties have on parameter estimates and on 

determining the underlying frequency distribution when uncertainties are not 

considered in the MLE method? 

 

• To what extent do the two modified MLE methods reduce potential effects in 

parameter estimation? 

 

• Which advantages do the two modified MLE methods show in determining the 

frequency distribution that underlies the observations? 

Finally, we demonstrate the application of the investigated methods on a large field data 

set of measured stem diameters for a tropical forest. 

 

5.2 Materials and methods 

5.2.1 Maximum likelihood estimation 

In this study, we use maximum likelihood estimation (MLE) for inferring parameters 

of frequency distributions. Given a sample { }n

iixx 1==  of observations, the likelihood L  is 

defined as the probability of obtaining these measured field data. Assuming that the data 

points are independent, L  can also be written as the product of the single probabilities 

);( θxp  of each data point depending on unknown parametersθ : 

( )∏
=

=
n

i
ixpxL

1

;);( θθ , (5.1)

where i  is indexing the corresponding observation points. To estimate the unknown 

parametersθ , the likelihood );( θxL  is maximized.  

Different types of assumptions can be made for the probability );( θxp  of a measured 

data point. Most simple is the presumption that this probability is given by an assumed 

frequency distribution );( θxf  without observation uncertainties. Therefore, );( θxp  is simply 

replaced by the assumed frequency distribution );( θxf : 
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( ) ( )θθ ;; xfxp = . (5.2)

In the following, we call this method standard MLE. 

Generally, standard MLE is applied to continuous data. But, field data often show 

inaccuracies. Such data inaccuracies occur either as binning (e.g. rounding measured data) or 

as random measurement errors (e.g. non-systematic uncertainties). Binning binε  equals a 

classification of data into half-open intervals of width 0≥b  cm. Measurement stochasticity 

measε  is typically assumed to be Gaussian distributed with mean 0=µ  cm and standard 

deviation 0>σ  cm. 

To account for binning of data, the multinomial approach is used to describe the 

expected probability of observing a single data point within a class of a certain width b  

(cm).This probability depends on the assumed frequency distribution );( θxf : 

( ) ( )
j

j

j

N
bB

Bq

dxxf
NN

n
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
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




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


⋅
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+

θθ ;
!...!

!
;

1

, 
(5.3)

with the thj  bin denoted as [ )bBB jj +,  and jN  as the number of observations falling in the 

corresponding bin. Altogether there are q  classes, where nN
q

j j =∑ =1
 is the total number of 

observations. A few studies have already followed this approach (Edwards et al. 2007; 

Muller-Landau et al. 2006). Here, we call this MLE which considers binning uncertainties the 

multinomial MLE. 

For correcting measurement errors we use a hierarchical fitting function: first it is 

assumed that the data points originate from the presumed frequency distribution );( θxf  and 

are then perturbed by a random measurement errormeasε : 
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(5.4)

where ix  stands for the thi  observation value, minx  and maxx  correspond to their minimum and 

maximum and ()erf  refers to the Gauss error function. In detail, we assume for the 

measurement error a truncated Gaussian distribution with mean 0=µ  cm and constant 

standard deviation 0>σ  cm. We set the truncation at σ⋅3 , which results in limits of the 

integral (cf. Eq. 5.4) of ( )σ⋅+= 3;min max ixxupper  and ( )σ⋅−= 3;max min ixxlower . As 

before, for the purpose of this paper we refer to this MLE, which amends measurement errors, 

as the Gaussian MLE. 
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5.2.2 Virtual data sets 

A power-law distribution is mostly used to fit strongly skewed frequency distributions 

(Edwards et al. 2007; Sims et al. 2008; Newman 2005). However, a typical question is 

whether a given empirical distribution is really best described by a power-law distribution, or 

whether similar frequency distributions such as a negative exponential distribution also 

provide a good fit. Therefore we concentrate here not only on the power-law, but also on the 

negative exponential distribution and the Weibull distribution. We include the Weibull 

distribution because some studies take it into account to possibly describe a size distribution, 

for example, of tree diameters (Muller-Landau et al. 2006; Bailey & Dell 1973; Rennolls et 

al. 1985). In general, our results will qualitatively apply to most functions that depict strongly 

skewed distributions. 

To test the MLE methods, we generate 1,000 virtual data sets of sample size n  from 

each assumed frequency distribution );( θxf  using the inverse transformation method 

(Appendix A4). Parameters of these distributions are set as follows:  

• scaling parameter 2=α  for the power-law distribution, 

• parameter 5.0=λ  for the negative exponential distribution and 

• parameters 5.0=β  and 5.0=γ  for the Weibull distribution. 

We choose an exponent of 2=α  for the power-law distribution because this value is 

suggested by Enquist & Niklas (2001) for the stem size frequency distribution of natural 

forests. Parameters of the other distributions are chosen in a way that the shape of the 

probability density function is comparable to those of the power-law distribution. We assume 

that these three distributions are truncated in the range of [ ]maxmin ; xx  (Table 5.1). We set 

1min =x  cm and 000,1max =x  cm throughout the evaluations (typical values for tree size 

distributions). 
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Table 5.1: Presentation of the three assumed truncated frequency distributions );( θxf  used in our 

investigations. 

frequency distribution  );( θxf  

power-law distribution  

( )αθ =  

α−⋅ xc  

with ( ) ( ) ( )( )1
max

1
min/1 −−−− −−= ααα xxc  

exponential distribution  

( )λθ =  

{ }xc ⋅−⋅ λexp  

with { } { }( )maxmin expexp/ xxc ⋅−−⋅−= λλλ  

Weibull distribution 

( )( )γβθ ;=  

( ) { }γγ β xxc ⋅−⋅⋅ − exp1
 

with 

( ) { } { }( )γγ ββγβ maxmin expexp/ xxc ⋅−−⋅−⋅=  

 

To assess the accuracy of MLE for imprecise data, we either apply binning to the 

virtual samples or overlay them with a measurement error. Concerning binning, we increase 

the width b  from 1.0min =b  cm to 50max =b  cm with a step size of 0.1 cm. For measurement 

errors we randomly generate values from a Gaussian distribution with 0=µ  cm and 0>σ  

cm and add them to the produced virtual data. The parameter σ  of measε  we use in our 

investigations ranges from 1.0min =σ  cm to 14max =σ  cm increasing with a step size of 0.1 

cm. For the example of stem diameter distributions in forestry, a standard deviation 1=σ  cm 

results in an expected average deviation of 20 % for stem diameters of 5 cm. Finally, we 

evaluate each sample applying the three MLE methods (cf. Eq. 5.2, Eq. 5.3, Eq. 5.4). We also 

vary the sample size n  of the produced virtual data (n  = 100; 500; 1,000; 5,000; 10,000; 

50,000) to check for an effect of sample size on estimation. Due to computational limitations, 

we reduce repetitions and sample size for the Gaussian MLE, for which we only analyse 250 

samples (of sample size n  = 100; 500).  

The calculations result in parameter values for each distribution dependent on binε  or 

measε . We fit the raw and modified virtual data sets by applying standard MLE as well as 

multinomial MLE or Gaussian MLE. This allows us to compare the estimation bias for each 

type of observation uncertainty and offers the opportunity to evaluate the capability of error 

correction (Fig. 5.2). For the binned virtual data we use the centre of the bins as data values 

when evaluated with the standard MLE. 
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Figure 5.2: Scheme of the evaluation procedure of virtual data sets. 

 

To evaluate which of the supposed distributions );( θxf  best represents a specific data 

sample, we choose Akaike weights (Burnham & Anderson 2002). The distribution with the 

highest Akaike weight expresses the data best according to the set of the supposed 

distributions. 

To apply our methods to real-world data, we use data from a forest inventory on Barro 

Colorado Island (BCI) from the year 2000 (Condit 1998; Hubbell et al. 1999; Hubbell et al. 

