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Abstract

Ecosystems provide important functioning and sesjidike biomass for bioenergy
production or storage of atmospheric carbon. Twangdes of such ecosystems are temperate
grasslands and tropical forests. Both vegetatienriah of various species, whereby each of
the respective ecosystem benefits from its spembsess concerning their functioning, i.e.
productivity. In this thesis both vegetation arethe focus of the investigations. In the first
chapter, a review of existing grassland and veigetatnodels provides an overview of
important aspects, which have to be consideredrodelling temperate grasslands in the
context of biomass production. Based on the review conceptual modelling approaches
for temperate grasslands are proposed. In the thapter, derived from the suggested
concept, the process-oriented and individual-bagedsland model Grassmind is presented.
In the fourth chapter, the model Grassmind is useatder to parameterize and simulate the
annual dynamics of a typical Central European gsasgies. Grassmind is able to reproduce
the structure and dynamics of a temperate grassesp&Vith reference to the parameterized
grass species, a simulation study using definediepegroups is performed in order to
investigate on the effect of the richness of spegreups on aboveground productivity. We do
not observe a significant positive effect of speayeoup richness on productivity, which is
explained by limitations of using the parameterigeass species as a reference. In the fifth
chapter, comprehensive investigations are carrietl an the example of stem size
distributions in forests concerning their statistianalyses, i.e. by using maximum likelihood
estimation. The effects of uncertainties, i.e. bignof measured stem sizes or random
measurement errors, are examined in detail. Unnéds bias the analyses of maximum
likelihood estimations. It is shown, that the udenmodified likelihood functions, which
include either binning or measurement errors, redhese biases to a large extent. For both
studies, i.e. modelling of temperate grasslandsaawadlsing stem size distributions of forests,
the presented investigations are discussed andbfmssaminations are suggested for future
research in the last chapter.
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Chapter

Introduction

Vegetation plays an important role either harvested purposes like biomass
conversion to energy products (e.g. electricity) smen as a key position in storing
atmospheric carbon sources. The diversity of spaai@lifferent vegetation types influences
the potential of such possible uses. Various typlesegetation are present ranging from
highly diverse forests in the tropics to less sg®eich steppes or savannahs to human
influenced ecosystems in the temperate zone like-satural grasslands. This work focuses
mainly on two of them: (a) species-rich grasslaindhe temperate zone and (b) species-rich
forests in the tropics. Both vegetation types aeglpminantly characterised by the occurrence
of various plant species and their interactionse-Specific factors like climate and soill
conditions, the biotic environment, and human-baaetivities have an influence often
resulting in observable patterns on the ecosysex@kl Two prominent examples represent
the diversity-productivity relationships in grassgila and the functional relationship of tree
size distributions in tropical forests. Attempts understand such emerging patterns of an
ecosystem’s structure and functioning, profit fremmulation models and statistical analysis
tools. In this work, we address (a) the discrepbetween the variety of existing process-
based modelling approaches or analysis tools apthéneed for novel attempts for both
techniques on the example of semi-natural grasslan@entral Europe within the bioenergy
context and measured tree size distributions afispeaich tropical forests.

1.1  Species-rich temperate grasslands

1.1.1 Diversity of grasslands in the temperate zone

There is a large variety of different herbaceouscss occurring in temperate
grasslands. In Central Europe, approximately 80.8f%he species of vascular plants are
attributed to herbaceous species (Ellenberg & Ueueic2010 Ellenberg et al. 1992). Most
grasslands in Central Europe consist mainly of ated hemi-cryptophytes- a class of
species, which have their renewal buds near tHessdiace (Ellenberg & Leuschner 2010).
About 56 % of the herbaceous specieshami-cryptophyteg¢Ellenberg& Leuschner 2010;
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Ellenberget al. 1992). By their low positioned buds, they are besapted to the Central
European climatic conditions (Ellenberg & Leusch26d0). For example in winter, their
survival is ensured as a closed snow cover prothets buds (Ellenberg & Leuschner 2010).
Examples of such species comprise meadow and sedde-estuca pratensiandFestuca
rubra), timothy Phleum pratengeor perennial and Italian ryegrasiso(jum perenneand
Lolium multiflorun).

Different types of grasslands exist in Central pare the so-calleglant associations
About 13.2 % of the European land surface areabess covered in the year 2007 by
permanent grasslands and meadows (Eurostat YearBO&R). Examples are Nardus
grasslands, dry to semi-dry grasslands and permandtivated grasslands (Ellenberg &
Leuschner 2010Fig. 1.1). Nardus grasslands are typical for soils withv lautrient
concentrations, dominated by the tussock-formirecgsNardus strictain combination with
extensive management (Nitsche & Nitsche 1994; Ellenberg & Leuschner 2010). This
grassland type is often found on cool and humiessitor example in North-West-Germany
and the Netherlands (Ellenberg & Leuschner 201069ps€& Nardus grasslands of the lowlands
and low mountain ranges are characterized by agmewies-richness (Ellenberg & Leuschner
2010). For example, a subtype of Nardus grasslarelsheGalium-saxatile-Nardus-stricta
associationof heavy acidic sandy soils reveals only 17 sge(kllenberg & Leuschn@n10;
Pott & Hippe 1991). Typical species coexisting witle dominant speciedardus stricta
compriseHolcus lanatusDanthonia decumberend others (Ellenberg & Leuschner 2010). In
contrast, Nardus grasslands of the high mountanges or alpine zone reveal a higher
species-richness with the typical occurring spedeshoxanthum alpinumPseudorchis
albida and others (Ellenberg & Leuschrx 0; Peppler-Lisbach & Petersen 2001).

Only a small fraction of grasslands in Central p@@ccurs as nutrient-poor, dry or
semi-dry grasslands, also calleérothermic grasslandéllenberg & Leuschner 2010). But
these types of grasslands are highly importanttduleeir great species-richness. Ellenberg &
Leuschner (2010) state that more than 10 % of thetr@ European vascular plants occur
mainly on nutrient-poor, dry grasslands. For examph alkaline soils up to 80 species per 4
m?2 can be found (Ellenberg & Leuschr2®0; Dengler 2005). This high species-richness is
explained by resource limitations, which promoteakveompetitive species and hinder ones
that are mre competitive (Grime 1981; Keel 1995; Ellenberg & Leuschner 2010).

Species with high competitive strength often ocmuipermanent cultivated grasslands
(Ellenberg & Leuschner 2010). This type of grassldorms the majority of all occurring
types in Central Europe (Ellenberg & Leuschner 20A80ut one third of all vascular plants
are mainly found on permanent pastures (EllenbergLeischner 2010). Extensively
cultivated grasslands differ from intensively cwdtied ones not only according to the
cultivation intensity, but also according to speeiehness. Extensive meadows can show up
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to 70 vascular species per 20 m?, whereby intensively used ones reveal only 25 species per 20
m? (Ellenberg & Leuschner 2010). About one third to 50 % of species composition is usually
designated by grass species (Ellenberg & Leuschner 2010; Klapp 1971). A typical example of
cultivated grasslands is the Molino-Arrhenatheretea grassland association with the presence
of grass species like Poa pratensis and Anthoxanthum odoratum, herbs like Viccia cracca and

Lathyrus pratensis or legumes Trifolium pratense (Ellenberg & Leuschner 2010).

(A

©

Figure 1.1: Pictures of the three types of grasslands: (A) Nardus grassland on Mount Oiti, Greece (picture from
www.foropenforests.org), (B) dry grassland in Beinwil, Switzerland (picture from L. Pfiffner, www.fibl.org), (C)

permanent cultivated grassland in Germany (picture from Artenagentur, http://artenagentur-sh.lpv.de/)

Aboveground net productivity rates of the mentioned grassland associations span a
broad range between 100 and 1500 g dry matter per m? and year (Ellenberg & Leuschner
2010). For example, dry and Nardus grasslands can yield approximately 100 to 300 g dry
matter per m? and year, whereby intensively cultivated permanent grasslands can achieve a
productivity rate of 1000 to 1200 g dry matter per m? and year (Ellenberg & Leuschner 2010).
This shows that aboveground productivity of grasslands is highly dependent on the species
diversity and composition, soil properties and human cultivation activities.

1.1.2 The diversity-productivity relationship and its understanding

Various experimental studies have been performed in the last decades, which
investigated on the effect of species richness on the aboveground net productivity of grassland

communities. Large biodiversity experiments have been established across Europe and the



United States of America. In 1994 Tilman and caless initiated an experimental design in
the Cedar Greek Ecosystem Science Reserve in tiAedylanting various mixtures of
different diversity levels (Tilmamt al. 2001). The large-scale BIODEPTH network of eight
European experiments is composed of several imatgins of various sites across Europe
(Kinzig et al. 2002; Spehn et al. 2005; Hector et al. 1999). Study sites range from northern
areas in Sweden to southern ones in Greece (Dienatr1 997; Lawton et al. 1998; Hector et

al. 1999 Mulder et al. 1999; Scherer-Lorenzen 1999; Spehn et al. 2000a, 2000b, 2005
Troumbis & Memtas 2000). The experiments have lssmgned such that not only the effect
of species composition, but also site conditions loa investigated (Spelat al. 2005). The
latest established large biodiversity experimetite-Jena Experiments located in Central
Germany in Thuringia (Weige#t al. 2010). Its study design comprises main experimehts
different species combinations on 20 x 20 m plotd additional small-scale experiments
(Roscheret al. 2004). Besides the large biodiversity experimerssyeral small-scale
experimental studies on the diversity-productivigfationship have also been carried out
(McNaughton 1993Swift & Anderson 1993; Naeem et al. 1995, 1996; Hooper & Vitousek
1997, 1998; Symstad et al. 1998). For example, Naeest al. (1995, 1996) performed
greenhouse experiments of random species assemlffage one to 16 species diversity and
observed a significant positive effect within theedsity-productivity relationship.

In general, the large biodiversity experiments ade® a positive effect of species
richness on productivity. Net productivity has besstimated from aboveground biomass of
the vegetation (Tilmaret al. 1997, 2001, 2006bWeigelt et al. 2009 Spehn et al. 2005).
Experiments differ in the extent to which produityivncreases with higher species-richness.
For example, Tilmamt al. (1997) found from his experimental studies in 1886ncrease of
mean aboveground biomass from 20 g dry matter péommonocultures to 160 g dry matter
per m2 for 32-species-mixtures. For the consecuyears 1997 to 2000, Tilman and
colleagues observed higher biomass values on aveago 300 g dry matter per m2 for 16-
species-mixtures and even steeper slopes of thersitiy-productivity relationship for the
years 1999 and 2000 (Tilmaat al. 2001). Similar results have been observed inJéma
Experiment which show for the years 2003 and 2004 an inere@snean productivity from
500 g dry matter per m? and year for monocultue§30 g dry matter per m2 and year
(Marquard et al. 2009a). For the consecutive years of observatioean monoculture
productivities reduce by one half and average metduyctivity rates of the 16-species-
mixtures reduce to a range between approximatelytd(d700 g dry matter per m2 and year
(Marquardet al. 2009a Weigelt et al. 2009). The different study sites of the BIODEPTH
network show variable results - for some sitestp@sand for others neutral effects of species
diversity (Spehnet al. 2005). The site in Germany reveals an increas@baiveground
biomass from approximately 400 g dry matter pefanfnonocultures to 500 g dry matter per
m2 for 16-species-mixtures, increasing even ut0lg dry matter per m2 for the second and
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third year of observation (Spelhal. 2005). In contrast, the site in Greece shows ateotly
remaining aboveground biomass of 250 g dry matemp?, irrespective of year and species-
richness (Spehet al. 2005).

Currently, concepts explaining the mechanisms mespte for the observed effects
comprise on the one hand stochastic mechanismsoanthe other hand deterministic
mechanisms (Loreau & Hector 2001, Loredial. 2001). The stochastic ones include random
sampling of the species mixtures designed withenekperiments (Kinzigt al.2002; Loreau
& Hector 2001; Loreau et al. 2001) in combination with the dominance of a hyghl
competitive species. That means, with a rising iggecchness the probability of the presence
of higher competitive species dominating the comityuis increasing (Kinziget al. 2002;
Loreau & Hector 2001; Loreauet al. 2001). As a result, biomass of species, supprdsséue
dominating species, decreases in highly diverseturgg (Kinzig et al. 2002). This
mechanism reveals in the diversity-productivity vas, if no multi-species-mixture
performance exceeds the best monoculture perforen@finzig et al.2002; Loreau & Hector
2001; Loreau et al. 2001). In contrast, the complementarity mechanisimgld reveal species
performances in the mixtures higher than expeatesh their performance in monocultures
(Kinzig et al. 2002; Loreau & Hector 2001; Loreau et al. 2001). Complementarity explains
positive diversity effects by niche differentiatierthat means species differ in their functional
traits, thus occupying different niches in the rese space (Kinzigt al. 2002; Loreau &
Hector 2001; Loreau et al. 2001). This implies that biomass of single speaieseases with
increasing diversity (Kinzigt al. 2002). Incorporated in the complementarity coukb de
facilitation between species. Facilitation occums £xample in grass-legume mixtures.
Legumes are in symbiosis with rhizobia fixing atiplosric nitrogen. By this, legumes do not
compete with grass species for soil nitrogen resesjrbut contribute additional nitrogen to
soil by death or litterfall. Loreau & Hector (200ft)oposed a standard statistical method to
distinguish selection and complementarity effectsthiw the diversity-productivity
relationship. Positive complementarity effects eaplain a higher importance of interspecific
interactions rather than intraspecific interactiqieich et al. 2012). In turn, a negative
complementarity effect can reveal that intraspediiteractions are more important (Regth
al. 2012). In contrast, a positive selection effeat saow that the most productive species
reaches higher productivity values in the mixtutes expected from its monoculture (Reich
et al. 2012). A negative selection effect reveals that|dast productive species exceeds its
expected monoculture productivity in mixtures (Reat al. 2012).

Following the above-mentioned concepts, severaldiesu calculated the
complementarity and selection effect using the taddipartitioning of both biodiversity
effects proposed by Loreau & Hector (2001). Inbadidiversity experiments, generally both
effects have been observed. Loreau & Hector (2@@p)ied the additive partitioning first to
the measurements of the BIODEPTH network experimdRésults differ between the study
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sites. Generally, positive complementarity effeamte revealed, which increased on average
with species-richness for nearly all site (LoreauH&ctor 2001 Spehn et al. 2005). Instead,
selection effects vary broadly around zero remgirom average constant with increasing
species diversity (Loreau & Hector 2Q08pehn et al. 2005). The BioCON and BioDIV
experiments of Tilmaret al. (1997; 2001; 2006a; Reich et al. 2001, 2006) show both a
positive complementarity effect increasing on ageraith time and species-richness and a
neutral selection effect slightly decreasing onrage with time and species-richness
(Fargioneet al. 2006; Reichet al. 2012). Investigations in thdena Experimenshow on
average a positive complementarity and selectiofecef(Marquard et al. 2009a).
Complementarity effects increase on average withcisg-richness and time, whereby
diversity and time have no influence on the setecéffect (Marquaret al. 2009a).

Strategies other than applying the additive partitig approach by Loreau & Hector
(2001) comprise detailed individual-level measurets@f species. For example, Marqueatd
al. (2009b) measured the density and aboveground bwmaghe individual-level of each
species of the mixtures. They suggest that spewi@sh revealed higher biomass in mixtures
than expected from their respective monoculturegeased in their densities and thus, play a
key role in the positive diversity-productivity aslonships (Marquardet al. 2009b).
Nevertheless, the role of single species for theerdity-productivity relationships remains
almost unknown.