2005
4
). Stem diameter measurements are recorded as integers (in mm) at breast height (1.3 

m). Here, we report data values in (cm). We only take into account those measured trees that 

are declared as ‘alive’ and as ‘main stems’. We exclude measurements of the smallest possible 

recorded diameter value (1 cm) to avoid distortions due to uncertainty about rounding for the 

smallest values (Muller-Landau et al. 2006). Minimum and maximum measurements are set 

to minx  and maxx , encompassing in total 207,105 observations. Bin width is documented as 

1.0=b  cm. The measurement error has been estimated by repeated measurements of 1,715 

trees (Chave et al. 2004; Condit 1998). The corresponding deviations have been fitted with a 

sum of two Gaussian distributions. The first Gaussian distribution depicts small deviations 

increasing with stem diameter in (cm) (mean 0=µ  cm; Ustandard deviation 

                                                 
4
 The BCI forest dynamics research project was made possible by National Science Foundation grants to Stephen P. Hubbell: 

DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-
9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197, 

support from the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and 

Catherine T. MacArthur Foundation, the Mellon Foundation, the Small World Institute Fund, and numerous private 

individuals, and through the hard work of over 100 people from 10 countries over the past two decades. The plot project 
is part the Center for Tropical Forest Science, a global network of large-scale demographic tree plots. 
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0904.00062.01 +⋅= diametersd  cm), according to 95 % of the observed trees. The second 

Gaussian distribution describes larger ones (mean 0=µ  cm; standard deviation 64.42 =sd  

cm), associated with the remaining 5 % of trees (Chave et al. 2004). 

All evaluations of the virtual and BCI data are performed with R-2.10.0 (R 

Development Core Team 2009). For MLE optimization of the power-law or exponential 

distribution, we employ a combination of golden section search and successive parabolic 

interpolation (Kiefer 1953; Heath 2002); for the Weibull distribution, we choose the Nelder-

Mead algorithm (Nelder & Mead 1965; Nocedal & Wright 2006). In cases of convergence 

difficulties for Weibull distributed data, we change the optimization technique to the L-BFGS-

B algorithm (Nocedal & Wright 2006; Byrd et al. 1995). All optimization algorithms used are 

already implemented in R-2.10.0. 

 

5.3 Results 

5.3.1 Effect of binning and measurement errors 

Increasing bin widths generally affects the parameter estimates of all three considered 

distributions, thus creating remarkable biases (Fig. 5.3 a). Based on representative virtual data 

of sample size n  = 500, only small bin widths of approximately 1<b  cm ensure a mean bias 

of less than 5 % of the true parameter of the corresponding distributions (Appendix A5). With 

incrementing widths of 1>b  cm, nearly all parameters are on average underestimated, except 

the parameter γ  of the Weibull distribution, which is highly overestimated (Fig. 5.3 a). 

Maximum absolute values of the mean bias range from 48 % (α -estimates) to 280 % (γ -

estimates) (Appendix A5). Standard deviations of α -, λ - and β -parameter estimates 

decrease with bin width, whereas the standard deviation of γ -values increases (Fig. 5.3 a). 
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Figure 5.3: Analyses of binned virtual data using different bin widths. We evaluate 1,000 virtual data sets of 
sample size n  = 500 from a truncated power-law, a truncated negative exponential and a truncated Weibull 
distribution. Virtual data are classified into classes of certain bin width (x-axis in cm) before applying standard 
MLE. (a) Effect of binning on parameter estimates of the three investigated distributions. (b)-(d) Effect of 
binning on Akaike weights supposing three distributions (power-law, negative exponential and Weibull 
distribution) for (b) power-law distributed virtual data, (c) negative exponentially distributed virtual data and (d) 
Weibull distributed virtual data. The highest Akaike weight determines the best fit of a frequency distribution to 
the data. Solid lines represent the mean values and shaded areas show the standard deviation (of 1,000 calculated 
values). 

 

Random measurement errors included in the virtual data sets with 500 values also 

have substantial effects on parameter estimates (Fig. 5.4 a). For α -, λ - and β -estimates the 

mean parameter value is underestimated (again, except for the parameterγ ). Significant 

effects already start at a small measurement error of 1.0≈σ  cm with a mean bias of 

approximately 5 % of the true parameter value (Fig. 5.4 a, Appendix A5). Absolute mean 

biases reach their maximum in the range between 37 % (α -estimates) and 110 % (γ -

estimates) (Appendix A5). Standard deviations of parameter estimates show similar trends as 

was observed for binned data. 
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Figure 5.4: Analyses of virtual data including different levels of measurement errors. We evaluate 1,000 virtual 
data sets of sample size n  = 500 from a truncated power-law, a truncated negative exponential and a truncated 
Weibull distribution. An error value generated from a Gaussian distribution with mean 0=µ  cm and an 
assumed standard deviation σ  (x-axis in cm) is added to each virtual data point before applying standard MLE. 
(a) Effect of random measurement errors on parameter estimates of the three investigated distributions. (b)-(d) 
Effect of random measurement errors on Akaike weights supposing three distributions (power-law, negative 
exponential and Weibull distribution) for (b) power-law distributed virtual data, (c) negative exponentially 
distributed virtual data and (d) Weibull distributed virtual data. The highest Akaike weight determines the best fit 
of a frequency distribution to the data. Solid lines represent the mean values and shaded areas show the standard 
deviation (of 1,000 calculated values). 

 

Binning strongly affects the correct determination of a power-law distribution. Only 

for small bin widths (< 0.67 cm) can the correct distribution be identified using Akaike 

weights (Fig. 5.3 b, Appendix A5). Thereby, the distribution with the highest weight best 

represents the data with regard to the set of the three supposed distributions. For widths above 

this threshold, an increasing chance of selecting a Weibull distribution occurs instead (Fig. 5.3 

b). Surprisingly, this effect is not improved by increasing the sample size (Appendix A6). 

Looking at exponentially distributed data, the true distribution cannot be distinguished from 

the Weibull distribution with high certainty even when the data are not binned. For bin widths 

below approximately 0.91 cm the probability of correct identification is on average higher 

than 50 % (Fig. 5.3 c, Appendix A5). Above this threshold, the probability of selecting a 

Weibull distribution instead increases strongly. Again, this problem is not solved by increasing 

the sample size (Appendix A6). Binning of Weibull distributed data does not influence the 

determination of the correct distribution over a large range of bin widths (Fig. 5.3 d, Appendix 

A5). But, for bin widths between approximately 11 cm and 15 cm there is a small chance of 
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wrongly selecting an exponential distribution. With increasing sample size, this small 

probability of false selection decreases (Appendix A6). Note that the Weibull distribution is 

more flexible than the other two as it includes one additional parameter. 

If we include measurement errors in the raw data, the determination of the correct 

distribution using Akaike weights based on the standard MLE method shows different results 

than for binning (Fig. 5.3.1.2 b, c, d). Only for small measurement errors of 14.0<σ  cm can 

a power-law be identified correctly by looking at the mean Akaike weights (Fig. 5.4 b, 

Appendix A5). For assumed standard deviations σ  greater than this threshold, a steeply 

increasing probability of determining a Weibull distribution is observed. An exponential 

distribution can only be detected for a small measurement error of 18.0<σ  cm (Fig. 5.4 c, 

Appendix A5). Weibull distributions are in most cases correctly identified, except for very 

large measurement errors ( 12≈σ  cm) (Fig. 5.4 d, Appendix A5). At this value, the chance of 

selecting an exponential distribution increases. Similar effects can be observed for the data 

sets with higher sample size (Appendix A6). 

 

5.3.2 Performance of modified MLE methods 

Using multinomial MLE, the negative effects can be reduced to a large extent (Fig. 5.5 

a, Appendix A5). For the entire range of investigated bin widths, a significantly lower mean 

bias of α -, β - and γ -parameter estimates can be observed not exceeding a mean bias of 9 % 

of the corresponding true parameter value (Appendix A5). For λ -estimates binning correction 

fails only for high widths (> 11 cm, Fig. 5.5 a). However, it reaches a maximum absolute 

mean bias of 59 % of the true λ -value, which is still smaller than for employing standard 

MLE (Appendix A5). Standard deviations of the parameter estimates increase with increasing 

bin width for nearly all parameters, except forλ , which decreases (Fig. 5.5 a). 
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Figure 5.5: Effects of binning and random measurement errors on parameter estimation using different MLE 
methods. (a) MLE including binning (multinomial MLE) and (b) MLE accounting for measurement errors 
(Gaussian MLE). We evaluate virtual data sets of sample size n  = 500 from a truncated power-law, a truncated 
negative exponential and a truncated Weibull distribution. Solid lines represent the mean estimates and shaded 
areas show the standard deviation (of (a) 1000 values and (b) 250 values). (a) Effect of binning on parameter 
estimates. Virtual data are classified into classes of certain bin width (x-axis in cm). (b)  Effect of random 
measurement errors on parameter estimates. An error value generated from a Gaussian distribution with mean 

0=µ  cm and an assumed standard deviation σ  (x-axis in cm) is added to each virtual data value. 

 

For data overlaid with a measurement error, the Gaussian MLE provides significantly 

better results than the standard MLE (Fig. 5.5 b). The mean bias remains below 3 % of the 

true α -, β - and γ -parameter (Appendix A5). For a large range of measurement errors (

9.9<σ  cm), λ -estimates are within the 5 % mean bias threshold. But for increasing errors of 

9.9>σ  cm, also the Gaussian MLE produces a higher mean bias, reaching up to 14 % of the 

true λ -parameter value (Appendix A5). 

 

5.3.3 Determination of the correct frequency distribution 

The identification of the underlying distribution with MLE including observation 

uncertainties (multinomial MLE and Gaussian MLE) shows a significant improvement 

compared to standard MLE (Fig. 5.6). An underlying power-law or Weibull distribution is 

always correctly determined (Fig. 5.6 a, c, d, f). For exponentially distributed data, the correct 

distribution is identified with at least 50 % probability for a large range of bin widths ( 27<b  
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cm, Appendix A5). Above this threshold, Akaike weights favour a power-law distribution (Fig. 

5.6 b). Concerning measurement errors, the exponential distribution is identified for all 

measurement errors ( 141.0 ≤≤ σ ) in the range of our investigations (Fig. 5.6 e). An 

increment in sample size has considerable positive effects for both modified MLE methods 

(Appendix A6). 

 

 

Figure 5.6: Effect of errors on Akaike weights for the correct determination of the underlying distribution. In 
each row virtual data sets of sample size n  = 500 which originate from the three truncated distributions (power-
law, negative exponential and Weibull distribution) are evaluated. Weights are calculated supposing these 
distributions (power-law, negative exponential and Weibull distribution) with (a)-(c) multinomial MLE and (d)-
(f) Gaussian MLE. The highest Akaike weight determines the best fit of a frequency distribution to the data. (a)-
(c) Effect of binning of virtual data sets with used bin width (x-axis in cm) on Akaike weights. (d)-(f) Effect of 
random measurement errors added to the virtual data sets on Akaike weights, whereby errors are Gaussian 
distributed with mean 0=µ  cm and assumed standard deviation σ  (x-axis in cm). Solid lines represent the 
mean of Akaike weights and shaded areas show the standard deviation (of (a)-(c) 1000 values and (d)-(f) 250 
values). 
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5.3.4 Application: Stem size distribution of a tropical forest 

We now employ the investigated fitting methods on forest inventory data, here on 

measured stem diameters of a tropical rainforest (207,105 observations). We apply standard, 

multinomial and Gaussian MLE to the field data supposing a truncated power-law, a negative 

exponential and a Weibull distribution (Table 5.1). For comparison, we also estimated (using 

algorithms implemented in R-2.10.0) the parameters of (a) a truncated power-law distribution 

with linear regression on log-log axes, (b) a truncated negative exponential distribution with 

linear regression on a logarithmic y-axis of stem frequencies, and (c) a truncated Weibull 

distribution with nonlinear regression on log-log axes. 

MLE parameter estimates do not differ significantly according to the different methods 

used (whether observation uncertainty was accounted for or not). For each supposed 

distribution according to the different methods (in brackets from left to right standard MLE, 

multinomial MLE, Gaussian MLE) estimates are ( )93.1;92.1;92.1=α ,

( )247.0;247.0;247.0=λ , ( )51.2;49.2;48.2=β  and ( )283.0;284.0;285.0=γ . These 

results fit well to our findings where we showed that for a width of 1.0=b  cm no significant 

difference in the mean estimates using standard or multinomial MLE is expected. Additionally, 

we showed that for small measurement errors of 1.0=σ  cm only small biases are expected 

using standard MLE compared to Gaussian MLE. The stem diameter of 80 % of the BCI data 

is less than or equal to 5.8 cm and thus, a small estimated measurement error of less than 

1.0≈σ  (with 95 % probability) is expected. 

Results of regression methods differ significantly from those of the MLE methods 

(Appendix A6). Regression provides the following estimates of parameters compared to 

standard MLE (in brackets from left to right regression, standard MLE): ( )92.1;14.2=α , 

( )247.0;037.0=λ , ( )48.208.1=β  and ( )285.0;352.0=γ . Additionally, linear regression 

favours the truncated power-law distribution and standard MLE the truncated Weibull 

distribution. The residual standard error or determination coefficient r² used within regression 

does not always reliably determine the underlying distribution (Franziska Taubert, 

unpublished data). 

 

5.4 Discussion 

Maximum likelihood estimation (MLE) has been recommended for fitting size 

distributions by several authors (Edwards 2008; White et al. 2008; Clauset et al. 2009). In this 

study, we investigated the effects of different types of uncertainties on the estimation 
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procedure using MLE. We focused on the bias of parameter estimates and on the reliability to 

determine the underlying frequency distribution using Akaike weights. Our results show that 

using MLE without correcting uncertainties does not solve the main problems arising when 

estimating parameters of strongly skewed size distributions. This method is appropriate as 

long as uncertainties in the observations do not have a great influence. However, even when 

the underlying ecological process can be described well by a strongly skewed frequency 

distribution, random errors and rounding in the data acquisition process can lead to biased 

parameter estimates and falsely selected distributions. In these cases, we recommend the use 

of modified MLE methods for including observation uncertainty. 

A problem that arises in practical applications that we have not addressed in this study 

is the estimation of the truncation parameters[ ]maxmin ; xx . In particular, it is known that the 

definition of minx  influences the fitting results (Clauset et al. 2009). Also the upper truncation 

parameter maxx  has an effect on the fitting. One could estimate both parameters in such a way 

that the interval [ ]maxmin ; xx  covers only a section of the entire empirical size distribution. 

Fitting only such a section would lead to high biases in the estimation of parameters and in the 

selection of the best fitting frequency distribution. Fitting segments of size distributions 

caused either by estimating a narrow interval [ ]maxmin ; xx  or by assuming a composite function 

to describe the size distribution, are not further discussed here. Related investigations 

concerning binning can be found elsewhere (Virkar & Clauset 2012).  

In our investigations we used Akaike weights, based on the Akaike Information 

Criteria (AIC), to select the best fitting frequency distribution from our three assumed 

skewed, decaying distributions. The AIC may cause some difficulties, for example, when data 

values are not independent of each other (Kieseppä 1997). Additionally, the AIC does not 

consider sample size in its calculation. Nevertheless, the AIC is an often used criterion for 

model selection in ecological studies. Please notice also, the AIC is only a criterion for model 

selection, but does not ensure that the best fitting frequency distribution is in fact the true 

underlying one. For this purpose, hypothesis tests are recommended. 

Regarding the types of uncertainties and their strength (i.e. bin width b  and 

measurement errorσ ) we assume them to be known in our study. However, in practice this 

may often not be the case. Random measurement errors can be detected in the field by 

repeated measurements (Chave et al. 2004; Condit 1998). However, errors may also be hidden 

in such repeated measurements, similar or different to those in the first observations. For 

example, similar errors might occur due to irregularities in the observation object. In general, 

it cannot be guaranteed that all possible sources of random errors are captured correctly or 

that each can be assumed to be Gaussian distributed. 
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In practice, both systematic and stochastic observation uncertainties will often appear 

together, also with differing relative importance. For example, field measurements of tree 

diameter with high measurement precision may be more affected by stochastic measurement 

errors. On the other hand, if field observations are measured using pre-defined bins with a 

width of, for example, 5 cm or 10 cm, the effects of binning are expected to be greater than 

those of random measurement errors. If equally great effects of these two observation 

uncertainties are present, it might be necessary to consider both. Therefore, another modified 

MLE method should be created to include both uncertainties. Further investigations are 

needed to determine whether such an MLE method would show an advantage over those 

MLEs that correct only one type of observation uncertainty. 