1.1.3 Managing grasslands for biomass production

In the course of the debate on sustainable enengplys the observed positive effects
of biodiversity on the productivity of grasslandsea up new perspectives. Currently, the
worldwide primary energy demands are estimated afenthan 400 EJ per year, whereby it
has been estimated that only 7.5 % can be pro\nglezhergy converted from forest biomass
(e.g. short rotation coppices) and agriculturaligduced biomass (McKendry 2002a, 2002b).
Thereby, biomass derived from crop monocultures lkaize, wheat or rapeseed provokes
conflicts between food and fuel production (Gelfatbal. 2013).

In 2006 Tilman and colleagues proposed the useasistand mixtures of high species
diversity for sustainable biomass production omalaed land (Tilmaet al. 2006b). Within
the bioenergy context, Tilman and colleagues coatgpawo types of systems: (a) extensively
managed grassland mixtures denotet@as-Input-High-Diversity(LIHD) and (b) intensively
managed mixtures denoted Hgyh-Input-Low-Diversity(HILD) grasslands (Tilmart al.
2006b). They represent two extreme sides along rrageament and diversity gradient (Fig.
1.2). Management options can be applied with dfferfrequency of use and intensity of
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input. A variety of management options, which differ in frequency and intensity of
application, ranges from no or low extent (extensive management) to high magnitudes
(intensive management). Frequency and intensity of management activities generally modify
competition for resources between all plants (e.g by increasing the availability of light, soil
nutrients and soil water; Ellenberg & Leuschner 2010). By this, highly productive or
disturbance tolerant species are favoured, which suppress other species, gradually reducing
species diversity of the ecosystem (Ellenberg & Leuschner 2010). As a result, LIHD
grasslands show usually a higher species richness, whereas HILD grasslands tend to have less
species diversity. Based on the experiments of Tilman et al. (2006b) in the Cedar Greek
Ecosystem Science Reserve they calculate that the biomass harvests from L/HD grasslands
can reach a gross energy yield of 68.1 GJ per hectare and year. Further, the use of natural
grasslands can mitigate greenhouse gas emissions (Tilman et al. 2006b) and decrease
competition for land as their cultivation is possible on abandoned or agriculturally unsuitable
land (Tilman et al. 2006b; Gelfand et al. 2013).

Low-Input- High-Input-
High-Diversity Low-Diversity

"?{,"' 8 m ﬁ"‘ O\ A

b3

Management

Figure 1.2: Schematic view of different management option affecting the diversity of grasslands.

Next to the benefits of species diversity for biomass productivity in LIHD grasslands,
several positive side effects concerning ecosystem functioning reveal with increasing species
richness. For example, Tilman et al. (2006b) observe also an increase of annual carbon
sequestration in soil and plant roots with increasing species diversity. Monocultures store
approximately 0.62 MG per hectare and year in their roots, whereby 16-species-mixture reach
160 % more carbon storage of atmospheric carbon dioxide (Tilman er al. 2006b). Services
provided by such ecosystem functions can be broadly classified into provisioning, regulating,
supporting, and cultural services (according to the TEEB Ecological and Economic
Foundations; TEEB 2010; de Groot et al. 2002). For example, regulating services include the
maintenance of natural soil by nutrient regulation and provisioning services comprise the

energy supply by biomass production (de Groot et al. 2002).
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Major factors for assessing the relevance of seatural grasslands in the bioenergy
context comprise economic aspects like maximizedhbss production, low inputs of energy
and nutrients as well as low cost for their product(McKendry 2002a, 2002b). These
aspects are generally dependent on environmentalitams of the biomass producing
system, on the chemical composition of the produmechass material and on the conversion
technology (McKendry 2002a, 2002b). Concerningtthe latter ones, herbaceous plants can
be categorized, for example, into low-moisture-mateable for gasification or combustion
and into high-moisture-material suitable for fertagion processes (McKendry 2002a,
2002b). Further characteristics of the biomass nahtéenfluencing the energy potential
comprise amongst other the calorific value, the @aslesidue content and cellulose-lignin
ratio (McKendry 2002a, 2002b). IncludindgHD grasslands in the renewable and sustainable
energy production, pays additional attention tol@giocal aspects such as biodiversity. Long-
term advantages of biodiversity, for example inseehsoil fertility, could affect economic
aspects indirectly. For example, increasing spedeersity could accompany with a
positively influenced nutrient cycle. By this, lowkertilization would be needed, which in
turn would reduce costs for purchase and inpuguiiizers.

1.2  Modelling the structure and dynamics of grasslands

Current modelling approaches of grassland ecosygsteous mainly on a few species.
Interactions and competition is often only consedeon the population-level for one or two
resources. Nevertheless, temperate conditions sacCesitral Europe are characterized by
changing light, nitrogen and water resource avéileds. For assessing and understanding
changes in the diversity-productivity relationshgswell as its underlying mechanisms like
complementarity and selection, a detailed viewrdrat and interspecific interactions on the
individual-level is needed. Following the behaviafrsingle individuals concerning their
inter- or intra-specific interactions requires pss-oriented and individual-based modelling
approaches.

Individual-based and process-oriented modellindhiepies experienced numerous
and comprehensive applications to various ecosystéypical examples of such applications
are forest models including gap dynamics. That mearforest exposed to disturbances like
falling of big trees or wildfire, is composed ofnaosaic of gaps in different successional
stages (Shugart 1998). Successional stages aeeedififated by the temporal rearrangement
of occurring species and their composition. Forngia, in forests usually pioneer species
occupy an area under full sunlight at first. In thieade of such pioneers, shade-tolerant
species are able to establish, which reach inergasbundance within time. Due to
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disturbances, for example the falling of large dregaps in the canopy with full light
resources are created, which again firstly are miecduby sun-loving pioneers starting the
process cycle of succession again. Modelling ohsyap dynamics in forests refers to a long
history. Various works originate in those of Botlahal. (1972). The model called JABOWA
introduced the gap-concept, in which the dynamitsndividual trees are simulated on
independent and horizontally homogenous patcheskifB@t al. 1972; Bugmann 2001).
Several forest gap-models like FORSKA, FORMIX, FORID and others developed during
the last decades based on the origin gap-modeibdifying some assumptions (Bugmann
2001; Pacala et al. 1993; Pacala et al. 1996; Leemans & Prentice 1989; Bugmannet al. 1997;
Huth et al. 1998; Kohler & Huth 2004).

This work focuses on modelling of temperate spegas grasslands following the
principles of forest gap models. Applying the g@p@ach to temperate grasslands turns out
to be a major challenge. Several characteristifferdnt to forests have to be considered.
Firstly, temperate grasslands generally contaircispeof widely varying growth forms. For
example, some species grow in tussock, while otdergorm dense sod-forming swards.
Defining an individual is thus more complicated femperate grasslands than for forest, in
which all individual trees can be characterizedabgonical stem and crown (Kdéhler & Huth
2004). As a secondary aspect, forests and grassimv contrasting priorities according to
above- and belowground resource use and compefffiofiin & Urban 1993). For example,
in forests asymmetric competition for abovegrouightl plays a major role, whereby in
grasslands symmetric competition for soil resouisesiore decisive. Thus, competition for
belowground resources has to be included in thesidal gap approach. Thirdly, a species
performance is dependent on temporally changimgcsihditions like seasonal climate or soll
properties (Breckle 1999). Resource availabilites further change according to human
management activities. By these factors, the sthreafjresource competition of individuals
switches temporally between soil water, soil nutiseand light. For example, mowing of
grasslands immediately reduces shading within sy and thus, competition for light
resources becomes less important. Competitioncibnater would be dominating in times of
heavy drought events.

1.3  Analysing the structure and dynamics of species-ricforests

Species diversity, human management activitie$,asal climatic site conditions play
an important role in shaping an ecosystem’s stracamd dynamics. Besides dynamic forest
models, analyses of structural characteristics iamgortant elements for estimating the
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functioning of forest ecosystems, for example thevaground carbon storage in the forest
community.

1.3.1 A functional relationship for stem size distributions of forests

Observation studies of uneven-aged forest comnasnitdllect structural properties
usually on discrete observation times or in timeernvals. For example, in a Panamanian
tropical forest the stem diameter at breast hegymeasured for each tree every five years
(Hubbell et al. 1999; Condit 1998; Hubbell et al. 2005). Breast height is located at 1.3 m
aboveground, which is more easily accessible faasneements than the height of a tree and
thus, replications or time-series observationshmhandled less cost- and time-expensive.

The observed stem diameters are aggregated incallsdstem size distributior a
histogram, which shows the number of stems peraheatithin distinct diameter classes of
certain width. Empirical stem size distributiong abserved to follow a skewed decaying
shape for several examined forests, which is reso@mt of anihverse Jor an ‘L-shapé
(Niklas et al. 2003). Such a decaying distribution shows in dlethiuge fraction of trees with
small stem diameters and a highly variable smadition of trees with big stem diameter.

Measurements and analyses of stem size distrilmufioriropical forests play a key
role in estimating a forest's biomass and produtgtiiunctional relationships exist to
calculate the biomass content of a single treesgyraing a cylindrical stem (Yamakwtal.
1986). Using this in combination with the stem deen distribution of a forest, the forest’s
biomass can easily be estimated in a non-desteugtay. For example, forests in an early
successional stage consist of a large fractionmalllsstem diameters and only very few large
ones, which results in a relatively low biomass pared to late successional forests. These
are characterized by an increased fraction of tastgams and a decreased amount of smaller
stem diameters. Similar observations of the degaghmpe of stem size distributions across
several undisturbed natural forests led to thearebequestion, whether general functional
relationships for stem size distributions in fosestist (Muller-Landaet al. 2006).

To answer this question, various approaches either statistical or in a theoretical
context emerged. Theoretical approaches includevtitks of Westet al. (2009), Enquiset
al. (2009), Kohyamaet al. (1995; 2003), Kohyama (1991; 1993) and Muller-Landauet al.
(2006). In this thesis, a statistical analysissedi In the last decades, statistical analyses have
primarily been chosen based on plotting histograshsfield measurements on double
logarithmic axes. Field data appeared then as arosdl straight line. Such empirical
observations on double logarithmic axes have ledthi® assumption of a power-law
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relationship. A power-law distribution is typicallgharacterized by a probability density
function, which also appears as a straight lin@ alouble logarithmic scale. In general, linear
regression analyses have been performed on dagdethmic scales to estimate the slope of
empirical size distributions (Niklast al. 2003). Later, maximum likelihood estimation has
been prioritized, as their estimators are generafipiased in contrast to those of linear
regression analyses.

1.3.2 Uncertainties in the analysis of stem size distribtions

During the procedure of observing stem diameterstropical forests several
uncertainties could be included in the measuremdifisse can be broadly classified into
systematic and random uncertainties. Systematiertainties comprise, for example, binning
of field measurements into stem diameter classegmin width, i.e. 1 cm or 10 cm. Such a
systematic classification of field data is oftequied to perform linear regression analyses.
An example for random uncertainties includes the@ad®n of a stem’s cross-section shape
from a spherical form.

Difficulties in the observation can lead to biagathin the measurements, which may
propagate across the statistical analyses apphddttze resulting conclusions drawn from
these (Chaveet al. 2004). Several investigations have already showregative effect of
increasing binning on the estimation results ofrttaximum likelihood approach (Whie al.
2008). Modified likelihood approaches including tegtent of binning have already been
proposed, which are able to reduce these negaffeet®e (Muller-Landauet al. 2006).
However, such investigations have not yet beenopmdd for random measurement
uncertainties in ecology.

1.4  Research objectives

Current research on the diversity-productivity tielaships in grasslands is mainly
based on experimental studies. Sufficient simutatgiudies following an individual’s
behaviour as well as the role of certain speciesoraing to the diversity-productivity
relationship have not been presented so far. Cdmepstve investigations on further
understanding the emerging effects of diversity amoveground productivity require
simulation studies. The main research objectives ar
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l. To review on various existing grassland modelsl select suitable modelling
approaches, which help to investigate on divensityductivity relationships

Il. To build a simulation model for species-richmigerate grasslands, which is able to
reproduce the observed structure and dynamicspdrarental grassland studies

lll.  To investigate on the change of abovegrounddpctivity from monocultures to 2-
species-mixtures in the context of diversity-pradaty relationships by using the developed
grassland model

Besides our analyses on grasslands, we also igaéstnethods for analysing the size
structure of vegetation on the example of spedas-forests. Statistical analyses like
maximum likelihood estimation used to analyse st&me distributions in tropical forests
currently lack of including further uncertaintiesissng in the measurement procedure.
Thereby, different forms of uncertainties may dffacalysis results differently. In this thesis,
we develop new methods by considering such errotBa analysis. Our research objectives
are:

1. To examine the effects of systematic and randocertainties in measurements of
stem size distributions on the analysis of assufuadtional relationships using maximum
likelihood estimation

2. To assess whether we can improve the relialafitpaximum likelihood estimation by
considering uncertainties in the analysis methods

1.5 The chapters at a glance

1.5.1 Synopsis

Within the following chapters of this work, we w#inalyse modelling approaches in
detail. Based on this review, an individual-based @arocess-oriented grassland model is
developed. A simulation study based on a paranzetdrtypical grass species is used to
provide insights into the processes and mechaniesmonsible for the emerging relationships
between diversity and productivity. Concerning steucture of forests, we will concentrate
on current measurement techniques, which provog&ematic and random uncertainties. We
analyse the effect of such uncertainties on themasibn of relationships for stem size
distributions. Consequently, we will develop newtnoels for reducing negative effects of
measurement uncertainties on analysis results amtteasing their reliability. A
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comprehensive discussion of the approaches andodsettieveloped within this thesis is
presented at the end including future perspectawesapplication.

1.5.2 Chapter 2

We review already existing grassland models anameymodelling approaches for
describing vegetation dynamics in general. Therety, give an overview on simulation
models and modelling approaches of species-ricipeéeate grasslands, which include aspects
needed to investigate on the diversity-productiviglationships in the context of biomass
related energy production. We will present new epteal approaches for individual-based
and process-oriented modelling of species-rich simasgls, where needed and assess
comprehensively modelling techniques of alreadgteng models.

1.5.3 Chapter 3

Based on the literature review in chapter 2, wé présent a new temperate grassland
model in this chapter. The model aims at simulaspgcies-rich temperate grasslands by
using individual-based and process-oriented madgkipproaches. A full description of this
model is presented in detalil in this chapter. Wi wiroduce the modelled geometry of an
individual plant. Afterwards, we will describe tmeain modelled processes an individual
passes through during its life cycle. The grasslamudlel is coupled with a soil model, of
which a brief overview is given. As a last parg #theduling of the coupling of both models
is presented.

1.5.4 Chapter 4

First, we will parameterize the model for a repnéaive Central European grass
species. We will test the simulated parameterinatwth published field data from literature
and biodiversity experiments with regard to repdg observed structure and dynamics.
Based on the parameterization, we perform a simounlagtudy by creating virtual species
types. The defined species types differ in theircfionality of acquiring and competing for
resources. We will simulate them in monocultured arspecies-mixtures in order to assess
the effect of diversity on productivity.
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1.5.5 Chapter5

In chapter 5, we will address statistical methamtsainalysing stem size distributions
of tropical forests. For our investigations, we lvateate virtual field data sets from three
selected distributions, which are typically useddescribing empirical stem size distributions
of forests. We will consider two different uncenias. These comprise on the one hand
binning of field data into stem diameter classed an the other hand random uncertainties,
for example caused by measurement errors. We andhgs created data sets using three
different likelihood functions — one assuming aetely measured stem diameter and two
other, which each of them includes the respectheedainty in the estimation method.