Nevertheless, these limitations do not alter our general findings, namely, that 

uncertainties in the observation process lead to serious difficulties in the correct determination 

of the underlying frequency distribution and in the estimation of its parameters. This makes 

comparing inferred parameters across data sets or with ecological theory difficult. Modified 

MLE methods that are discussed in this paper lead to significantly better parameter estimates 

and more reliable identifications of frequency distributions underlying size distributions. 
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6 

 

   Chapter    
 

  

6. Discussion and future perspectives 

 

In the following, we discuss the presented results in this thesis. We address three main 

aspects: (i) developed approaches and performed analyses, (ii) the main results of the thesis 

with respect to our main research objectives and (iii) future perspectives and research 

questions. 

6.1 The approach developed in this thesis 

6.1.1 The developed grassland model Grassmind 

Based on the review of grassland models, we developed a new individual-based and 

process-oriented grassland model for temperate herbaceous communities. Several simplified 

components of our model allow extensions, which could in turn suffer from increased 

complexity. 

One main concept of the developed individual-based grassland model Grassmind is 

the assumption that competition acts spatially implicit on a patch. This approach is 

extensively applied in forest modelling, but represents a novelty for grasslands. In forest 

models, for which radiation is the predominant resource to compete for, the patch size 

corresponds to the projected crown area of the largest tree (Shugart 1998; Köhler & Huth 

2004). In contrast, temperate grasslands are prioritized more on belowground resource 

competition like for soil water and soil nutrients rather than aboveground for light (Ellenberg 

& Leuschner 2010; Coffin & Urban 1993). The area of the influence aboveground can differ 

from that belowground. By choosing too small patch sizes, light competition may be modelled 

correctly, but overestimate belowground resource competition. In contrast, too large patch 

sizes would overestimate competition for light resources in grasslands. Integrating the 

different spatial resolutions for above- and belowground competition in the current Grassmind 

model version is possible by weighting the cumulative community leaf area index in the light 

climate calculations in Eq. (3.14) of the model description in chapter 3. In the current version 

of the grassland model Grassmind, we do so by using a weighting factor of 1/9, which can be 
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interpreted as subdividing a 1 m x 1 m patch into nine smaller sub-patches of homogenous 

leaf area distribution, only affecting aboveground light competition. 

Another characteristic of our new model is the inclusion of competition for light, soil 

water and soil nutrients on the individual-level and for space on the community-level. For 

each individual, reduction factor for light, water and nitrogen could be calculated as the ratio 

between actual uptake and potential demands. These individual-based reduction factors in 

combination with the size structure of the community can be used to estimate the relative 

strength of intra- and interspecific competition for light, water and nitrogen. For example, in a 

two-species-mixture, one species consisting of many seedlings, which shows low reduction 

factors (that means, strong reduction of potential photosynthesis), can be expected to grow in 

biomass less than a monoculture. This would indicate suppression by a dominating species, if 

the second species consists of a higher fraction of mature individuals with high reduction 

factors (that means, less reduction of potential photosynthesis). In this situation, individuals of 

the second species in turn, will have a higher biomass growth than a monoculture. In this case, 

intraspecific interactions are more intense than interspecific ones (Kinzig et al. 2002). 

However, the above-mentioned example is time dependent. The strength of intra- and 

interspecific interactions can change within time, thus resulting in different shapes of the 

diversity-productivity relationships.  

We built our model as simple as possible in relation to our research questions. 

Nevertheless, we believe that some simplified model parts can be extended. One potential 

extension includes the relationship between the height and width of an individual. We use in 

our grassland model a simple ratio between height and width remaining constant over time. 

Instead, height allometry of herbaceous species can be described using a power-law, for which 

plant height scale with stem diameter to the power of 1.53 (Niklas 1995). Another example 

comprises the allometric relationship between aboveground shoot biomass and belowground 

root biomass, which we simplified by using only a ratio (shoot-root ratio). However, using an 

allometric relation, with an exponent different from one, includes dynamic changes in 

allocation rates according to the individual’s growth. In addition, environmental conditions 

could also cause changes in allocation patterns (Müller et al. 2000; Reich et al. 2003) or other 

species traits (Schippers & Olff 2000). Increased allocation of net productivity to the 

belowground root system can be favoured in times of drought or low nutrient availability to 

ensure sufficient growth (Müller et al. 2000; Reich et al. 2003). This aligns with aspects of 

adaptive plant strategies, for which currently no general rules are available. Another aspect 

comprises simplified assumption concerning recruitment of new individuals. In our current 

model version of Grassmind, we do not distinguish between generative and vegetative 

reproduction. Further, dispersal of seeds to neighbouring patches is not included. We currently 

consider new individuals to germinate on the same patch as their mother plant. Additionally, 

we do not include a persistent seed bank. Seeds, which do not germinate are assumed not to 
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be viable to germinate ever. However, for simulation studies on a regional scale or including 

disturbances like wildfire, the integration of dispersal kernels as well as a persistent seed bank 

would be required.  

Adaptive behaviour of human actions, i.e. flexible management strategies, is another 

interesting possibility for an extension. Currently, dates of management actions have to be 

planned before the start of the simulation. However, for example mowing may be planned 

dependent on the further processing of the harvested material. For example, mowing 

grasslands, which are needed for combustion, would not be planned for rainy days. 

Management strategies could be timed dynamically based on structural characteristics of the 

vegetation (e.g. ratio of green to dead leaves) or on environmental conditions (e.g. days of low 

precipitation probabilities). 

 

6.1.2 Simulation studies using Grassmind 

We simulated multi-species-mixtures using the developed grassland model Grassmind 

and defined species groups. The creation of these types is based on the parameterized grass 

species Festuca pratensis. 

During the process of parameterization and calibration of Festuca pratensis, we had 

difficulties in matching all field observations with simulation results. These mismatches can 

be traced back either to (a) simplified modelling approaches in Grassmind or to (b) 

inconsistencies in the field observations. For example, field data of aboveground biomass of 

years 2003 and 2004 are three to four times higher than in the other years. The attempt to 

reach these extreme biomass values results in mismatches of other well reproduced data 

points, especially concerning community leaf area index. Techniques like pattern-oriented 

modelling or inverse parameterization tools can be helpful in such cases (Grimm & Railsback 

2012, Hartig et al. 2011). Their use could reveal whether current modelling approaches in 

Grassmind have to be modified or whether field observations may include uncertainties.  

The species types we defined for our simulation studies in chapter 4 are based on our 

selection of specific traits concerning different strategies in acquiring resources and compete 

for them with other individuals. For example, we only changed the parameters of rooting 

depth, specific root length and specific leaf area, which are important for the groups to acquire 

soil water, nutrient and light resources. All other parameters remain constant for all functional 

groups based on the species Festuca pratensis. However, this grass species performs in field 

experiments of multi-species-mixtures worse than expected from their monoculture 

performance – denoted as underyielding (Marquard et al. 2009b). Parameterizing other 
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species like herbs or legumes and using them as reference type could result in different shapes 

and effects in the diversity-productivity relationship. Besides this aspect, no trade-offs 

between physiological attributes of the competing species are considered in these 

investigations. Nevertheless, species show in experimental observations trade-offs, for 

example between seed size and lifespan or between specific leaf area and lifespan (Ryser & 

Urbas 2000). 

 

6.1.3 Methods for analysing stem size distributions of forests 

We explored the maximum likelihood approach for estimating unknown parameters of 

distributions, which describe stem size distributions of natural forests. Virtually produced data 

of three decaying distributions, i.e. the power-law, the negative exponential and the Weibull 

distribution, were analysed including binning and random measurement errors.  