1.5.6 Chapter 6

In the last chapter, we discuss methods and appesagsed in this thesis. First, we
debate chances and limitations of the included mhadeapproaches of our grassland model
Grassmind. We present possible extension for fuymgications. The main results of our
simulation study using the developed grassland her@ediscussed with regard to published
field measurements in the context of diversity-picitvity relationships and current
hypothesis of underlying mechanisms explaining shape of these relationships. Future
perspectives of important research questions coimgeradditional simulation studies of
diversity-productivity relationships in grasslandsl be suggested at the end. Secondly, we
focus in our investigations on the analysis methofistem size distributions of forests.
Concerning our findings in analysing stem size ritigtions of tropical forests using
maximum likelihood methods, we discuss their rebeeaand applicability in practice. An
outlook on future analysis methods of ecosystencsires will be proposed at last.
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Chapter

A Review of Grassland Models in the Biofuel Context

Abstract

Various studies have suggested that semi-naturasstgmds could be a more
ecologically beneficial source for biofuel prodactithan intensively managed monocultures.
In particular, it has been observed that the heyell of species diversity in grasslands has a
positive effect on several ecosystem functions. (productivity). Ecological models are
useful tools for analysing the interactions of eliéint processes in grasslands, which are
assumed to be the underlying drivers of this pasiéffect. In this paper we present a review
of the main processes included in existing grassiamodels and discuss the strength and
limitations of existing approaches in the contekbmfuel production. Most of the existing
models (a) focus solely on one or a few single iggedqb) do not consider competition
processes adequately, or (c) do not follow theviddil's development in the grassland
community. This hinders a detailed analysis ofrttechanisms and conditions that govern the
ecosystem functions that are relevant for biofuetipction such as productivity, stability, and
carbon fixation. To bridge this gap, we proposeoacept for a novel individual-based
grassland model for temperate regions. Our approactiers a high number of
species/functional groups, above- and below-grantrd- and inter-specific competition for
different resources (light, water, nitrogen, spaea)d disturbances (due to management or
climate change). Hence, it could facilitate compredive mechanistic analyses of the
dynamics of semi-natural grasslands and theirieffy in biofuel production.

! Areview paper with analogous content has alrésiyn published (Taubest al. 2012).
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2.1 Introduction

The global demand for renewable biofuels continieegrow. Currently, intensively
managed monocultures of energy crops such as eheseybean or maize are often used to
meet this demand. This leads to land-use confiints propagates competition between food
and fuel production (Koh & Ghazoul 2008). A newlpatas been proposed by Tilman and
colleagues(Cedar Creek Ecosystem Science Reserve USA; Tilman et al. 2001). Tilmanret al.
(2006b) also suggest using multi-species mixtufgseoennial grassland specidoy-Input
High-Diversity (LIHD)) for biofuel production. Other biodiversity expaents, such as the
Jena Experiment, substantiate these results bywobgeequal productivity oEIHD grassland
mixtures andHigh-Input Low-Diversity(HILD) grassland mixtures (Weigedit al. 2009).
However, whethe.lIHD grasslands are better able to meet energy demiuaas crop
monocultures also depends on the soil properti¢seofland used, on the regional climate and
on the management strategy. Furthermore, it caradsaimed that the results of these
experiments cannot be simply transferred to natysiems (Gracet al. 2007). In addition,
climate change, especially the expected increasirdnght events in Central Europe, may
cause additional effects (IPCC 2007). Hence, residenstatements on the potential of
grasslands for biofuel production under changingnddimons are needed. Experiments
addressing this question can be supported by siionlemodels.

Here, we review 13 existing grassland models. Tinesdels are used (a) to simulate
productivity and dynamics of grasslands and (b)atmalyse the grassland’s response to
changing factors and disturbances. However, moiteoinvestigated models fit only partially
into the biofuel context. For example, the Hurlegsire model is too complex in its entire
model structure for simulating speciesh sites (Thornley & Verberne 1989; Thornley 1998).
This is reflected in a higher degree of detail .(estructural and substrate mass is
distinguished) and thus, a higher number of pararsetAnother limitation of several
grassland models is the exclusion of one or maseurees from the modelled competition
processes. As an example, the model of Schippeksagff (2001) is developed to include
inter-specific competition for light and nitrogebut not for water. However, due to the
expected increase of drought events in Central geu(@enistonet al. 2007; IPCC 2007),
competition for limited water also becomes an ingoar factor for grassland model
development. In this study we present in detaikgilemd models which provide sufficient
modelling approaches for essential processes, Iredbe@ lack of additional important
characteristics in terms of biofuel production, girdpose new conceptual approaches for
certain processes.

This review results in our proposal for a new dgas$ model concept called
Grassmind, consisting of approaches adopted fraea@y existing grassland models and
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novel approaches for modelling specific vegetatjmocesses. A new perspective for

simulating temperate, species-rich grasslands bas be provided. Our model concept

focuses on the one hand on the full involvementhafracteristics and processes which were
partly absent in existing grassland models. Onother hand, proven modelling approaches
for processes from existing models are partiallgpteld (e.g. production and allocation).

2.2 Review and evaluation methods

We investigated 19 vegetation models, 13 of whigscdbe the dynamics of
grasslands (see Appendix Al for a detailed lisggcdtise global vegetation models also
include grasses, and forest models often use simpleroaches, we consider these
additionally in our review of specific processebeTeview is conducted by (1) describing the
main aspects of the grassland models such as fmdsstructure and (2) evaluating the
models with regard to their potential use for siatinlg LIHD andHILD grasslands. For this
evaluation, we used patterns we identified as bmpprtant to be reproduced by a grassland
model in the biofuel context.

Temperate grasslands are important in the biofolelext as they produce harvestable
biomass. As is typical for temperate regions, theva-ground biomass production of the
ecosystem shows inter-seasonal variability. Saq,teeyinfluence of the abiotic environment
on seasonal and inter-annual variations of netystesy CO2 exchange, leaf area index or
nitrogen content were investigated in some stu(féanaganet al. 2002). This climatically
dependent variability arises mainly from the growtplant tissue, the establishment of new
plants and their tillers, and the mortality of glaand their tillers by self-thinning and harvest.
Several studies showed that the dynamics of tdlensity, species abundances or other
vegetation characteristics is highly dependentumsiton the abiotic environment, but also on
management activities such as sowing, mowing, plamioval or fertilization. For example,
the studies of two grass species populations shawkatline in tiller density after harvest and
an increase following the winter season until tagtrarvest (Lonsdale & Watkinson 1983).

Concerning LIHD or HILD grasslands in the biofuel context, different segci
abundances and cover can be expected, especiatly mtluced under different management
regimes. With no or rare management considered,cameinitially expect to observe an
increasing number of grasses and a decreasing muafbsmall herbs and legumes in
grasslands (Deat al.2011; Torok et al. 2011). With no or rare mowing, grasses grow higher
than small herbs and thus shade them the moregiioey. Smaller species get less light for
photoproduction and may die due to lowered net annproduction. The fewer legumes in
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the grassland, the less nitrogen is fixed by thanthe soil. As a consequence, a lack of
nitrogen for grasses might occur (Temperdl. 2007). It can be assumed that grass species
suffer from such a nitrogen deficiency, leadinghigher stress and thus higher mortality.
Dying grass shoots, which contribute to the litperol, create gaps with high incoming
irradiance intensity, giving legumes the opportyit establish. So, a state of equilibrium of a
grass-legume community with reduced occurrencetiesbs and a high variance of the
equilibrium due to the interplay of the grasses dedumes can be expected. With
management, different results would be expectedvilip offers small herbs a greater chance
of survival due to equal non-attenuated irradiangeut for all species, which means
competition for light, is of minor importance. Dteetheir more horizontal leaf position some
herbs and legumes usually have higher light absorpates and thus may have an advantage
over grasses (Lantinget al. 1999). In the case of infrequent mowing and namting water
and nitrogen resources in soil, a well-mixed comityuaf species sown can be presumed.
With their shoots growing more and more, light cetitpn is reactivated and may become
dominant again. In the case of frequent mowing additional supply of e.g. fertilizers,
grasses may become dominant due to an increasedatigg propagation. Following these
patterns specific criteria for our evaluation ciggland models can be defined:

(1) Species-richness (or functional group richpess
(2) Resource limitations (water, nutrients, ligggace)

3) Complex above- and below-ground competitiorcpsses between individual species
for these resources

(4) Management activities disturbing or supporting system
(5) Simplicity of the model, meaning the inclusiminessential, but not all aspects
(6) Linkage of competition for resources.

Following our set-up criteria, we explored the eswed grassland models in further
detail. In doing so, we identified the key procasaad characteristics for simulatib¢HD
and HILD grasslands. We then determined whether or not asnenore of the existing
grassland models provide sufficient information foeodelling the processes adequately (in
terms of our criteria). If not, we propose new cgptoal approaches for modelling those
processes or integrating specific characteristics.
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2.3  Brief review of grassland modelling concepts

2.3.1 Description of existing grassland models and evaltian of their potential in the
biofuel context

The 13 grassland models varied broadly in theiedbjes, structure and complexity.
The objectives range from detailed reproductiothefarchitecture of plants to the analysis of
below-ground resource use or impacts of climatenghaor management on grasslands. The
structural design of the models including their dirsteps, main variables, abiotic factors,
considered competition processes and managemaevitiestare listed in Table 2.1 and Table
2.2.

The Hurley Pasture Model comprises a dynamic, nraéstia ecosystem model with a
great deal of complexity (Thornley & Verberne 1989; Thornley & Cannell 200Q Thornley
1998). The process-based model structure simutktids fluxes of carbon, nitrogen and soill
water by coupling soil, plant and grazing sub-msd€lentral variables of, e.g. the plant sub-
model, comprise structural dry matter, carbon airiogen substrate, and leaf area,
additionally structured by age and plant componekgsa result, the plant sub-model already
covers 21 state variables and 60 parameters inglacingh degree of complexity, which may
cause difficulties in the parameterization of spegich sites (Thornley & Cannell 2000).
Therefore, in simulation studies of the Hurley BesstModel only a generic C3 grass species
was assumed (Thornley & Cannell 200@ornley 1998).

The daily working PaSim model is based to a largeerd on the Hurley Pasture
Model, but it also includes certain processes asgcleaf stomatal resistance or the dynamic
change of a plant’s fractional nitrogen contentgneater detail (Riedet al. 1998, 2000).
Additionally, some new aspects, e.g. the reprosglaadievelopmental stage and the non-linear
temperature dependence of the shoot and root gnatgk, were introduced. As in the Hurley
Pasture Model, a plant’s state is described bygthestural dry matter of the plants in different
compartments (e.g. leaves, stem, and sheaths)laasibe nitrogen content. Due to the high
degree of complexity, as in the Hurley Pasture Nosdienulation studies assumed only a
single species representing a kind of a mean spémi¢he entire community.
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Table 2.1: Overview of the reviewed models concerning timepstmodel structure, main variables and

management activities considered.

Model Timestep Individual-(1) or Main variables Management
population-(P) based activities
calculations considered
Schippers & daily P above- and below-grounc cutting,
Kropff biomass and nitrogen fertilization
content
Hurley-Pasture minutes P above- and below-ground fertilization,
model (variable) biomass and nitrogen cutting, grazing
content, leaf area
PaSim minutes P above- and below-grounc cutting,
(variable) biomass and nitrogen fertilization,
content, leaf area grazing
Coughenouet 2 days P above- and below-ground -
al. biomass
Detlinget al. daily P above- and below-grounc irrigation,
biomass fertilization
Coffin & annual number of individuals, -
Lauenroth above-ground biomass
Duruet al. daily P leaf area index, above- cutting
ground biomass
Acevedo & 0.1 months above-ground shoot or leaf -
Raventos length
LINGRA daily P above- and below-grounc cutting, irrigation
biomass, tiller number,
leaf area index
GEM days P above- and below-ground -
(variable) biomass and nitrogen
GREENLAB days to years I above-ground biomass, -
(variable) physiological age
Reuss & Innis daily P above- and below-ground fertilization
nitrogen, biomass
GraS-Model daily P above-ground occupied  cutting, grazing

area/cover

and trampling

In a less complex way, the process-based GraS-Muaeilates daily species-specific
vegetation cover dynamics (Sieheff al. 2011). Different single species as well as various
plant groups (e.g. tufted plants or erect forbg simulated on the population-level by
coupling a simple plant competition model and allase model, each of them raster-based.
Utilization indicator values for trampling, cuttingnd grazing allow the incorporation of
management activities. However, in this model sgga@ompete only for space, but the
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influence of different abiotic factors as well asnpetition between species for e.g. soil water
would lend further insight.

Table 2.2:Overview of abiotic factors considered in the rexdd models, the resources species compete for and
the number and type of species represented (sépgleies (S) e.d.olium perenngplant functional types (PFT)
e.g. grasses or legumes, or generic mean spediéS)(fer an entire community). For each model thenber of

simulated species is given in brackets.

Model Abiotic factors included Modelled intra- Species representation
/inter-specific S PFT GMS
competition for
which resources
Schippers & radiation, air temperature, soil nitrogen conten light, v (3)
Kropff nitrogen
Hurley Pasture radiation, air and soil temperature, soil watet a light, v (1)
Model nitrogen content, wind speed, atmospheric CO2 nitrogen,
concentration, precipitation, vapour pressure, water
(non-symbiotic and symbiotic N fixation)
PaSim radiation, air and soil temperature, soil water al light, v (1)
nitrogen content, wind speed, atmospheric CC nitrogen,
concentration, precipitation, vapour pressure, sr water
cover, (symbiotic nitrogen fixation)
Coughenouet al. soil nitrogen content light, v (3)
nitrogen
Detlinget al. radiation, air and soil temperature, soil water light v (1)
content, precipitation, photoperiod
Coffin & air temperature, precipitation water v/(15)
Lauenroth
Duruet al. radiation, air temperature, soil water, nitroged a light v (3)
phosphor content, seasonality
Acevedo & - - v (1)
Raventos
LINGRA radiation, air temperature, soil water content, light, v (1)
precipitation water
GEM radiation, air and soil temperature, soil waied nitrogen, v (1)
nitrogen content, wind speed, atmospheric CO2 water
concentration, precipitation, vapour pressure,
(symbiotic N fixation)
GREENLAB air temperature, soil water content - v (1)
Reuss & Innis air and soil temperature, soil watertent, soil nitrogen v (1)
nitrogen content, (symbiotic N fixation)
GraS-Model - space v/(10)
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In contrast, the grassland model developed by $engp& Kropff (2001) does include
such abiotic factors as radiation and temperafithies daily working model also shows a less
complex model structure including dry mass of tlents in different compartments (flower,
shoot, root, and reserves) and nitrogen contenstate variables. This lower level of
complexity allows the simulation of several singlpecies competing with each other.
Competition processes are considered to take plagee-ground for light and below-ground
for nitrogen. An extended spatially explicit modedrsion enables an individual-oriented
modelling concept based on the self-thinning lawd&et al. 1963). Overall, this model
provides a potential tool for simulating speciesirherbaceous communities. The model of
Schippers & Kropff (2001) does not consider wategss and competition for water between
individuals, which would also be of great interest.

The LINGRA grassland model, on the other hand,udes water stress by using a
water shortage factor, which influences light-uffeciency (Schapendonkt al. 1998). The
calculation of light-use efficiency is part of teeurce-sink concept of the model. Within this
scope, light-use efficiency is used for simulatittge daily source carbon flow, while
temperature-driven leaf area and tiller dynamiesused for modelling the daily sink carbon
flow. Interactions between both fluxes are integglatia the plant’s storage pool. Simulation
studies were carried out for single species pojulatthroughout Europe. The model shows
some important characteristics needed for simgdtilD andHILD grasslands. Tiller and
leaf area dynamics are modelled dependent on adi@itensity, temperature, soil water
content and defoliation. Although water stressoissidered, the inclusion of nitrogen stress as
well as inter-specific competition for water androgen between individual tillers would
increase the informative value of the model.

Also based on the light-use efficiency concept,toglel of Duruet al. (2009) follows

a contrary strategy. They focus mainly on the datgumulation of above-ground herbage
mass by taking into account the temperature-drigeswth of green leaf area and the
reduction of leaf area due to senescence. Factorsidering water and nutrient stress are
integrated by limiting the growth of herbage maSsnulations showed herbage growth
accumulation of a community consisting of threenplanctional groups, but do not include

an individual’s tiller dynamic and resource use.wdwer, this would be interesting for a

detailed view of intra- and inter-specific competit processes between individual tillers,
especially for water and nitrogen.

The model developed by Coughenoet al. (1984) considers senescence and
maturation. It simulates the daily primary prodantiof biomass of perennial grasses. For
modelling processes like photosynthesis or senesc@otential rates are modified with
reduction factors. Additionally, a shoot sub-monhelluding different stages of aging allows
the simulation of tiller dynamics per plant. Sintidas were carried out using three different
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height groups (plant functional types) of tuftedgmmial grass species. Species that differ in
growth form and characteristics are currently netuded in this model. However, this would
be useful for simulating European species-richsiaasls.

Semi-arid models like the individual-oriented moaélCoffin & Lauenroth (1990)
focus mainly on competition for water resourcesmMeen individual plants and a resulting
water stress affecting the number of individuals plant functional group. It uses the gap
approach usually applied in forest models and fesusn below-ground resource use of 5
resource groups, which again were divided into l&ntpfunctional/species groups for
simulation. Dynamics are simulated annually byrgsource space proportionally assigned to
the individual plants in the community and the Belground gaps in the resource space
produced by dying individual plants. As it is a $@md grassland model, the resource space
is mainly determined by the soil water content oecpitation. However, for temperate
regions competition for nitrogen and light and tasulting effects on the individual’'s growth
and survival are as important as competition fotleweesources.

Detling et al. (1979) incorporate in their model structure thearseasonal impact of
temperature, moisture, light and nitrogen on tharaiss dynamics of the specRsuteloua
gracilis. The daily simulated processes covered in the momlaprise among others spring
regrowth and the translocation of carbohydratewéen leaves, crowns and roots. These are
important aspects for temperate regions. The msdedsted for one species only. But the
consideration of detailed inter-specific competitior e.g. water, light, nitrogen and space
would be revealing.

The GEM model (Huntet al. 1991) presents a producer-decomposer model
comprising (1) the impact of abiotic factors on frmary production sub-model and (2)
feedbacks of the nitrogen flux. The model includesater sub-model, a plant sub-model, a
decomposer sub-model as well as a fauna sub-modebsalesigned for investigating climate
change impacts on the daily carbon and nitrogeramycs. Simulation studies were only
carried out using a dominant single species andodl@xamine the inter-specific competition
processes of species-rich communities.

2.3.2 Identification of key processes and comparison ougable process modelling

approaches

After reviewing and evaluating existing grasslanadels, we were able to identify the
processes and characteristics that should be iedlid the context oEIHD grasslands for
biofuel production. The inclusion of abiotic factdn the production and their reduction due
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to limitations is important for tracking an indiwdl’s dynamic in the community and thus for
evaluating population-based tiller and vegetationec dynamics. Mortality is as important as
plant production. Important mortality aspects araimy crowding mortality (e.g. self-
thinning) and mortality due to harvest (i.e. mowinghe potential to simulate species-rich
herbaceous communities induces several importanthamsms. Central European
herbaceous species differ widely in characterissigsh as growth form and architecture,
temporal reproduction, and strategy depending Qnallacation of produced biomass via
photosynthesis in terms of their life cycle and ffiwer- and intra-specific competition for
resources in a species-rich, competitive enviroriniénus, a suitable model should allow the
inclusion of these different growth forms and atettures. In the context of biofuel
production senescence plays an important role.etmd of different biofuel production
technologies, only certain proportions of freshegrbiomass and/or senescent biomass can be
used. Species differ in their ability to maintaBnescent biomass as standing dead material
within the community dependent on their architeztstability.

Resource-dependent production

Among the most common concepts for modelling tloelpetion process are those that
calculate gross photosynthesis and net photosysth@sss photosynthesis models constitute
primarily the Farquhar photosynthesis model (Faaget al. 1980; LPJDGVM, Sitchet al.
2003) and the single-leaf photosynthesis model dase the light response function
(Thornley & Johnson 1990; FORMIND, Koéhler & Huth 2004; Seib-DGVM, Sato et al.
2007). The Farquhar model calculates assimilaticm detailed biochemical way, whereas the
approach using the light response function perfoanmore aggregated calculation of the
single-leaf photosynthesis integrated over the pgraw individual’s projection area. Another
option is to use just an average gross photosyotree per unit leaf area (Coughenetial.
1984) as is done in net photosynthesis models,ndnie mainly based on such a potential net
photosynthetic rate (Detlingt al. 1979). Other models just calculate the absorbesuatmof
radiation, which is subsequently converted to oigairy matter either after subtracting
maintenance costs (Schippers & Kropff 2001) or diyeusing the light-use efficiency
(LINGRA, Schapendonlet al. 1998; Duru et al. 2002, 2009). There are also models that
aggregate several production processes by focasinge relative growth rate of the plant’s
biomass or size (Coffin & Lauenroth 1990) or growtjuations for biomass or size (Acevedo
& Raventds2002; Damgaard et al. 2002; Damgaard & Weiner 2008). The latter ones take an
equation-based approach rather than a process-appsahch as described above.

All the above mentioned production model types lbarmultiplied by the respective
reduction factors for irradiance, water, nutrienesnperature, age, etc. The concepts differ
widely in models depending on the goal of the stglyt all these reduction factors either
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decrease from 1 to 0 with decreasing availability of the respective resource (e.g. for water;
Granieret al. 1999; Reuss & Innis 1977) or reach an optimum in the middle of their range
between 0 and 1 (e.g. for temperature; Larcher 1976).

In the context of biofuel production, we proposepast of our conceptual model
Grassmind the single-leaf photosynthesis approatdgiiated over the individual leaf area
(Thornley & Johnson 1990). An individual can produmiomass via photosynthesis of its
above-ground green shoot parts. So it is not dmdyproducing green parts that compete for
light, but also the senescent or dead shoot pahntsse can no longer produce biomass via
photosynthesis, but they can shade the greenyhits are still producing. Reduction factors
according to soil water and soil nitrogen availépilas well as air temperature can be
sufficiently taken into account by multiplicatiortivthe gross primary production:

R=R, (soil waten [R, (temperatug) [R, (soil nitrogen , (2.1)

whereby R, is an increasing function from 0 to 1 of increasawvailable soil water (e.qg.
Granier et al. 1999), R, is a function accounting for unfavourable tempeesd (e.g.
Schippers & Kropff 2001), andR, is an increasing function of available soil niteog
content. It can be clearly seen, tHa{ and R, are greatly influenced by competition with
other individuals and abiotic conditions. In costrathe reduction factoR. only reflects
abiotic stress situations.

Respiration

There are numerous possibilities accounting fordifferent levels of detail describing
respiration. Most models only distinguish betweeaowdh respiration and maintenance
respiration (Hurley Pasture, Thornley & Verberne 1989; Thornley 1998; LPJ-GUESS, Smith
et al. 2001; LPJ-DGVM, Sitch et al. 2003). Three different concepts for modelling such
respiration sub-processes can be distinguished rfledho & Cannell 2000): (a) Most
commonly assumed is the priority of maintenanceirason over growth respiration and its
proportionality to plant biomass (FORMIND, Ko6hler & Huth 2004; LPJ-DGVM, Sitchet al.
2003). Therefore, the produced biomass is primaskgd for maintaining all important plant
processes; the remaining biomass is utilized for growth of new plant tissue. (b) Secondly,
growth respiration can also be assumed to haveitgriover maintenance respiration. After
reducing assimilation for growth processes, thelpced organic material is partially used for
maintaining already existing components and pra&seg3hornley & Cannell 2000). (c)
Thirdly, the concept of plant tissue partially fewd back to assimilation can be applied,
whereby both are then used to fulfil total respiratcosts (Thornley & Cannell 2000). In the
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context of biofuel production, we propose using ¢bacept of primarily maintaining already
existing green plant tissue and secondly creatavg piant tissue:

NPP=(1-r, )dRP, —r,, CF, (B + B ), (2.2)

whereby NPP is the net primary productiom, is a dimensionless growth respiration factor,
r,, iIs the maintenance respiration rate. As part ef@massmind model concept we consider
that maintenance is only needed for living greeanplparts, which means green shoot
biomass B**" and living root biomasB®"*. Further, the functionf, can account for
increasing demands for maintenance with increagngperature (e.g. Schippers & Kropff
2001) andR consists of the three dimensionless reductiorofactonsidered for the plant

production (cf. Eq. 2.1).
Allocation strategies

Dependent on the type of respiration modelled, lassnproduced by photosynthesis
can be subsequently allocated to different plamigpwehere new tissue is growing. There can
be differences in the pools considered ranging foom plant pool to several ones describing
different components of a plant such as the leavethe stem. In grassland models these
different pools mostly comprise above- and beloadgd plant parts, storage or reserve
organs, and reproduction pools. The degree of wgeal differs in the models.
Differentiations from coarse pools such as abowvet laelow-ground pools to more detailed
ones such as leaf lamina or sheaths are possible (Hurley Pasture, Thornley & Verberne 1989;
Thornley 1998). There is also the possibility tetiiguish different ages of plant parts, to
which different amounts of produced biomass caalloeated (Detlinget al. 1979).

Besides the number of pools the model takes asia,different allocation strategies
can be assumed. For example, a grassland modehabkspecies would assume a strategy
that allocates more biomass to reproductive padsa to storage organs. On the contrary, a
model of perennial species would imply that greatapunts are allocated to reserves than to
the reproduction pool. Mostly allocation stratega@e modelled statically, that means the
allocation fractions remain constant over time (EH3H-BGC, Running & Gower 1991).
Other concepts include the compliance of functiae#tionships between the pool masses
summarized in the pipe theory (LPJ-GUESS, Smaittal. 2001; LPJ-DGVM, Sitch et al.
2003; Seib-DGVM, Satoet al. 2007) or the source-sink strength of the plantsu@@enouset
al. 1984; Schippers & Kropff 2001). However, especially in the context of climate change, a
dynamic allocation process that adapts to climatimanagerial changes might be important
(Detling et al. 1979). Nevertheless, in most cases not enoughniafiion is available for
modelling the adaption process.
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In the context of biofuel production and in the ks®iof the development of the
Grassmind concept, we propose to assign the fallpwtate variables to an individual: (a)
above-ground shoot bioma8g,., (b) below-ground root biomaBg,,, () storage biomass
Bwre @nd (d) reproduction biomaBg,. Geometrical properties of an individual descripits
spatial structure should be related to some ofettsdate variables (Fig. 2.1). The calculated
net primary productiorNPP of Eq. (2.2) can be allocated to those plant potereby, the
connection of an individual between its above-gmbshoot biomas®B,,,, and its below-

ground root biomassB,, should be assumed to follow a species-specifionatric
relationship that remains constant over time (Nil2805):

(2.3)

whereby a and b are species-specific parameters. The remaininghdss can then be
partitioned between the storage pool and the regtaxh pool. Dependent on the species’
strategy or life cycle, an individual either inv@shore in its reproduction or more in the
storage of biomass for maintaining itself in tinadsstress. For example, an annual species
would invest more biomass in its reproduction. dmtcast, a perennial species would invest
more in the storage biomass to ensure its maintenamer its entire life span. There is a
necessity for an individual to use its storage l@ssin times when its gross primary
production P, cannot meet the required maintenance respiration.

Architecture (allometry and geometry)

Forest models and global vegetation models usematiic relationships and an
underlying geometric architecture (FORMIND, Koh&rHuth 2004; LPJ-GUESS, Smitlet
al. 2001; Seib-DGVM, Satoet al. 2007; SILVA, Pretzsch et al. 2002). Usually grassland
models try to avoid modelling the architectural ratwgeristics of their plants. This results
mostly from the great diversity of different growfilrms and characteristics of herbaceous
plant species, especially in temperate ecosyst&sisa consequence, processes are often
modelled on the population level, making it diffictio explore individual plant or tiller
development. However, a few models do include gégmm their model framework
(Acevedo &Raventds 2002; Schippers & Kropff 2001; Yan et al. 2004). Hence, for example,
the transformation of the above-ground accumulbtedhass into cuboids for all shoots using
a species-specific relationship between heightvaidth and the self-thinning rule is possible
(Schippers & Kropff 2001). Of course, geometricatgmeters are difficult to estimate on the
individual level due to a lack of field data.
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Figure 2.1: The individual’s and community architectural concept. (A) On the left side an individual is
presented. Its above-ground shoot is covered by a cylinder of height # and width w. Within the cylinder the shoot
parts are divided between green photosynthetic active parts and senescent parts. The below-ground root
system is characterized by its total root length and rooting depth, whereby the system is also divided between
living (brown) and dead ( ) parts. (B) On the right side the community consisting of several individuals on
a gap is demonstrated. The different colours of the shoots indicate different species or plant functional types. The
individuals may overlap concerning their geometry (cylinder), whereby three different forms can be
differentiated: (i) sensitivity: individuals do overlap in a way that either one of them or both suffer due to their
sensitivity to space competition, (ii) complementarity: individuals do overlap in a way that both of them can
share space efficiently without suppressing each other, (iii) mutualism: individuals do not overlap in the true
sense, they moreover support each other. This support by holding each other upright is essential for their
competitive strength; otherwise they would fall to the ground.

In the development of the conceptual framework of the individual-based model
Grassmind, we propose a novel view of individuals in grasslands. The assignment of an
‘individual’ 1s thereby chosen contrarily to other models, where it is assumed as a plant
individual in the biological or genetic sense. Here, we propose a plant’s ramet or tiller to be
treated as a kind of virtual individual. This may simplify the structure of an individual-based
grassland model, because a differentiation between sod-forming and bunch-growing grasses is
not necessary.

We further assume that the individual’s above-ground shoot is covered by a cylinder of
certain height and width, following a species-specific relationship which is constant over time
(adapted from Schippers & Kropft 2001; Fig. 2.1). This relationship is an important factor for

the individual’s competitive strength in the light and space competition process within the
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community. The volume of the covering cylindé,..., includes the shoot biomass of plant
tissue corrected by a factdy, accounting for free space within an individuat®st system:

B V,

cylinder

T, . (2.4)

shoot —

The shoot system of an individual captures a regubich represents simply the
ground area of the covering cylinder. Please b, the shoot system contains free space
between its leaves, the extent of which dependtherparticular species. The depth of an
individual’s rootsdepth ,, can be modelled via a functional relationshiph® &bove-ground
volume of the shoot covering cylinder (Schenk &k$an 2002):

=r V2 (2.5)

cylinder ?

depth

root

wherebyr, andr, represent species-specific parameters. Therefioeeassumption that all
individual ramets or tillers are treated equallykaslogically individual plants is needed.
Ramets, which are usually connected via below-gitatizomes, are now considered to have
their own individual rooting system, rooting as pees the biological mother plant would.