During the analyses, we had to make some assumptions concerning characteristics of 

the chosen distributions. For example, we assumed that the minimum and maximum stem 

diameter values, i.e. xmin and xmax, are known before the analysis. However, in practice these 

values can only be estimated from the minimum and maximum measurement values. Further, 

the extent of the measurement error is also assumed to be known during the analyses. The 

width of stem diameter classes of binning can usually be estimated quite easily from the 

measurements. However, uncertainties in the measurements (here the measurement of stem 

diameters) can only be estimated by repeated measurements (Chave et al. 2004). In our 

analyses, we modelled measurement uncertainties by a Gaussian distribution with a mean of 

zero. In practice, differences in repeated measurements are often fitted by Gaussian 

distributions (using regression analysis or maximum likelihood estimation). Biased 

estimations occurring within the analyses of errors could then propagate in the analyses of 

stem size distributions (Chave et al. 2004). For example, estimating a lower standard 

deviation of a Gaussian distributed error from repeated measurements could lead again to 

biased estimates in the analysed stem size distribution (i.e. in case of applying Gaussian 

MLE). 

Another issue for discussion comprises the separate consideration of the systematic 

and random errors. In practice, both errors can occur to different extents. For example, when a 

diameter class width of 20 cm is chosen, an estimated random measurement error of ± 0.1 cm 

is less influencing. In this case, maximum likelihood estimation considering binning in the 

analyses would reduce the bias in the estimates to a greater extent. However, the 

independence of both uncertainties cannot be excluded. 
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6.2 Main results 

From our review, we have concluded that the already existing grassland models are 

only partly suitable for investigating and understanding diversity-productivity relationships in 

grasslands. Some modelling approaches within the existing grassland and vegetation models 

provide good representation of specific processes. Some of these modelling approaches have 

been followed within our newly developed grassland model Grassmind. 

Parameterization of the grassland model Grassmind for a typical Central European 

grass species shows good matches with density of individuals, community coverage, 

maximum sward height and community leaf area index. Some discrepancies between 

observed and simulated aboveground biomass values in the year 2003 and 2004 are present. 

Further investigations have to be carried out on whether either modification in Grassmind is 

required or field data include measurement uncertainties. 

A simulation study of 2-species-mixtures based on the parameterized species has been 

performed in the context of observed diversity-productivity relationships of large biodiversity 

experiments. The study has been carried out for four defined species types, which differ only 

in the main characteristics defining their competitive strength in resource acquisition and 

competition. Simulating the aboveground productivity for monocultures and 2-species-

mixtures show in the mean no significant trend, but can reveal increases for selected 2-

species-mixtures. 

Regarding the analysis of stem size distributions in tropical forests using maximum 

likelihood estimation, we found by using virtually created field data set that the bias of the 

estimated parameter increases more than linear with increasing uncertainties. That means, for 

binning we observed a significant bias of the estimated parameter for diameter class widths 

greater than 1 cm, whereby for random measurement errors bias of the estimated parameter is 

already present for random errors of 0.1 cm. Moreover, we noticed that both uncertainties- 

either binning or random errors, complicate the detection of the true underlying distribution 

using Akaike weights and lead towards the detecting a wrong distribution. By including such 

uncertainties in the maximum likelihood method, we can show that negative effects can be 

reduced to a large extent for both – parameter estimation and detection of the underlying 

distribution. An exemplarily application of the developed and examined methods to field 

measurements of a 50 ha Panamanian forest on Barro Colorado Island underpin our findings. 
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6.3 Outlook 

6.3.1 Future investigations using the grassland model Grassmind 

The developed model offers the possibility of important theoretical investigations. It 

would be important to know how a species mixture (and the species’ trait mixture) influences 

the shape of the diversity-productivity relationships. The question raises whether negative or 

neutral diversity-productivity relationships are possible and which species traits, species 

compositions, climatic conditions, soil properties or management activities are responsible for 

corresponding results. Further, by applying pattern-oriented analyses, we can narrow the 

range of species traits, which are able to create observed diversity-productivity relationships. 

We can link calculated biodiversity effects (complementarity and selection using the additive 

partitioning method) with the structure and dynamics, observable for the whole year rather 

than only two measurement days per year. By this, detailed examinations on the underlying 

mechanisms responsible for experimentally observed findings can be carried out. 

Besides such theoretical analyses using defined species types, a transfer to practice is 

of main relevance. As already proposed in the work of Tilman et al. (2006b), mixtures of 

perennial grass species have the potential to substitute fossil energy resources (or 

monocultures of annual crops). In this context models like Grassmind can be a useful tool. 

Within the ‘Energiewende’ debate, policy claims that energy demands in Germany have to be 

fulfilled predominantly by renewable energy sources until 2050 (BMU). This entails also 

challenges in the reliable and steady supply. Soil is differential across the German landscape 

and climate shows intra- and inter-annual fluctuations. The appropriate selection of species 

composition for the planted mixtures as well as management options applied for cultivation 

play an important role for the achievable potentials for biomass production. Using the 

grassland model Grassmind, the spatial and temporal potentials of biomass production by 

multi-species-mixtures can be explored. Possible questions would be: 

• Which species should be selected for planted grassland mixtures to obtain high annual 

productivity at a specific site?  

• Are productivity potentials of these species mixtures temporally stable concerning 

changing climatic conditions?  

• Can we select species mixture, which even can profit from climate change?  

• Which management options are best for achieving highest harvest yield? 

Besides the assessment of productivity of various multi-species-mixtures, other 

aspects like availability of land, conflicts with food production, technics for the conversion of 

herbaceous biomass to energy products, cultivation and transportation costs are influencing 

the use of bioenergy. Ecological functions (e.g. soil formation or nutrient cycling) represent 
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ecosystem services, which can either (a) influence productivity of the planted grassland 

mixture positively later in time or (b) provide a buffer mechanism on a regional scale. Serving 

as a buffer can be considered, for example, either (a) spatially as part of a regional landscapes 

composed of different cultivations (e.g. together with wheat or rapeseed) or (b) temporally on 

a local scale as part of  a crop rotation.  

Besides selecting herbaceous species typically occurring in Central European 

grasslands, new substrates or different forms of cultivation systems could be included. For 

example, perennial energy crop like switchgrass or miscanthus become increasingly relevant 

in the context of biomass production for energy supply (McKendry 2002; Tilman et al. 

2006b). Monocultures of miscanthus are in terms of productivity similar to maize and can 

provide up to 30 t dry matter per hectare and year, but they show also positive environmental 

effects as semi-natural grasslands show (low input of fertilizers and pesticides; FNR). In 

addition to such new plants, different forms of cultivations can possibly provide new 

perspectives. Using monocultures of annual or perennial crops like maize or miscanthus 

undersown by highly diverse mixtures of herbaceous grassland species offers new options 

(e.g. intercropping), which deserves further investigation. Questions rise like:  

• Which energy crops perform best undersown with particular herbaceous species 

mixtures under given site conditions?  

 

• Which crops and herbaceous species sown together complement or even facilitate each 

other?  

 

• In which system do crops and herbs interfere physically with each other? 

 

6.3.2 Maximum likelihood estimations of size distributions 

Possible applications of MLE for analysing size distributions to the ecosystem 

structure of grasslands raise at first the question whether functional relationships of size 

structures as assumed for tropical forests can also be observed in grasslands. In contrast to 

forests, measurements in species-rich grasslands are often restricted to aggregated attributes 

on the population- or community-level recorded once or twice per year. For example, to 

estimate the aboveground biomass of the community, the entire vegetation is cutted, dried and 

weighted. Conversely, observations on the individual-level are difficult as a clear definition of 

an ‘individual’ for species of various growth forms can differ. Nevertheless, a few studies 

recorded the growth of individuals in a grass sward, for example by measures of individual 
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height or shoot biomass (Nagashima & Terashima 1995; Turner & Rabinowitz 1983; 

Marquard et al. 2009b).  

Histograms similar to the stem size distribution of forests can be created for 

individual-based measurements of height, aboveground biomass or even diameter of a plant’s 

stem in grasslands (Nagashima & Terashima 1995; Turner & Rabinowitz 1983). Factors 

influencing the individual growth characteristics have been tested in small-scale grassland 

experiments. Experiments comprise different initial sowing density, specific crowding 

conditions and fertilization (Nagashima & Terashima 1995; Turner & Rabinowitz 1983). 

These demonstrate results of significant differences in the shape of histograms. For example, 

height distribution shifted from bimodal shapes at sowing densities of 400 plants per m² to L-

shaped distributions at sowing densities of 800 to 1200 plants per m² (Nagashima & 

Terashima 1995). Currently, analyses comprise only summary statistics like skewness and 

kurtosis of the respective histogram (Nagashima & Terashima 1995; Turner & Rabinowitz 

1983). Regression analyses or maximum likelihood estimation, as they are applied to stem 

size distributions of forests, are not yet common practice for grasslands. By using simulations 

of the grassland model Grassmind, we can have easily access to the height and aboveground 

biomass of individuals. Applying our developed methods of stem size distributions in forest to 

height and biomass distributions in temperate grasslands can reveal interesting findings, 

which could in turn also be linked to simulated diversity-productivity relationships. 
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7. Appendices 

 

Appendix A1 List of reviewed vegetation models 

Grassland Models 

GEM 

Hunt HW, Trlica MJ, Redente EF, Moore JC, Detling JK, Kittel TGF et al. Simulation model  

for the effects of climate change on temperate grassland ecosystems. Ecol Model 1991; 

53:205-46. 

 

HURLEY PASTURE MODEL 

Thornley JHM, Verberne ELJ. A model of nitrogen flows in grassland. Plant Cell Environ  

1989; 12:863-86.  

Thornley JHM, Cannell MGR. Temperate Grassland Responses to Climate Change: an  

Analysis using the Hurley Pasture Model. Ann Bot 2000; 80:205-21. 

Thornley JHM. Grassland dynamics: an ecosystem simulation model. CAB International;  

1998. 

 

LINGRA 

Schapendonk AHCM, Stol W, van Kraalingen DWG, Bouman BAM. (1998) LINGRA, a  

sink/source model to simulate grassland productivity in Europe Eur J Agron 9:87- 

100. 

 

PaSim 

Riedo M, Grub A, Rosset M, Fuhrer J. A pasture simulation model for dry matter production,  

and fluxes of carbon, nitrogen, water and energy. Ecol Model 1998; 105:141-83. 

Riedo M, Gyalistras D, Fuhrer J. Net primary production and carbon stocks in differently  



 

105 
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Appendix A2 Details for the parameterization of Festuca pratensis 

 

Table A7.1: List of geometrical parameters found in literature and estimated for the species Festuca pratensis. 

Given is the description of the parameter, its denotation in the grassland model Grassmind, its unit and the value 

found in literature or estimated (for the latter the reference is at last). 

Parameter Unit Description Value Reference 

hmax cm maximum height of an individual 120 Estimated  

hw cm/cm height:width ratio of an individual’s encasing 

cylinder 

2 Estimated 

fs g (DM)/cm³ shoot correction factor 0.002 Estimated 

fO - overlapping factor 1 Estimated 

SLA cm²/g (DM) specific leaf area 160 Heisse et al. 2007 

SRL cm/g (DM) specific root length 38000 Elberse et al. 1993 

r1,r2 - parameters of the rooting depth power-law 

relationship 

5.48/0.301 Estimated (Schenk & Jackson 

2002) 

s1 g (DM)/g (DM) shoot:root ratio of biomass parts 2.2 Heisse et al. 2007 

 

Table A7.2: List of process parameters found in literature and estimated for the species Festuca pratensis. Given 

is the description of the parameter, its denotation in the grassland model Grassmind, its unit and the value found 

in literature or estimated (for the latter the reference is at last). 

Process Parameter Unit Description Value Reference 

Recruitment and 

emergence of new 

seedlings 

Bseed g (DM) seed biomass 0.0018 Elberse et al. 1993 

tem days time until emergence of a 

seedling since sowing 

14 Heisse et al. 2007 

germ% - germination rate of seeds 0.3 Roscher et al. 2004 

agerep years age at which recruitment 

starts 

0.055 Estimated 

hmin cm minimum height of a 

seedling at establishment 

3 Estimated 

tsow Date initial sowing date 16.5.2002 Estimated (Roscher 

et al. 2004) 

Mortality LLS days leaf life span (start of 

yellowing leaves) 

42 Ryser & Urbas 2000 

RLS days root life span 709 Used from Poa 

pratensis (Tjoelker et 

al. 2005) 

life years life span of the individual > 2 Estimated (Biolflor; 

Kühn et al. 2004) 

mbasic 1/year basic mortality rate of 0.02 Estimated 
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mature individuals 

mseed 1/year mortality rate of 

established seedlings 

30 Estimated 

Photosynthesis pmax µmol 

(CO2)/m²/s 

maximum gross leaf 

photosynthesis 

25 Estimated (Hauck et 

al. 1997) 

α µmol (CO2)/ 

µmol (photons) 

initial slope of light 

response curve 

0.06 Hauck et al. 1997 

k - light extinction coefficient 0.4 Thornley & France 

2007 

m - transmission coefficient 0.1 Thornley & France 

2007 

Competition WUE g (DM)/ kg 

(H2O) 

water-use-efficiency 

coefficient 

4 Estimated 

NUE g (DM)/ kg (N) nitrogen-use-efficiency 

coefficient 

350000 Estimated 

Nmin kg(N)/cm² minimum remaining soil 

nitrogen content per soil 

layer 

10-8 Estimated 

nfix yes/no ability for symbiotic 

nitrogen fixation 

no Estimated 

rhiz% - fraction of NPP given 

away to rhizobia 

(symbiosis) 

- Estimated 

Respiration rm 1/day maintenance respiration 

rate 

0.02 Amthor 1984 

rg - growth respiration factor 0.25 Amthor 1984 

Growth allocshoot - allocation rate of NPP to 

shoot growth 

0.54 Estimated 
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Additional simulation graphics 

 

Figure A7.1: Comparison of observed and simulated community coverage. Visually estimated field data on 

cover are available for the respective species Festuca pratensis (green), weeds (red), bare ground (grey) and 

dead material (orange). The green line denotes the mean simulated community cover of green leaves of Festuca 

pratensis and the black line represents the mean total community cover (green and yellowed leaves) of the grass 

species Festuca pratensis for 100 simulation runs. Shadows behind the displayed lines represent the standard 

deviation of 100 simulation runs. 

 

 

Figure A7.2: Comparison of observed and simulated aboveground biomass. Field data on aboveground biomass 

is represented as black points. Repeated field measurements for each field data point are available for the 

respective species Festuca pratensis. Vertical black lines denote the range between the minimum and maximum 

value of the repeated field measurements. The green line denotes the mean simulated aboveground biomass 

(green and yellowed leaves) of Festuca pratensis and the shadow behind the displayed line represents the 

standard deviation of 100 simulation runs. 
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Additional information on the site conditions used for the simulation 

Field observations 

In the experimental fields different plots were established. Besides others, we use 

published data of (a) small establishment plots (3.5 x 3.5 m) and (b) larger monoculture plots 

(20 x 20 m). On the small establishment plots monocultures were sown between the 11th and 

16th of May 2002 and observed for the first year of emergence only (Heisse et al. 2007). 

From the recorded observation data we use the monthly estimated coverage and the tiller 

numbers (Heisse et al. 2007). Seeds on the larger monoculture plots were also sown between 

the 11th and 16th of May 2002 and observed from autumn 2002 on for six consecutive years 

(Weigelt et al. 2010). Measurements were done twice a year. Dates are only given in months 

since the 1st May of the year of sowing. We assume them to be on the 25th of each month 

documented as in some publication observations are stated as done in late May or late August 

(Weigelt et al. 2010, Roscher et al. 2004, Heisse et al. 2007). Observations comprise the 

above-ground biomass, community leaf area index, maximum height and community 

coverage (Weigelt et al. 2010). For both experimental plots, the small and large one, 

measurements are given for 1 m² resolution. Only within the large monoculture plots repeated 

measurements for biomass and height were done. Biomass was measured in three to four sub-

samples of an area of 0.1 m² randomly selected in the sub-area of 15 m x 5 m inside the large 

plot (Weigelt et al. 2010). Maximum sward height was measured in 2003 for 30 individuals 

along a transect of 5 m (with 10 cm distance in-between), in 2004 three times within a 

selected sub-area and from 2005 on at ten spots along a transect of 10 m (with 1 m distance 

between each) within the core sub-area of 15 m x 5 m inside the large plot (Weigelt et al. 