The nitrogen absorption from soil is modelled udimng total root length of the system
(Schippers & Kropff 2001). The greater the summedlengths of all root sections of an
individual’s root system, the higher its absorptiate. For calculating an individual’s root
length the below-ground root biomass is simply mli#d by the specific root leng®RL. It
also has to be considered that most of the nusriaerdg available in the upper horizon of the
soil. Shallower root systems with high total roendgth have greater advantages in the
absorption of nutrients over those with less reagth in the upper soil (Garwood & Williams
1967a, 1967b). As a consequence, the verticalilwlition of the rooting system in soil is
important for both the competition for water antragen of an individual. Thus, it can be
seen that factors specifying the competitive abditan individual in the competition process
for nitrogen and water are strongly related to rib@ system. The deeper the below-ground
system of an individual is rooting, the greaterits access to water resources in soil.
Especially in times of drought its competitive sgéh in the water competition process will
be higher.

Changes in the geometry and allometry of an indi@ictan occur when grasslands are
cut. This activity changes the species-specificcfiomal relationships between height and
width as well as between above- and below-groundnbss, which are assumed to remain
constant over time. To be consistent with the psepaconceptual structure and for the sake of
simplicity, we assume that the produced biomassdlogated solely to the shoot system until
the original relationship between above- and bejpound biomass is reached. Additionally,
the biomass allocated to the shoot should onlycatfee growth in height, but not the width of
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the individual, as long as the original height-twHh ratio is not reached. Subsequently, the
growth of height and width as well as the allocatfeactions to above- and below-ground
biomass pools follow the original system.

Mortality and senescence

In most models only one type of mortality is comsatl. But there can be different
reasons for mortality. Plants die off, for examplecause they have reached their maximum
age, from heat stress, frost or drought. Theseesaok mortality can be modelled either by
testing whether net primary production falls belavthreshold (LPJ-GUESS, Smit al.
2001; LPJ-DGVM, Sitch et al. 2003) or by directly considering temperature thotds
(Schippers & Kropff, 2001). When mortality occurssually the entire plant dies off. But
there are also models that distinguish betweentsdnmd root mortality. This is based on the
assumption that roots are less sensitive to eegzing (Hunet al. 1991).

Senescence is mentioned explicitly in only a fewdels and is mostly included in the
mortality rate (Coughenowat al. 1984; Detling et al. 1979). It has to be considered that dead
plant material contributes to the dynamics of deass communities (Deadt al. 2011). There
are different ways of handling dead plant mateffalme models assume that it goes directly
into the litter pool, while others assume thakinains standing above ground (Detletal.
1979). Standing dead material can afterwards Insfeared to the litter pool e.g. as a function
of precipitation (Detlinget al. 1979).

In the context of biofuel production, we proposensidering multiple mortality
sources in the course of the Grassmind model conéep example, it is important to
differentiate mortality due to harvest from basiortality due to fulfilled life span as well as
from crowding mortality. We propose to model cromglimortality by using the geometrical
framework of covering cylinders with their individluground or projection area. Considering
all individual shoots on an area, the communityeragecov,,,..,, cannot just be calculated
by adding up all individuals’ coverage or projeatiareas (Fig. 2.1). This would lead to an
overestimation by ignoring leaf overtopping and rteygping of individuals. To account for
this, the individual shoot coveragsov is modified using a species-specific “overlapping
factor” f

overlap*

cov, = D foverap [EOV . (2.6)

ommunity
individuak i

This correction factorf ., gives a broader perspective on the interactiobwden species

and their competition for space (Fig. 2.1). Somecss are sensitive to space competition

(‘sensitivity’), others complement each other bwgfl®vertopping (‘complementarity’) and
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some species are only competitive when they ar@ tnelby other ones (‘mutualism’). The
latter case can usually be seen in grass tillehlsgchwcover a small area, but have a great
height.

By using this framework, crowding mortality can barried out by setting species-
specific and total thresholds for the communityeroen a predefined area. Tillers or shoots
are deleted from the area until community covelsfaklow the defined thresholds. Under
certain conditions this can be interpreted astba@tining (Hernandez-Garast al. 1999; Kays
& Harper 1974; Matthew et al. 1995; Yoda et al. 1963).

In terms of senescence the transformation procesnaadelled using a linear rate
dependent on the leaf life span. To ensure theoconiy of the modelled geometry, we
assume that the senescent or dead shoot partsillasgasding within the shoot's geometry.
The same process of transforming living parts ofmaividual to dying ones is also assumed
to be existent in the below-ground root system.u8mg a linear rate dependent on the root
life span, living root parts are transformed tondyroot parts at each time step. The dying
root sections can no longer take up water or n@mnogn contrast to the above-ground
senescent shoot parts, the belowground dying rads @re assumed to go directly into the
belowground litter pool.

Temporal reproduction

Nearly all models make use of environmental condgj which have to be fulfilled for
e.g. successful establishment of new individua®RMIND, Kohler & Huh 2004; LPJ-
DGVM, Sitchet al. 2003). Therefore, models that operate on the poipul level can assume
e.g. tiller reproduction rates (LINGRA, Schapendatkal. 1998) whereas individual-based
models usually simulate the seedling establishroémdividual plants (Coffin & Lauenroth
1990). In the context of biofuel production and feproducing patterns of tiller dynamics in
temperate grasslands it is important to consid&béshment via vegetative and generative
reproduction. Environmental factors such as tentperawater and nutrient availability and
irradiance determine seedling germination. Furthrepecies-specific differences in the
temporal initiation of generative and vegetativprogluction may depend on environmental
conditions such as the photoperiodic length ofya da

Storage use

The use of biomass from the storage pool, if carsid at all, is often included for
regrowth in spring or in times of stress e.g. aftetting (Detlinget al. 1979; Schippers &
Kropff 2001). Thereby, the uptake is not only pbksifrom storage organs or reserves, but
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also from the roots (Detlingt al. 1979). The process of reserve uptake is mosttiaiaed by
some event such as the exceedance of a tempethtastiold (Detlinget al. 1979) or the
occurrence of a cutting event (LINGRA, Schapendenkl. 1998). In the context of biofuel
production, especially with regard to mowing or esttstress situations, it is important to
include the process of storage use of individugts. simplicity it can be assumed that an
individual needs to use its storage biomass indimben its gross primary productidfy
cannot meet the required maintenance respiratiam ggring for regrowth.

Inter- and intra-specific competition and their linkages

The reviewed grassland models provide a differeadiaiew of competition. Limited
resources are only considered to affect the gravftindividuals or the entire community.
However, in most models detailed inter- and inpaesfic competition between individual
plants or shoots is not described sufficientlyetvfmodels include competition processes, but
focus solely on specific resources. For example, rtftodel of Schippers & Kropff (2001)
includes inter-specific competition for nitrogendafight. Species compete for light by
shading other ones due to their leaf area indexdewhey compete for nitrogen due to their
total root length relative to the sum of all ottsgrecies. Another example is shown by the
model of Siehoffet al. (2011) where species explicitly compete for spbased on their
potential growth rates, their current occupied aesal the available space. Table 2.2
summarizes the abiotic factors that may limit gtowand the resources for which species
explicitly compete for all of the reviewed models.also shows the number and type of
species represented (i.e. single species, plactifunal types or a generic mean species) for
the entire community in the model simulations.

As part of the conceptual framework of Grassmind, propose that individuals are
competing for water, nitrogen, light and space. Tptake or use of resources of the
individuals should be linked. Gross primary productstrongly depends on how well the
demand for water and nitrogen can be met by thke Boan individual produces a lower
amount of biomass due to reduced incoming linetardapendent on the root life span, living
irradiance or less leaf area, its demand for watet nitrogen is reduced. The other way
around, an individual is forced to reduce its plgtahetic production when uptake of water
or nitrogen is limited. Uptake of soil nitrogenhghly dependent on the uptake of soil water
resources. Resource limitations can occur dueg@tbsence of several competitors or due to
environmental changes. If limitations are causeather individuals competing for the same
resources, then the limited resources have to $tehlilited among the individuals following
certain rules. These rules can be defined by tleeisp-specific traits characterizing their
success in competition with other species (Fig). 58, e.g. in times of drought individuals
with deep rooting systems may have an advantafeeimvater competition process, whereas
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individuals with fine shallower rooting systems may absorb more nitrogen in the upper soil
layer. Competition for space (crowding) is also an important factor in grassland communities.
Whether and how individuals compete for space is highly dependent on the overlapping of the
different plants within the community. Crowding can result in an increase in individual shoot

mortality.
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Figure 2.2: Exemplary representation of an individual‘s traits characterizing its success in resource uptake and
in competition with other individuals. The above-ground traits are reflected (a) in the height-to-width ratio of the
cylinder covering the shoot, (b) in the leaf life span LLS of the green shoot parts transferred to senescent ones,
(c) in photosynthetic parameters as the maximum photosynthetic rate pm and the initial slope of the light
response curve & , (d) in the leaf angle, (e) in the “overlapping factor” foverlap accounting for leaf overlapping
between individuals and (f) the relationship between root and shoot biomass using the parameter @ and b . For
success in below-ground competition (g) the total length of all branches of the root systems Iengthom, (h) the
rooting depth depthoot, (i) the vertical distribution of root biomass in soil, (j) the root life span RLS, (k) the
water- and nitrogen-use-efficiency (WUE and NUE ) are important traits of an individual.

2.4 Discussion

We reviewed 13 existing grassland models concentrating on how suitable they are for
simulating species-rich temperate grasslands in the context of biofuel production. In the
course of the process-oriented review we presented conceptual approaches for a novel

grassland model, where needed from our perspective.

Existing grassland models do not cover the entire range of essential processes needed

for investigating the suitability of species-rich grasslands for biofuel production. In particular,
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how exactly individuals interact when competing femter, nitrogen, light and space
constitutes an important aspect, which has not lpeedelled sufficiently in recent models.
The proposed modelling approaches of the Grassoundept combine detailed competition
modelling with simplified plant growth modelling apted from recent grassland models. In
doing so, a special emphasis is placed on competfor light, water, nitrogen and space,
which operates on the individual-level.

Parameterizing vegetation models can always bacudliff due, for instance, to
restrictions in the availability of field data. Gmerning grasslands, measurements of the entire
above-ground biomass, coverage and leaf area iodehe community or population level
have been published (Tilmaat al. 2001; Weigelt et al. 2010) or even performed. This is
where the parameterization of detailed competipmtesses or individual-based growth and
death processes can get complicated. To address pineblems, either calibration of the full
model or separate sub-models, if at all possibtetnodern modelling techniques such as
inverse parameterization usiMCMC methodsor pattern-oriented modelling are useful tools
(Hartiget al.2011; Grimm & Railsback 2012).

From our perspective there is a need for a newstznag modelling approach which
offers new possibilities for analysing theoretiaancepts and empirical results on the
relationship between biodiversity and ecosystenttions (e.g. productivity). The detailed
modelling of competition processes raises oppatiemito investigate niche differentiation,
sampling or facilitation theories in species-riglagglands (Kinziget al. 2002 Loreau et al.
2001). Such a model like the Grassmind concept taghtribute to a more comprehensive
understanding of the mechanisms underlying thetipeseffect of biodiversity on ecosystem
functioning.

In the context of climate change, increasing drougrents in Central Europe also
have to be considered (Benistetnal.2007; IPCC, 2007). In periods of drought, nutrients like
nitrogen barely infiltrate deeper soil layers. D@epting plants with a high fraction of roots
in deeper soil layers may then be at a disadvantagepared to shallow-rooting plants
(Garwood & Williams 1967a, 1967b). Although theyvlaaccess to more soil water
resources, their uptake of nitrogen can be very. llowcontrast to long drought periods,
extreme rainfall events with a high amount of ppéetion can lead to nutrient leaching.
Thus, not only climate but also management playsrgrortant role in the development of
grasslands. In particular, management is respan$aol obtainingLow-Input High-Diversity
(LIHD) or High-Input Low-DiversityfHILD) grasslands.

With moderate mowing and fertilizer application ynvhen absolutely essential,
LIHD grasslands can be created. Here, we expect irckdight competition with decreasing
management activity. In contrast, increasing thevmg frequency per year along with
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fertilization or irrigation would result irHILD grasslands. A grassland model such as the
Grassmind concept could also be used to elaboraidelmes for the management of
grasslands in Central Europe according to a contibmaf biofuel production and nature
conservation. As already mentionédHHD grasslands were proposed as a biofuel resource to
be seriously considered as an alternative to mdtwes of annual energy crops (Tilmah

al. 2006b).

In Central Europe biogas production systems, ogdsoplants, are used mainly by
farmers. Currently, these systems are mostly feéd fiesh maize biomass. The useL&fiD
grasslands for these production systems may biewdifilue to the different temporal niches
of various grassland species. Some species becamescent or die at a time when others are
still green and alive. Beside innovative biofuebguction technologies, an alternative way to
produce biofuel is the traditional biomass comlmurstf lignified plant material. Concerning
grasslands, this should be done at the end ofdfetation period, when nearly all plants are
senescent or dead, but still standing. Howeveferdifit temporal niches may also pose a
problem for this system of production. Plants theatome senescent at a much earlier stage
may already be decomposed and no longer standimtg at the very same time others have
just become senescent or have transformed into edetial.

To confront these problems, the proposed Grassgondeptual framework provides
an opportunity to look at certain community comgoss in terms of their suitability for
biofuel production. Such grassland communities @¢aihlen be used for different biofuel
production systems, e.g. in spring after the feat for biogas production and in late
summer/autumn after the second cut for combusfibe.results from this type of model can
also contribute to a more diverse use of land @oed al. 2007). While some areas can be
planted traditionally with annual crops, the useotifer land areas with species-rich, semi-
natural grasslands can open up new opportunities. Aegative effects of the high input
needed for the cultivation of monocultures may bmpgensated on a regional scale by the
positive effects of low-input systems.
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Chapter

Grassmind — Model descriptiorf

3.1 Overview

The model Grassmind is designed in order to siraulgjpecies-rich, temperate
grasslands on a daily basis to identify their pbétrfor biomass production. The model
focuses on competition between species or fundtigraups for the aboveground resources
light and space as well as for the belowgrounduess water and nitrogen. Grassmind is
coupled with the soil model Candy, which simulatasbon, nitrogen and water dynamics in
soil, also on a daily basis (Frankbal. 1995).

Grassmind is an individual-based, process-orienegktation model following the
gap approach typically applied in forest modelsu@irt 1998 FORMIND, Kohler & Huth
2004). Just as on a gap in a forest, all indivisluateract and compete for resources on a
patch, without further assignment of explicit sphgiositions for each individual on the patch.
Individuals consist of an aboveground shoot (itemsand leaves) and a belowground root
system (i.e. root branches). Individuals of difféarage or species/functional group can differ
in the size of these components.