2010). Individuals were stretched in year 2003 before measurement, but not in year 2004. 

From 2005 on, the appearance of the highest leaf was measured (Weigelt et al. 2010). 

Measurement areas or transects differ between the measurement years 2003, 2004 and 2005-

2008. For all other observations no replications are available. 

 

Soil properties 

The experimental plots of the Jena Experiment are grouped into four blocks, whereby 

within each block soil conditions are assumed to be homogeneous. The first block is located 

beside the river Saale and the fourth block is furthest from the river. The blocks are arranged 

in parallel to the river. From Steinbeiss et al. (2008) information on the soil texture in the 

upper horizon (down to 30 cm soil) is available. In general, soil is classified as a Eutric 

Fluvisol (Oelmann et al. 2007). In particular, soil types range from sandy soil near the soil 

river to silty soil furthest from the river Saale (Steinbeiss et al. 2008).  
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The large monoculture plot of Festuca pratensis, which we use for parameterization, is 

located in the second block. We estimated the soil texture in block two by assuming a linear 

increase or decrease of the corresponding sand, silt, and clay contents from locations near the 

river to those furthest from the river. From soil texture, the other soil parameters can be 

derived (Maidment 1993). Table A7.3 shows the soil parameters in the upper horizon (0 – 30 

cm) used in the simulation and derived from field measurements (Steinbeiss et al. 2008). 

 

Table A7.3: Summary of the important soil parameters used for the parameterization of the soil type in the 

model Candy (Franko et al. 1995). Given is a description of the parameter, its unit, and the estimated values for 

the soil of the Jena Experiment found in literature and the comparison to the corresponding values of the soil 

type from Bad Lauchstädt used for parameterization.   

Description Unit Estimated value in Jena Experiment  Value in  Candy 

Sand content % 29 approx. 25 – 40  

Silt content % 52.33 approx. 30 – 65  

Clay content % 18.67 approx. 10 – 30 

Bulk density g/cm³ 1.32 1.37 

Particle density g/cm³ 2.56 2.56 

Field capacity V% 33 29.9 

Permanent wilting point V% 13.3 17.7 

Saturated soil conductivity mm/d 163.2 260 

 

Details on the inverse parameterization steps 

We estimate the geometrical parameter (pmax) by reproducing the leaf photosynthetic 

rate of a single individual under various light conditions (comparison of Fig. A7.3 (b) with 

Fig. A7.3 (a) of Hauck et al. 1997). In contrast to Hauck et al. (1997), which fitted an 

exponential function I
Leaf rkpP ⋅−= max  to the measured leaf photosynthetic rates LeafP  

[µmol/m²/s], we reproduced their functional curve using the functional approach of Thornley 

& Johnson (1990) of ( ) ( )maxmax pIIpPLeaf +⋅⋅⋅= αα  with I  as the photon flux density 

PPFD in [µmol/m²/s], maxp  the maximum photosynthetic rate [µmol/m²/s], α  the initial slope 

of the light response curve [µmol/µmol], k and r specific parameters. 
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Figure A7.3: Curves of leaf photosynthetic rate for different conditions of photosynthetic photon flux density 
PPFD. (a) Figure copied and modified from Hauck et al. (1997). Hauck et al. (1997) measured rates at different 
PPFDs on leaves of the grass species Festuca pratensis (open circles: wild-type Rossa; closed circles: stay-green 
mutant Bf993). Their measurements are fitted to an exponential function dependent on PPFD (Hauck et al. 
1997). Grey dotted vertical and horizontal lines should help to compare the results of Hauck et al. (1997) with 
(b) our fit of the functional approach for leaf photosynthetic rate of Thornley & Johnson (1990). 
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Appendix A3 Local sensitivity analyses 

 

 

Figure A7.4: Local sensitivity analysis for the response variable aboveground biomass of the specific 
measurement dates of the Jena biodiversity experiment. Different parameters categorized into geometry, growth, 
mortality and recruitment are one at a time varied by ± 20 %. From the resulting response of aboveground 
biomass at a specific date, a sensitivity index is calculated. This index ranges between 0 and 3. A value of 1 
indicates that an increase of a parameter by 20 % results in a similar increase of aboveground biomass by 20 %. 
Those indices smaller than one indicate a smaller change and those higher than one a greater increase. This 
means, a value of 0.5 indicates that an increase of a parameter by 20 % only results in an increase of 
aboveground biomass by 10 %. In contrast, a value of 2 indicates that an increase of a parameter by 20 % results 
in a higher increase of aboveground biomass by 40 %. Here, aboveground biomass is mostly sensitive to 
geometrical parameters and a growth parameter, i.e. the fraction of net productivity allocated to the growth of 
aboveground shoot biomass allocshoot. 
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Figure A7.5: Local sensitivity analysis for the response variable maximum sward height of the specific 
measurement dates of the Jena biodiversity experiment. Different parameters categorized into geometry, growth, 
mortality and recruitment are one at a time varied by ± 20 %. From the resulting response of maximum height at 
a specific date, a sensitivity index is calculated. This index ranges between 0 and 3. A value of 1 indicates that an 
increase of a parameter by 20 % results in a similar increase of maximum height by 20 %. Those indices smaller 
than one indicate a smaller change and those higher than one a greater increase. This means, a value of 0.5 
indicates that an increase of a parameter by 20 % only results in an increase of maximum height by 10 %. In 
contrast, a value of 2 indicates that an increase of a parameter by 20 % results in a higher increase of maximum 
sward height by 40 %. Here, maximum sward height can be sensitive to most of the parameters. However, only 
the 25th of May for the years 2004, 2005 and 2007 seems to be sensitive to the parameters. 
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Figure A7.6: Local sensitivity analysis for the response variable community coverage of the specific 
measurement dates of the Jena biodiversity experiment. Different parameters categorized into geometry, growth, 
mortality and recruitment are one at a time varied by ± 20 %. From the resulting response of community cover at 
a specific date, a sensitivity index is calculated. This index ranges between 0 and 3. A value of 1 indicates that an 
increase of a parameter by 20 % results in a similar increase of community coverage by 20 %. Those indices 
smaller than one indicate a smaller change and those higher than one a greater increase. This means, a value of 
0.5 indicates that an increase of a parameter by 20 % only results in an increase of community cover by 10 %. In 
contrast, a value of 2 indicates that an increase of a parameter by 20 % results in a higher increase of community 
cover by 40 %. Here, community cover seems to be insensitive to almost all parameters. 
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Figure A7.7: Local sensitivity analysis for the response variable community coverage of green leaves of the 
specific measurement dates of the Jena biodiversity experiment. Different parameters categorized into geometry, 
growth, mortality and recruitment are one at a time varied by ± 20 %. From the resulting response of community 
coverage of green leaves at a specific date, a sensitivity index is calculated. This index ranges between 0 and 3. A 
value of 1 indicates that an increase of a parameter by 20 % results in a similar increase of community coverage 
of green leaves by 20 %. Those indices smaller than one indicate a smaller change and those higher than one a 
greater increase. This means, a value of 0.5 indicates that an increase of a parameter by 20 % only results in an 
increase of community coverage of green leaves by 10 %. In contrast, a value of 2 indicates that an increase of a 
parameter by 20 % results in a higher increase of community coverage of green leaves by 40 %. Here, 
community coverage of green leaves seems to be only sensitive to geometrical parameters and a growth 
parameter, i.e. the fraction of net productivity that is allocated to the growth of aboveground shoot biomass. 
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Figure A7.8: Local sensitivity analysis for the response variable community leaf area index of the specific 
measurement dates of the Jena biodiversity experiment. Different parameters categorized into geometry, growth, 
mortality and recruitment are one at a time varied by ± 20 %. From the resulting response of community leaf 
area index at a specific date, a sensitivity index is calculated. This index ranges between 0 and 3. A value of 1 
indicates that an increase of a parameter by 20 % results in a similar increase of community leaf area index by 20 
%. Those indices smaller than one indicate a smaller change and those higher than one a greater increase. This 
means, a value of 0.5 indicates that an increase of a parameter by 20 % only results in an increase of community 
leaf area index by 10 %. In contrast, a value of 2 indicates that an increase of a parameter by 20 % results in a 
higher increase of community leaf area index by 40 %. Here, community leaf area index seems to be only 
sensitive to geometrical parameters and a growth parameter, i.e. the fraction of net productivity that is allocated 
to the growth of aboveground shoot biomass. 
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Appendix A4 Details on the evaluation procedure and formulas 