We simulate a landscape of quadratic patches, avphatch sizearea = 10000 cm?2).
The time step is set to one dajt € 1). The main processes calculated on the indatdas
well as population-level are simulated within oimae step according to a specific schedule
(Fig. 3.1 Fig. 3.2). These processes comprise: (a) reproduction wfindividuals and their
(b) emergence as seedlings, (c) mortality of irdiiais including competition for space, (d)
photosynthesis, which can be reduced due to shadimty leads to the gross primary
production, (e) competition for water and nitrogéf), maintenance and growth respiratory
costs, (g) senescence of leaves and root branclieéhp the allocation of the resulting net
primary production leading to the growth of an indual.

% This model description is based on a concept malpahich has been published online (Taubesl. 2012,
supplementary material).
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Figure 3.1: Block diagram of one time step (one day) in Grassmind. The block diagram shows the main
processes acting on the individual- and population-level. Further, links to external climate data, the soil model
Candy and management activities are presented. Arrows indicate an input.

In the beginning, recruited seeds (e.g. sown or produced via an individual’s
reproduction one time step before) emerge as new seedlings. After the emergence of new
seedling, mortality of already established as well as newly emerged individuals is considered.
Those individuals, which survive, can shade each other. As individuals can differ in their
height, the incoming radiation is reduced from the top to the bottom of a patch stepwise to a
certain extent, which is determined by calculating the light climate using an aboveground
discretization. Limited space conditions are calculated based on the fraction each individual is
covering on a patch. Requirements exceeding the available space can result in a higher
mortality in the next time step. Based on the calculated light conditions, each individual
performs photosynthesis resulting in its gross primary production. This gross productivity can
be exposed to temperature, water and nitrogen limitations. Limitations of water and nitrogen
can also be caused by reduced resource availabilities due to competition with other
individuals on a patch. As well, respiratory costs can be changed due to daily air temperature.
The net primary production of an individual is calculated by the difference between the
(eventually reduced) gross production and respiratory costs. Before the net production is used
for growth or reproduction, older leaves and root branches become senescent. That means
leaves get yellow and root branches partly die. Yellowed leaves are still part of the shoot,
whereby dead root branches are directly starting to decompose. After senescence, net

productivity is allocated to reproduction of new seedlings and growth of the respective
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individual, the latter one resulting in new geometrical properties of an individual’s shoot and

root. At last, management activities (e.g. mowing down to a height of 10 cm) are performed.
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Figure 3.2: Flow diagram of one time step (one day) in Grassmind. The left flow diagram shows the main
processes acting within one time step. The right life cycle illustrates again the main processes.

3.2  The geometry of an individual

The following main state variables are supposed to be associated with an individual:
(1) aboveground shoot biomass B, [g dry matter (DM)], (2) belowground root biomass B,
[g(DM)] and (3) reproduction biomass B, [g(DM)]. The aboveground shoot biomass is

divided into biomass of fresh green leaves Bgoo [g(DM)] and biomass of senescent yellow
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[g(DM)]. Further state variables, which describe the geometry of an individual,

leaves B3
can be derived from relationships with species-specific attributes (Fig. 3.3).

» widthw
volume
x chlinb
d
leaf area
index \ shoot
height L biomass
h r Bshoot
Y
x
rooting .root
depth biomass
depth,,., Broot
X total root length

length,

Figure 3.3: Display of the state variables, which correspond with the geometrical characteristics of an
individual. The presented state variables can be derived from the aboveground shoot biomass and the

belowground root biomass.

3.2.1 The aboveground shoot

We model the aboveground shoot of an individual as encased by a cylinder. The
[cm?] is directly related to the shoot biomass:

ylinder
(3.1)

volume of the encasing cylinder V,

chlinder = fs °
where the species-specific correction factor fg [g(DM)/cm?] accounts for free space within the
cylinder not filled with biomass. The species-specific constant height:-width ratio defines the

height h [cm] and width w [cm] for a given cylinder volume.

The space an individual shoot occupies on a patch is determined by the ground area
cov [cm?] of the encasing cylinder. To calculate a patch’s community cover CC
[cm?(cov)/cm?(area)], - that is the area occupied by all individuals relative to the patch area, it is

45



necessary to take leaf overtopping or overlappmgreg individuals into account. For this,
each individual shoot cover is corrected by a ssespecificoverlapping factorf, []. This
factor accounts for overlapping in an implicit manrsince the individuals do not have
spatially explicit positions within the patch. Tlerrected covers of all individuals on the
patch are summed up and normalized by the pateh are

1
area in%i:dgglg O)

(3.2)

The leaf area of the aboveground shoot is obtalnyenhultiplying the biomass$,, .,
with the constanspecific leaf areaSLA [cmAleavesjg(DM)] leading to the leaf area inddx
[cm3leavesjcmAcov)]:

B... [SLA (3.3)

L — __shoot
COv

een
oot

By using only the green shoot biomaB%:., instead ofB,,, in Eqg. (3.3), we obtain

shoot

the green leaf area indey.., important for photosynthesis.
3.2.2 The belowground root

We assume a species-specific allometric relatignshetween an individual’s
aboveground shoot biomads, .and belowground root biomad3, 6 — determined by the
parameterss, ands, (cf. Niklas, 2005):

By = S, Bro.” - (3.4)

shoot — root

As a reasonable approximation, we sgio 1 and defines, as the species-specitioot:root
ratio as in literature often thesatios are determined from field measurements.

The individual’'s ability to access and compete g$oil nitrogen and water resources
strongly depends on its root system. In additiothtoroot biomass, the root system’s vertical
distribution in solil is important. Shallow and higlbranched root systems are beneficial for
nutrient uptake as most nutrients predominantlyuod@c the upper soil layers (Garwood &
Williams 1967a, 1967b). In contrast, deeper roateays strongly increase the access to soil
water resources, particularly during drought pesiod

To calculate the rooting depdlepth,,,, which is required for water uptake (cf. Sec.
3.3.8), we adapt the approach of Schenk & Jack8002), to functionally relate rooting
depths to the aboveground ellipsoidal canopy volubgng the same relationship for the
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volume of an individual's aboveground shoot cylin{Eéq. 3.1) and including thehoot:root
ratio (Eq. 3.4) leads to:

depthoot = r.1 [Efi |:Brootj ’
S

(3.5)

where the species-specific parametgerandr, define the dependence of the rooting depth on
root biomass. Each individual has an own rootirgfeay, irrespective of the fact, whether the
individual has been recruited via generative oretative reproduction. The total branching
root lengthlength,,, [cm], which is required for nitrogen uptake (cecS3.3.9), is related to
the root biomass via thepecific root lengthSRL [cm/gDM)]:

length,,, =B, [SRL (3.6)

root

3.3  Model processes

In the following, we are going to describe detafshe modelled processes important
within the life cycle of an individual. These haa@ready been introduced shortly at the
beginning (cf. 8c. 3.1; Fig. 3.1; Fig. 3.2).

3.3.1 Reproduction

We do not distinguish between vegetative and géneraeproduction. We assume
that the single seed biomass produced via generagyproduction equals the biomass
investment also required for vegetative reproductd one individual (e.g. by rhizomes or
stolones).

The number of potential seedlings,., produced by a reproductive individual is
dependent on the individual's net production altedato its reproduction podB,, and the

species-specific single seed biom&gs,, [9(DM)]:

N = D (3.7)

seed —
B

seed

These potential seedlings can emerge in the ned itep dependent on a species-
specific germination rate (cf. Sec. 3.3.2). Only $eeds sown on a bare field, we include a
time t,, [days] since the sowing datg,,, that is needed for a single seed to germinaseiin
until its emergence (at timg,,+t.).
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3.3.2 Emergence of new individuals

Only a limited numbeﬂ\AlSeed of potential seedlingd.., (cf. Sec. 3.3.1) can germinate
successfully within the same patch:

N

Nseed = Nseed Egermﬁn ' (38)

where germ, denotes the germination rate [1/day]. Environmlemtanditions are not
considered for the germination process, so the igatron rate can be interpreted as a
constant success rate. Those of the potentialisgedwhich cannot germinate successfully,
le. Nseed[(l— germ/o), are assumed to die immediately. The successfelisninated seedlings
have an initial heighty .. Further geometrical properties can be derivethflg,,, (cf. Sec.
3.2).

3.3.3 Mortality

Crowding mortality

On a patch, only a finite number of individualsalsle to survive due to limited space.
Typically, the so-called self-thinning law of a comanity regulates the number of individuals.
Numerous studies promote a power-law describing nmber of surviving individuals
according to their mean weight (Lonsdale & Watkimd®82, 1983Matthew et al. 1995).

Based on an indicatoM . (cf. Sec. 3.3.5), crowding mortality is eitherggered or
not. If space is limited, that meard. <1, a certain number of individual_,,, are
removed stochastically so that the fackdg exceeds the threshold of one:

N, ouwe = NI(1-M,). (3.9)

crowd

Base mortality

Besides crowding, mortality is modelled using @ na [1/day]. The value of this rate
depends on thage of an individual:
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0 ,age=0 (3.10)
rnseed ' O < age< ageep

Myasic ageep < age< life
1 , age= life

n'l):

A basic mortality ratem . [1/day] is used for reproductive individuals, wbas a
special mortality rate is used for seedlings. lidirals in the seedling state, which are not yet
reproducing, have a higher mortality,., [1/day]. The time, at which individuals start to
reproduce, is modelled by reaching a certain agetfie parametegs,,). Further, based on
the species-specific lifespdifie [years] of a reproductive individual, the ratgcan be set to
one. For example, annual species die after one Vhas, m, is set to one, if thege [years]
of an annual individual exceeds one year. Analolyptm bi-annuals and perenniafg, is set
in a similar way, as bi-annuals die after two censige years, and perennial species may
persist for several years.

3.3.4 Light climate

An increasing number of individuals on a patchatifig in height, results in shading
among the individuals. Therefore, the global radratl, [pmol(photons)/m?/s] coming in
above the highest individuals is increasingly aigad down the bottom of the patch. To
calculate light conditions in different heights anpatch, the aboveground space is divided
into layers of constant widtldh [cm]. For each individual, its height determines the
highest layet ,, it covers completely by its shoot:

h (3.11)
)

max

Since the leaf ared is uniformly distributed in vertical direction winh an individual’'s
encasing cylinder (cf. Sec. 3.2), the individualeaf area index contributionI:i

[cm3leavesjcmAarea) is also assumed to be uniformly distributed amdmg covered height
layersi =1,...}

max*

3.12
LIBOV I o<i< (3.12)

—
1
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where cov is the ground area of the individual’'s encasingogttylinder. Summing up these

leaf area contributions for all individuals on agaresults in the patch-based community leaf

area indexLAl, [cm?leavesjcm3area] for each height layer:
1

LAl =——0 Yk,
area in%i‘duas

(3.13)

where k denotes the species-specific light extinction ficeht and aree is the area
expansion of the patch (cf. Sec. 3.1). The lightinexion coefficient is a species-specific
constant parameter and thus, includes the assumgiticonstant leaf angles along the stem of
an individual’s shoot.

To determine the irradiancés [pmokphotonym?/s] at the top of an individual, the
patch-based leaf area indicésAl, of all height layers above the individual's heigre
summed up. Light attenuation through these heiglyers is then calculated using the
approach of Monsi & Saeki (1953):

] (3.14)

TLAIL

— (D'max

where |, [umol(photon)/m?/s] is the non-attenuated inconphgtosynthetic active radiation
(PAR modelled as the daily average photosynthetiocvaatadiation from sunrise to sunset.
Photosynthetic active radiation can be derived ftbenglobal radiation (cf. Sec. 3.4.1). Thus,
competition for light between individuals is corsidd. Species growing higher receive more
light and reduce the light received by smaller wdlials via shading (Fig. 3.4). Noteworthy,
not only green but also standing senescent shawesecontribute to shading. To reduce the
effect of shading we weight the patch-based leah andicesLAl, each by a factor of 1/9,
which equals a subdivision of a 1 m? patch intoud-patches of homogeneous leaf area
distribution.
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Figure 3.4: Illustration of light competition between individual species of different heights. Aboveground space
is divided into height layers of width AN Here, B is higher than A (cf. vertical black arrows) and receives the
unreduced incoming irradiance |, . A is shaded by those parts of B’s leaf area that are higher than A, hence
receiving the reduced irradiance | s (Eq. 3.14). The height layers marked in light grey are shaded by B only,

whereas those in dark grey are shaded by A and B. Each individual’s leaf area is uniformly distributed among the
respective height layers covered.

3.3.5 Space conditions

The indicator M. triggering crowding mortality is calculated as the reciprocal of the
coverage of the community CC on a patch:

M, =CC. (3.15)

Noteworthy, the coverage of the community CC includes species-specific overlapping
factors, thus influencing also the process of crowding on a patch. Crowding mortality is then
triggered earliest in the subsequent time step (cf. Sec. 3.3.3).

3.3.6 Gross primary production

Gross biomass production of an individual is modelled via photosynthesis. Following

the approach of Thornley & Johnson (1990), we calculate the gross photosynthetic rate for a
single leaf using a saturation function:
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_ O o [P (3.16)

Leaf — '
a DI Leaf + pmax

Here, a is the species-specific initial slope of the liglmesponse curve
[umolco,)/umolphoton], p,., IS the species-specific maximum gross photosyitthete
[umolco,)/m?/s], andl ., is the incoming irradiance on the leaf surface ¢l{photonym?/s].
The latter is derived by correcting the incomingdiancel g at the top of an individual (cf.
Sec. 3.3.4):

k (3.17)
|, =——0g,
el 1-m S

where k is the species-specific light extinction coeffitieand m the transmission
coefficient. To obtain the gross photosyntheticerd, , [HmolCo,)/m?/s] of an entire
individual shoot, the single-leaf photosynthesig.(B.16) is integrated over the individual's
green leaf area indek_ . (cf. Sec. 3.2.1):

green

lyen (3.18)
PShoot = I I:)Leaf (L)dL
0

leading to:

0 1 (3.19)
PShoot(I Leaf ) = Prmax {n a '—eif * Prax [ﬂ m) '
k a [k a ) K green + pmax [ﬂl_ m)

Leaf

Multiplying the gross photosynthetic rate (Eq. 3.b9 three conversion factors leads to the
potential gross primary productidaPP,,, [g(DM)/day] of an individual shoot per day:

GPRJot = PShoot(I Leaf )WODM wday warea ! (320)

where @, = 063[4410° [g(DM)/umol(CQy)], Py, = 60060ength,, [s/day] with
length,,, as the number of hours per day from sunrise tsetiandg, ., = cov[cm2].

area

3.3.7 Temperature effects

Photosynthesis and respiration are sensitive téeature changes (Larcher 2001).
Gross primary production (Eq. 3.20) is reduceddiotemperature3 [°C] below a threshold
of 10 °C according to Schippers & Kropff (2001; cf. also Larcher 1976):
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0 T<-5C (3.21)
_|0.02857T + 0142 -5°C<T<2°C

01T 2°C<T<10°C

1 10°C<T

Maintenance respiration, increases with air temperature according to Sarp@ Kropff
(2001, cf. Larcher 1976):
(3.22)
0 T<0°C
f, =< 00330 0°C<T<15C.

{1-29 15°C<T
2 10

3.3.8 Water competition

The individual’'s uptake of water resources from soimodelled taking into account
its demand on the one hand and the soil waterablailon the other hand. The individual’'s
water demandé,,,..., [mm/day], which is equal to its potential transgion, is modelled
using the water-use efficiency concept:

_ GPP (3.23)
demand WUE '
where GPR,; is the gross primary productivity (cf. Sec. 3.3a6HWUE [g(DM)/kg(H;0)] the

water-use-efficiency parameter. By coupling Grasshwith the soil model Candy (Franko
al. 1995), the soil is divided into layers of constadth As = 10 cm down to a soil depth of
2m.