Standard MLE 

As perfect observation values of the sample ( )nxxx ,...,1=  are assumed, we maximize the 

likelihood (cf. Eq. 5.1). Thereby, for MLE that do not consider observation uncertainties the 

probability ( )θ;xp  is merely replaced by the corresponding density function ( )θ;xf  for each 

frequency distribution (Table 5.1): 
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n
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Transforming these likelihoods leads to: 
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Multinomial MLE 

Following Eq. (5.1) we also maximize the likelihood, but the probability ( )θ;xp  accounting 

for binning of data is now expressed by the multinomial distribution including the 

corresponding density function ( )θ;xf  of the assumed frequency distributions. Thereby n 

denotes the sample size, jN  the number of observations falling in the bin j  with qj ,...,1=  

and q  the total number of bins. Bins are half-open intervals [ )bBB jj +;  of width b  (cm) and 

start at min1 xB =  (cm). For each bin a theoretical probability, describing an observation value 

to fall within that bin, is calculated based on the assumed distribution with its density function

( )θ;xf : 
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For each density function of the three distributions we then get the following specific 

likelihood: 
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Gaussian MLE 

Following Eq. (5.1) we maximize the likelihood according to the probability ( )θ;xp , which is 

expressed by the convolution of an assumed truncated Gaussian distribution for measurement 

errors ( )0;0~ >= σµε Nmeas  and the corresponding density function ( )θ;xf  of the assumed 

frequency distribution (Table 5.1): 
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where ()erf  represents the Gauss error function. 

 

Random number generators for the considered frequency distributions 

Using the inverse transformation method to generate virtual data values from an assumed 

frequency distribution ( )θ;xf , the inverse of the cumulative distribution function ( )θ;1 rF − , 

also known as the r -quantile, is calculated. On the basis of a randomly produced number 

[ ]1;0∈r  drawn from a uniform distribution, we calculated the inverse of the cumulative 

distribution function in the following manner, so that it is easier to solve them afterwards 

according tox  : 

[ ] ( ) xrFrxF =−−→−=− − θθ ;111);(1 1    
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This results in the following random number generator (or r -quantiles) for each distribution: 
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Appendix A5 Specific key points of the evaluation of the virtual data samples 

 

Table A7.4: Display of specific key points evaluated during the assessment of maximum likelihood methods. 

distribution 

);( θxf  

Specific key points Binning Measurement error 

Standard  Multinomial  Standard  Gaussian  

Power-law Mean bias greater than or equal to 5% of 

true parameter for a bin width b  or σ  

(cm) of: 

b  > 1.5 none σ  > 0.33 none 

Max. absolute value of mean bias (% of 

true parameter) 

48 % 0.95 % 37 % 0.55 % 

Next best distribution having the same or 

a higher mean weight for a bin width b  

or σ  (cm) of: 

b  > 0.67 none σ  > 0.14 none 

Negative 

exponential 

distribution 

Mean bias greater than or equal to 5% of 

true parameter for a bin width b  or σ  

(cm) of: 

b  > 1.6 b  > 11 σ  > 0.27 σ  > 9.9 

Max. absolute value of mean bias (% of 

true parameter) 

92 % 59 % 84 % 14 % 

Next best distribution having the same or 

a higher mean weight for a bin width b  

or σ  (cm) of: 

b  > 0.91 b  > 27 σ  > 0.18 none 

Weibull 

distribution 

Mean bias greater than or equal to 5% of 

true parameter for a bin width b  or σ  

(cm) of: 

b  > 1 none σ  > 0.08 none 

Max. absolute value of mean bias (% of 

true parameter) 

b  > 1.2 b  > 44 σ  > 0.17 none 

Mean bias greater than or equal to 5% of 

true parameter for a bin width b  or σ  

(cm) of: 

100 % 4.8 % 92 % 2.8 % 

Max. absolute value of mean bias (% of 

true parameter) 

280 % 8.6 % 110 % 2.4 % 

Next best distribution having the same or 

a higher mean weight for a bin width b  

or σ  (cm) of: 

none none σ  > 12.0 none 
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Appendix A6 Further graphics on the Akaike weights 

 

 

Figure A7.9: Effect of binning on Akaike weights with increasing sample size using standard MLE. Weights are 
calculated with MLE assuming perfect observations (standard MLE) dependent on the used bin width b  (x-axis 
in cm). The highest Akaike weight determines the best fit of a frequency distribution to the data. The evaluated 
virtual data sets originate from the three truncated distributions (per column from left to right: power-law, 
negative exponential and Weibull distribution) which underlie them. Rows from top to bottom: Effect of binning 
on the identification of the correct distribution based on virtual data of sample size n  = 100; 500; 1,000; 5,000; 

10,000 and 50,000. Solid lines represent the mean Akaike weights and shaded areas show the standard deviation 
(of 1,000 calculated values). 
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Figure A7.10: Effect of binning on Akaike weights with increasing sample size using multinomial MLE. 
Weights are calculated with MLE accounting for binning (multinomial MLE) dependent on the used bin width 
b  (x-axis). The highest Akaike weight determines the best fit of a frequency distribution to the data. The 
evaluated virtual data sets originate from the three truncated distributions (per column from left to right: power-
law, negative exponential and Weibull distribution) which underlie them. Rows from top to bottom: Effect of 
binning on the identification of the correct distribution based on virtual data of sample size n  = 100; 500; 1,000; 

5,000; 10,000 and 50,000. Solid lines represent the mean Akaike weights and shaded areas show the standard 
deviation (of 1,000 calculated values). 
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Figure A7.11: Effect of random measurement errors on Akaike weights with increasing sample size using 
standard MLE. Weights are calculated with MLE assuming perfect observations (standard MLE) dependent on 
the Gaussian distributed errors with mean 0=µ  cm and assumed standard deviation σ  (x-axis in cm). The 
highest Akaike weight determines the best fit of a frequency distribution to the data. The evaluated virtual data 
sets originate from the three truncated distributions (per column from left to right: power-law, negative 
exponential and Weibull distribution) which underlie them. Rows from top to bottom: Effect of measurement 
errors on the identification of the correct distribution based on virtual data of sample size n  = 100; 500; 1,000; 

5,000; 10,000 and 50,000. Solid lines represent the mean Akaike weights and shaded areas show the standard 
deviation (of 1,000 calculated values). 
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Figure A7.12: Effect of random measurement errors on Akaike weights with increasing sample size using 
Gaussian MLE. Weights are calculated with MLE assuming measurement errors (Gaussian MLE) dependent on 
the Gaussian distributed errors with mean 0=µ  cm and assumed standard deviation σ  (x-axis in cm). The 
highest Akaike weight determines the best fit of a frequency distribution to the data. The evaluated virtual data 
sets originate from the three truncated distributions (per column from left to right: power-law, negative 
exponential and Weibull distribution) which underlie them. Top: Effect of measurement errors on the 
identification of the correct distribution based on virtual data of sample size n  = 100. Bottom: Effect of 
measurement errors on the identification of the correct distribution based on virtual data of sample size n  = 500. 
Solid lines represent the mean Akaike weights and shaded areas show the standard deviation (of 250 calculated 
values). 
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Figure A7.13: Log-log plots of the fits using regression (right) and Gaussian MLE (left). Data values (inventory 
data from Barro Colorado Island) of measured stem diameter (cm) at breast height (1.3 m) are shown as black 
points and fitted truncated distribution functions are represented by solid lines. The straight line denotes the 
power-law (orange), the slightly curved line refers to the Weibull distribution (blue) and the stronger curved line 
depicts the negative exponential distribution function (green). Estimated parameters are for (right) regression 

14.2=α  (power-law), 0374.0=λ  (exponential distribution), 08.1=β  and 352.0=γ  (Weibull 
distribution) and for (left) Gaussian MLE 93.1=α  (power-law), 247.0=λ  (exponential distribution), 

51.2=β  and 283.0=γ  (Weibull distribution). 
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