Required water demands of all individuals can lstricted either by (a) the sum of
interception and potential evapotranspiration 9riipthe difference of soil water content and
permanent wilting point (Fischet al. 2013,acceptefl We assume an interception of zero for
grasslands. In the first case, if the required wagenands of all individuals on a patch exceed
the potential evapotranspiration (PET), the watemands are reduced linearly by the
reciprocal of PET to the required water demandghénsecond case, if the difference of soil
water content and permanent wilting point is lowsan the required water demands, these
water demands are set either to zero (if soil wabetent is below permanent wilting point)
or reduced linearly by the reciprocal value of tespective difference to the required water
demands (Fischeat al. 2013,acceptedl
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After the restriction of the water demands by tlweptial evapotranspiration and
permanent wilting point, we calculate on the indual-level how much soil water an
individual can take up by competing with other induals on a patch. Using the vertical soil
discretization of the soil model Candy, we caloailftir each individual the soil laysr,,, the
individual roots into dependent on its rooting dept

_ | depthy,, (3.24)
S =| B0

Soil water uptake is also dependent on the indadidwertical root distribution within
soil (Gerwitz & Page 1974) besides its rooting depior simplicity, roots are assumed to be
equalled vertically distributed among the soil lsythe individual is rooting into. Thus, we
divide the demand of the individuél,,.. by number of soil layers, _,:

9 (3.25)

g — “demand
demand ’
max

where ). . [mm/layer/day] denotes the individual's demand geil layer j. Using the
individual's demand per soil layét, .., we can calculate the patch-based total water

demandd) ., [mm/layer/day] of all individuals for a specificislayerj :

ethtal = Z (6(:£emand) ' (326)
all individuals
ona patch
With j<Spay

To determine the fraction of demanded water arviddal can take up from soil while
competing with other individuals, the calculatiaisGranieret al. (1999) are used. Therefore,
a rooting zoneis determined for each individual. It represertte tomposition of the
respective soil layerg=1,...,s,,., the individual is rooting in (Fig. 3.5).

ax
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Figure 3.5: Illustration of the rooting zones of two different individuals. Horizontal light grey shadow marking
the first three soil layers indicates the rooting zone A of individual A. In this example, the rooting zone of
individual B covers the entire soil. Vertical dark grey shadows around the roots indicate the division of root
branches equally among the soil layers in the respective rooting zone.

For an individual’s rooting zone, the fraction of demanded water, which can be taken
up, is determined individually based on the remaining soil water content 8,

[mm(H,0)/day], which would remain if the patch-based total demands per soil layer 8.,
would be subtracted from the available soil water content:

erem = Z(esjoil - etétal)’ (327)

J<Smax

where 8], [mm/layer/day] is the volumetric soil water content in layer j . The remaining soil
water content 6, represents that content, which would remain in an individual’s rooting
zone, if the total potential water demands of all individuals also rooting into these layers
would be taken up. Using the potentially remaining soil water content, the fraction of an
individual’s demanded water, which can actually be taken up, is then determined by:

0 s Oem < Ooup (3.28)
RW = (grem - QPWP)/ (QMSW - QPWP) , 6 pwp S grem s HMSW >
1 ’ HMSW s Hrem

where the dimensionless factor R, increases from 0 to 1 (Granier et al., 1999). If water
demands exceed accessible soil water resources, demands cannot be fulfilled and the fraction
R, 1s less than one. For example, if the remaining soil water content would fall below the
permanent wilting point 6, [mm/d], the fraction R, is set to zero. If available soil water

resources would merely last for fulfilling partial water demands, uptake is linearly reduced.
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The threshold defining the exceedance of accessibiter resources is determined by
the so-calledninimal soil water contend,,,, [mm/day]:

1 (3.29)
HMSW = HPWP +§ [ﬂch - ePWP)’

where g.. [mm/day] denotes the field capacity. The actualewaptaked, .. [mm/day] of
an individual is calculated using the calculatextfionR, :

Huptake = R\N |ﬁdemand' (330)

The consumption of soil water by the individual8uances the soil water content and
thus, the availability of resources in the nextdisteps.

3.3.9 Nitrogen competition

Nitrogen non-fixing species

Similar to the water uptake, nitrogen uptake isegl@nt on the available nitrogen
content, the individual’s availability to take iplwand its demand. To calculate the demand
N gemana [KGINO3NYCcm?] (i.e. mineral nitrogen NO3N), an approachduben the nitrogen-use
efficiency concept is used comparable to water delmacf. Sec. 3.3.8). The amount of
nitrogen demands cannot always be met by the Soil. nitrogen N, ;... [KG(NO3NYCcmM?],
which is potentially available for absorption byiadividual, is calculated by:

Navailable = z Fj [ﬁNJ - Nmin )u (331)

J<Smax

where N [kg(NO3NYcm?] denotes the available nitrogen resource®iln the individual
has access toN

available
min  LKO(NO3NYcm?] represents a minimum amount of inaccessiloié s
nitrogen andF; represents a competition factor. The factrregulates the amount of
nitrogen an individual can access by competing witirer individuals.F, is defined as the
percentage of root branch lengths of the individnaklation to all other individuals per soil

layer :

Smax all individuak Smax

ona patch
With j<Siax

(3.32)
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By this, it is assumed, that the individual's totabt branchedength,, are divided
equally among the soil layers in itsoting zonecomposed of the soil layers=1...,s,.,, the
individual is rooting in (Fig. 3.5). The potenti@itrogen uptakeN [kg(NO3NYcm?] is then

uptake

defined as:

Nuptake = min(Ndemand; Navailable) - (333)

A nitrogen reduction factoRy D[O;l] can then be calculated by:

RN - Nuptake — mm[l Navailable]. (334)
demand demand

Similar to soil water, soil nitrogen resources ateo influenced by consumption of all
individuals. As water is a means of transport firogen uptake, actual soil nitrogen uptake
N of an individual is modelled proportionally to &sil water uptake:

uptake

N, e =Ry Ry IN : (3.39

uptake demand

Nitrogen fixing species

Symbiotic nitrogen fixation, e.g. by legumes, is dalbed using the following two
assumptions:

* Species able to be in symbiosis with rhizobia, WwHiges atmospheric nitrogen, never
compete for nitrogen with other individuals. Thilsey never experience nitrogen
limitation (reduction factoR, always equals one).

* Receiving unlimited nitrogen, individuals have taypfor with carbon. A specific
fraction rhiz,, of their net primary productiodNPPis given away to rhizobia. This
amount of carbon is in turn missing for structuggbwth or recruitment, but
productivity is not reduced due to nitrogen limiat

Both aspects are considered for nitrogen-fixing cegse throughout the entire
simulation. Positive effects of nitrogen-fixing gps within a mixture appear as the nitrogen-
fixing species do not take place in the nitrogempetition process and thus, more nitrogen
resources in soil are available for other individudurther, nitrogen-fixing species release
their nitrogen amount to soil by death. This resuitan extra supply of available nitrogen in
soil (Liu et al.2011).
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3.3.10 Respiration

We consider respiratory costs for maintenance rofcgiral tissue (i.e. shoot and root
biomass) and for growth of new biomass. Maintenasustsr, ,, [g(DM)/day] are modelled
proportionally to the green shoot biomaBg: ' [g(DM)] and living root biomassB

[9(OM)]:

root

=r, ErT [ﬁBgreen + Broot)’ (336)

rmain shoot

where r is a constant maintenance respiration rate [1/day] the factorf; accounts for
changing demands for maintenance respiration watlying air temperature (cf. Sec. 3.3.7).
Growth respiratory costs are modelled by a congtardmeterr [].

3.3.11 Net primary production

An individual’s produced gross primary producti@PP,, is used for (a) respiratory
costs, (b) growth of an individual’s shoot as waslroot and (c) reproduction. Losses due to
maintenance and growth respiration (cf. Sec. 3)3l&@d to the individual’s net primary
production NPP [g(DMm)/day]:

(3.37)

act main) ’

NPP=(-r ) [(GPR, -1

where GPR,, [g(DM)/day] represents the actual gross primargdpction. The potential
gross primary production (Eq. 3.20) can be redumertbrding to environmental limitations
leading to the actual gross primary production:

GPR, =R, [R, [R [GPP,, (3.38)

whereR,, Ry, and R (all D[O;l]) account for reductions due to soil water limas (R, ;
Eq. 3.28), soil nitrogen limitationsR ; Eq. 3.34), and temperature influenceR(; Eq. 3.21),
respectively.

3.3.12 Senescence of leaves and root branches

All individual (i.e. seedlings and reproductive ividuals) are subject to tissue
turnover by partly yellowing of leaves and dyingrobt branches. The transformation rate
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from green to yellow (senescent) shoot biomB§g,,[d(DM)] is set to the reciprocal value of
the leaf life sparnLLS [days]. Senescent shoot leaves may not photossiathany longer (cf.
Sec. 3.3.6), but may still shade other leavesSet. 3.3.4) as they are maintained within an
individual’'s shoot geometry. The transfer of seeasshoot biomass into the litter pool only
occurs if an entire individual is dying due to nadity (cf. sec. 3.3.3).

Equivalent to leave senescence, the transformaaitenof root branches into dead root
biomass is set to the reciprocal value of the fdetspan RLS [days]. Dead parts are not
maintained within an individual’s root system arebmetry, as they are transferred directly to
the belowground litter pool.

3.3.13 Allocation of net primary production

For reproductive individuals, the net primary protion NPP (Eqg. 3.37) is allocated
to the structural growth of shoot biomass and beothass and to reproduction as follows:

* The fraction allocated to shoot growatioc IS a species-specific parameter.

shoot

» The fraction allocated to root growtiloc
shoot-root ratios, (Eq. 3.4):

is derived from the fixed species-specific

root

_allocg,, (3.39)

root —

alloc

* The remaining fraction is allocated to reproduction

B., = (L—alloc,,,,,— alloc,,,, ) INPP. (3.40)

shoot

For seedlings, the fraction allocated to reprodurctis zero. Hence, the fraction
allocated to shoot growth is set such that thel to&t production NPP is used (i.e.

allocy,,, +alloc,,, =1). This modifies the allocation rates as follows:
- S (3.41)
allocg,,, = Trs

The fraction allocated to root growth is then ded\as in Eq. (3.39). As soon as an individual
leaves the seedling's stage (i.e. its age exaggls; cf. Sec. 3.3.3), the above-described
allocation scheme including reproduction is used.
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3.3.14 Growth of an individual

The described allocations of net primary producti@md the senescence
transformations result in the following changesha individual’'s biomass pools:

ABsSl?got — 1 green (342)
At LLS shoot
green (3.43)
BBy alloc,,[NPP— 1 [BJeen
t LLS
3.44
% = a”OCroot [INPP- 1 |:Broot ( )
At <

Based on the change of the biomass pdJs,andB,,,, the geometrical state variable of an
individual are updated (cf. Sec. 3.2).

3.3.15 Management

Management currently comprises only mowing. If nogvis planned on a specific
date, the height of all individuals on a patch ggeshan the cutting height, for example 10
cm, is decreased leading to a modiffexight:width ratio Based on the changed height of an
individual, its aboveground biomass is also changecbrdingly. For the consecutive time
steps, growth of aboveground biomass only attrdbteheight growth until the time step at
which theoriginal height:width ratiois reached again.

3.4  Model inputs and outputs

3.4.1 Input parameter

The grassland model Grassmind has 37 parametdrgaly whereby five of which
attribute to technical adjustments. Of the rema&r8@ parameters, only nine are not species-
specific. Technical parameters are listed in Table In Table 3.2 the geometrical parameters
and in Table 3.3 all other process parameters as$&nind are shown.
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Table 3.1:Technical parameters of the grassland model Giadsm

Parameter Unit Description value

At days time step of Grassmind 1

4h cm discretization of aboveground space 1
area cmxcm area expansion of a patch 100 x 100
4s cm discretization of belowground space 10
depthy cm soil depth 200

Table 3.2: Geometrical parameters of the grassland models@Griasl.

Parameter Unit Description

Mg cm maximum height of an individual

hw cm/cm height:width ratio of an individual’'s encagicylinder
s g (DM)/cm3 shoot correction factor

fo - overlapping factor

SLA cm?/g (DM) specific leaf area

SRL cm/g (DM) specific root length

ryr - parameters of the rooting depth power-law relatigms
S g (DM)/g (DM) shoot:root ratio of biomass parts

Table 3.3:Process parameters of the grassland model GrassRanaimeters, which are not species-specific, are

written in bold.

Process Parameter Unit Description
Recruitment and emergence Bgeeq g (DM) seed biomass
of new seedlings e days time until emergence of a

seedling since sowing

germy, - germination rate of seeds

ageep years age at which recruitment
starts

Nmin cm minimum height of a
seedling at establishment

sy Date initial sowing date

Mortality LLS days leaf life span (start of

yellowing leaves)

RLS days root life span

life years life span of the individual

Mpasic 1lyear basic mortality rate of

mature individuals
Mseed 1lyear mortality rate of established

seedlings
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Photosynthesis Prmax pmol (CQ)/ma/s maximum gross leaf

photosynthesis

o pmol (CQ)/ umol (photons) initial slope of light response
curve
Photosynthesis k - light extinction coefficient
Competition
m - transmission coefficient
WUE g (DM)/ kg (H,0) water-use-efficiency
coefficient
NUE g (DM)/ kg (N) nitrogen-use-efficiency
coefficient
Competition Nmin kg(N)/cm?2 minimum remaining soil
Respiration nitrogen content per soil
layer
Nix yes/no ability for symbiotic
nitrogen fixation
rhizy, - fraction of NPP given away
to rhizobia (symbiosis)
I 1/day maintenance respiration
rate
ry - growth respiration factor
Growth alloCspoot - allocation rate oNPPto

shoot growth

External climatic data are needed on a daily b&sss.the coupling interface of the
grassland model Grassmind and the soil model, glodbdiation should be provided in
[J/cm?/d], precipitation in [mm/d] and daily airntgperature in [°C]. The grassland model
itself needs a modification of the global radiatesiphotosynthesis is calculated based on the
photosynthetic active radiatiofPAR) in [umol (photonsjm?/s]. Therefore, global radiation is
converted intdPAR by assuming thaPARis approximately half of the global radiation. Day
length and potential evapotranspiration are caledlabased on external climatic data
(Forsytheet al. 1995 Franko et al. 1995).

Further input parameters comprise management dadasail parameters (for an
overview of soil parameters cf. Sec. 3.5.1). Managyet input parameters currently comprise
only those concerned with mowing like the date hid event and the height, to which the
sward is cut down. Further management options c@pfor example fertilization (with
date, amount and type, i.e. organic or inorgamig@ations (date and amount), ploughing and
others.
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3.4.2 Output variables

Typical output variables of the grassland modelsGmand comprise state variables
like the number of individuals, the abovegroundegreand senescent shoot biomass, the
belowground root biomass, the leaf area index, e as geometrical characteristics like
height and coverage. Rates like productivity, carlsequestration in soil or soil resource
consumption can also be observed. Different vaggbhn be calculated (a) on the individual-
level, (b) on the population-level as the sum dfirdlividuals per species and (c) on the
community-level as the sum of all individuals.

3.5 Coupling Grassmind with a soil model

We coupled the grassland model Grassmind with sgady existing soil model. We
choose the extensively studied model Candy (Fratlab. 1995). For both models, a dynamic
link library (DLL) was created. Via an interfacégetexchange of dynamic variables between
both models is scheduled.

3.5.1 A brief summary of the soil model

The simulation model Candy is a one-dimensional smdel simulating the daily
dynamics of nitrogen and carbon in soil (Frardtoal. 1995). Besides, the water and heat
balance in soil is calculated. It covers differdmtrizons down to a soil depth of 2 m.
Calculations are based on the division of soilagers of 10 cm. Soil horizons group soil
layers of homogenous properties like texture. Tablé gives an overview of the soil
parameters needed for the parameterization of @ithorizon. The ones marked in grey can
be derived from others (Maidment 1993).

Table 3.4:Soil parameters of the soil model Candy.

Description Unit
Sand content %
Silt content %
Clay content %
Bulk density g/cm3
Particle density g/cm3
Field capacity \Vol%
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Permanent wilting point \Vol%

Saturated water conductivity mm/day

Soil water dynamics are calculated using a capaeipproach, whereby soill
temperature is simulated using a one-dimensionat benduction equation (Franlet al.
1995). For the simulation of the dynamics of carliorsoil, a differentiation between soil
organic matter (SOM) and primary organic matteg.(eoot tissue, litter or organic fertilizer)
is made. Soil organic matter (SOM) is in turn daddinto active SOM and stabilized SOM,
which are both included in the carbon turnover pssc Soil nitrogen is divided into the
inorganic compounds nitrate and ammonium.

Within the soil model Candy, carbon (C) turnovemprsoritized before nitrogen (N)
turnover. Carbon turnover processes are descrilgefirdt-order kinetics dependent on soil
moisture, soil temperature and aeration. Nitrogenadver is derived from carbon turnover
and C/N ratios of the specific carbon pools remgltin nitrogen-immobilization, nitrogen-
mineralization or no change of the specific nitnogeols (Franket al. 1995).

3.5.2 An interface for linking both models

The interface for scheduling the exchange of imgurtdynamic variables between the
grassland and soil model is designed and implerdeintddelphi using Embarcadero 2010.
Input parameters for both models as well as cliraat management data are organized in a
Microsoft Access database. The following flow degrshows the schedule of exchange of
the dynamic variables of each model via the interf@dig. 3.6).
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Interface

Input of parameterization for soil and vegetation

Y

Database

- Change of vegetation parameters via GUI Grassmind

| Initialization of the grassland model Grassmind |

| |

Database > Input of climate datal

t+At

i Grassmind |

>
> Transfer of soil data to Grassmind2 >i Grassmind |
>

Transfer of climate data to Grassmindl

Database > Input of mowing events3 |—

Performance of a time step of Grassmind
< Transfer of vegetation data to Candy4 < II Grassmind |

Database | > Input of climate datal

y

1

Figure 3.6: Flow diagram of the interface program showing the scheduled exchange between the grassland
model Grassmind and the soil model Candy as well as input by the database. Within the second box the
abbreviation GUI stands for graphical user interface. !climate data from the external database and exported to
Grassmind: global radiation, precipitation, air temperature, potential evapotranspiration. %50il data exported to
Grassmind: permanent wilting point, field capacity, soil water content, mineral and ammonium nitrogen content,
each per soil layer. mowing information exported to Grassmind: date of mowing and height, to which the
grassland is mown. ‘*vegetation data exported to Candy: maximum grassland height, mean rooting depth,
coverage on the patch, uptake of soil water and mineral nitrogen per soil layer, litterfall of green, senescent
leaves and dead root branches. The lower horizontal grey shadow marks the steps executed in a daily time loop (
t + At ). Boxes above are processes, which are run only once at the beginning of the program.
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Chapter

Simulating the Structure and Dynamics of Temperatésrasslands

in the Context of Diversity-Productivity Relationships

Abstract

The role of species diversity on ecosystem funetildce productivity is an important
field in current research. Several field experirseshow positive effects of increasing
species-richness on the productivity of grasslartiswever, simulation studies on these
relationships are rarely performed. We use theviddal-based grassland model Grassmind to
simulate mixtures of temperate herbaceous speésieparameterize and calibrate the model
for a selected Central European grass species pabighed field data. This species acts as a
reference type for additionally defined speciesugso These differ in their characteristics in
acquiring resources individuals compete for, eight] soil water and soil nitrogen. We
analyse the role of these species types in 2-spacitures under extensive management in
the context of diversity-productivity relationship8Ve can reproduce the monoculture
structure and dynamics of the parameterized grpssies well according to density of
individuals, percentage of ground area coveredhkeycommunity, maximum height and leaf
area index of the community. The simulated monoce#f and 2-species-mixtures of the
defined species types show in the mean no effedivefsity on productivity, but for selected
2-species-mixtures slight positive or even negadiffects can be observed. We conclude that
the individual-based and process-oriented grasstaoikl Grassmind is able to reproduce the
monoculture structure and dynamics well. Furthgestigations on the role of certain species
and their traits in shaping the diversity-produityivelationship are required.

4.1 Introduction

Semi-natural grasslands are rich in species diyei®n a local scale the number of
vascular species can exceed those of tropical toi@gilson et al. 2012). For resolutions
smaller than 50 m?, semi-natural temperate gradslahCentral Europe, Baltic and Argentina
under chronic mowing or grazing, provide the highreshness of all vegetation types across
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the world (Wilsonet al.2012). For example, dry sandy grasslands in GeyreRaw on 1 cm?

5 species (Wilsort al.2012; Dengler et al. 2004). In 2007 in Europe about 13.2 % of the
land surface area has been covered by grasslandss(gt Yearbook 2012). Among all
grasslands mostly semi-dry and dry grasslands @sethn the higher mountains provide a
high speciesichness in Central Europe (Ellenberg & Leuschner 2010; Wilson et al. 2012).

The diversity of grasslands has received increasitegest in the last decades by the
setup of large biodiversity experiments, for exaanpl the United States of America, Europe
and Germany (Tilmaet al. 2001 Hector et al. 1999; Spehnet al.2005; Weigeltet al. 2010).
Those experimental studies show commonly a positifert of species-richness or functional
group richness on the aboveground productivityragglands (Reicht al.2012; Spehnet al.
2005 Loreau & Hector 2001). Even under different management regimes, ranffimg no
fertilization and one cut per year to 200 kg/hdéytilization and four cuts per year, a positive
effect increasing with species-richness remainsigeé¥e et al. 2009). Moreover, those
experiments with no fertilization show equal or mvydgher productivity values than those
with high fertilizer input and frequent mowing (Weit et al. 2009). Further benefits of
species diversity are also demonstrated on othlesystem functions like carbon sequestration
in soil and roots (Tilmaet al. 2006b).

Hypotheses have been developed for understandengrtierlying mechanisms, which
induce these effects (Loreat al. 2001; Loreau & Hector2001; Kinzig et al. 2002). In
general, these comprise stochastic selective mexhar{e.g. samplindlilman 1988; Loreau
& Hector 2001; Loreauet al. 2001; Kinzig et al. 2002) and deterministic complementarity
mechanisms (e.g. niche differentiation and fadibta Tilman 1988; Loreau & Hector 2001;
Loreau et al. 2001; Kinzig et al. 2002). By using the additive partitioning approaah
proposed by Loreau & Hector (2001), the selectiowl @omplementarity effect can be
investigated independently. A selection effect wlolbé observed if no multi-species-mixture
exceeds the highest monoculture productivity, thimnoting the relevance of intraspecific
interactions (Loreawt al. 2001, Loreau & Hector 200XKinzig et al. 2002). In contrast, a
complementarity effect would be observed if theduaivity of species exceeds that expected
from the monoculture performance, thus promotirgrédevance of interspecific interactions
(Loreauet al.2001; Loreau & Hector 2001Kinzig et al. 2002). In biodiversity experiment,
generally both effects are observed. In most expantal studies, a positive complementarity
effect increasing with species-richness and timediRet al. 2012; Spehn et al.2005; Loreau
et al. 2001, Loreau & Hector 2001) and a neutral selection effect mainly remainingstant
over diversity levels and time reveal (Re&thal.2012; Spehn et al.2005; Loreau et al. 2001,
Loreau & Hector 2001). For the BioCON and BioDIVpeximents, for example, results can
be explained by accumulated complementarity inugsouse due to increasing functional
diversity and feedback effects, especially conegysioil nitrogen (Reickt al. 2012).
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In this study, the individual-based and proceserded grassland model Grassmind
(Taubert et al. 2012) is used, which is designed for simulatingcsgs-rich temperate
grasslands including management. It is coupled with soil model Candy simulating the
daily dynamics of carbon-, nitrogen- and water-dgits in soil (Frankcet al. 1995). The
model framework allows investigating the structared dynamics of temperate grasslands.
Using published field data of thikena biodiversity experimemt Germany, we parameterize
the model for a typical Central European grass ispedhis species serves as a reference
type, from which we derive additional species typWs simulate different combinations of 2-
species-mixtures from monocultures. Our analysegs@n the following questions:

» Can we reproduce the structure and dynamics obdéenvgrassland field experiments
by using the individual-based simulation model Graisd?

* How does aboveground productivity change from mahaooes to 2-species-
mixtures?

4.2 Material and methods

4.2.1 The grassland model Grassmind

We use the individual-based grassland model Grasbkifior simulating species-rich
temperate grasslands (Taubetrial. 2012). The grassland model follows the principéshe
gapapproach typically applied in forest modelling (Kohler & Huth 2004; Bugmann 2001).
Within a gap, here called patch, individuals do hate a spatially explicit position, but
compete for resources equally (Shugart 1998). Resswonsidered in the model comprise
light, space, soil water and soil nitrogen. A fidiscription of the grassland model is presented
in chapter 3.

To account for the importance of soil resourcesd@rhamics, we couple the grassland
model with the soil model Candy (Franko al. 1995). The soil model simulates the daily
dynamics of water, carbon and nitrogen (Fraekal.1995) and provides the grassland model
each day with information on available soil res@stcExchange between the below-ground
resource availabilities and above-ground vegetabaracteristics are managed by an
interface written in Delphi including both models dynamic link libraries.
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4.2.2 Field data and site-specific conditions

We parameterize the grassland model for the gnassiesFestuca pratensjswhich
occurs typically in Central Europe (Ellenberg & kebner 2010). We choose site
characteristics like climate, soil properties anahagement based on a biodiversity grassland
experiment in Central Germanyena Experimentiena, Germany, 50°55'N, 11°35E), for
which field measurements are published (Weigelal. 2010, Heisset al. 2007, Roscheet
al. 2004). In the following paragraphs, we present ibgtainformation used for the
parameterization similar to the field experiments.

Field observations

In the field, seeds of the monocultUfestuca pratensivad been sown between 11
and 16 May 2002 and have been observed for sixecotise years (Heisset al. 2007;
Weigeltet al. 2010). From the published field measurements, veetiis monthly estimated
coverage of the community on the ground area amnabeu of individual shoots (Heiss¢ al.
2007) as well as twice a year measured abovegrbiordass, community leaf area index,
maximum height and community coverage (Weigelal. 2010). Repeated measurements are
only available for aboveground biomass and swaidhthgWeigeltet al. 2010). Although
field measurements are available until the yeai820@ exclude data from 2008 because the
coverage of weeds on the monoculture ploEe$tuca pratensisexceeds 70% (Weigedt al.
2010). For the years 2002 to 2007, the coverageeefls had been below 20 % (Weigslal.
2010).

Climatic conditions

Precipitation, global radiation and air temperatuage been measured by two weather
stations located near the experimental plots of biadiversity experiment. Data from
November of 2003 onwards are available from thethe¥astation of the Max-Planck-
Institute (MPI) for Biogeochemistry (MPI for Biogelmemistry, Jena, Germany). As our
simulation starts on 16 May 2002, the missing ctar@ata from 1 January 2002 onwards are
substituted by data from the weather station of Enest-Abbe-Fachhochschule Jena (FH
Jena), also located near the experimental plotss(E&bbe-Fachhochschule, Jena, Germany).
For consistency, we use weather data from the Fid fte the years 2002 and 2003 and from
1 January 2004 onwards those of the MPI for Biobeaastry. Within the measurements
from the MPI of Biogeochemistry, there are misswadues from 17 to 21 May 2007, which
we also substitute using measurements from theehrid.J
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Soil properties

In general, the soil of the Jena Experiment issifiesl asEutric Fluvisol (Oelmannet
al. 2007). Although the area had been agriculturalanaged intensively in the last decades,
an influence of former fertilization is not assunm@elmannet al. 2007). From Steinbeisst
al. (2008) detailed information on the soil texturetle upper horizon (down to 30 cm) is
available. Based on this and some assumptions, stenade soil properties for the
experimental monoculture plot dfestuca pratensigAppendix A2). The estimated soil
attributes of the experimental plots seem to belairto soil attributes of an experimental site
in Eastern Germany (Bad Lauchstadt, SaxAniyalt, Germany; Franko et al. 1995), for
which a parameterization of the soil model Candglisady available (Franket al. 1995).

Management

The management activities in our simulations amilar to those of thelena
biodiversity experimen{Weigelt et al. 2010). In the experimental plots, mowing of the
grassland to a height of 10 cm and weeding eaatetwiyear has been performed (Roseher
al. 2004, Heisseet al. 2007). Within our model, we do not consider wegdiRor the first
year, mowing was done eight weeks and 15 weekssdteing (assumed exact dates: 11 July,
24 September; Roscher et al. 2004, Heisseet al. 2007). For the consecutive years (2003 to
2007), we assume mowing to occur on the fifth @& thonths, for which mowing has been
planned (as in some publication mowing is stated as done in early June or early September;
Weigeltet al. 2010, Roschest al. 2004).

4.2.3 Simulation studies

Monoculture of Festuca pratensis

In our simulation experiments, we sow seeds on Hy 002 and simulate in total
100 m2 of the monoculture dfestuca pratensisintil the end of year 2007. We chose this
grass species because much information is avaifable literature. The grassland model
Grassmind requires in total 39 parameter valuegrelddy five of them attribute to technical
adjustments. From the remaining 34 parameter valilesf them are available from literature
for the grass specidsestuca pratensigAppendix A2). The unknown parameter values have
been estimated by inverse parameterization usingf@mation from literature (Hauodt al.
1997) and (b) field data from thkena biodiversity experimeiass described in section 2.2.1
(Appendix A2). Thereby, we estimate in a first stapximum leaf photosynthetic rate by
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reproducing the photosynthetic curve of a singsé lender increasing light conditions (Hauck
et al. 1997) using the functional approach of ThornleyJ&hnson (1990). Afterwards, we
calibrate the remaining parameters of geometryr(fmarameters), growth (six parameters),
reproduction (two parameters) and mortality (twoapaeters) processes stepwise by hand,
trying to reach the data points of the field measwents. An initial value for the parameter
estimation and calibration of water-use-efficiefgdyUE) was used (mean value for legumes
1.4, available from Larcher 2001).

Two-species mixtures

Using the reference of the grass spediestuca pratensiqthe specied-estuca
pratensisacts as a reference type) we define additionatispegroups by changing specific
physical attributes of the reference type. We itigage on the change of productivity values
from monocultures to 2-species-mixtures.

We choose the reference typestuca pratensiss the first species group and derive
three additional groups differing in their charaistiics to acquire resources (Fig. 4.1). The
defined species groups show different attributesdoting depth, total root branch length and
specific leaf area. Rooting depth of group 2 igeéased (by 100 %), so this species group
receives an advantage compared to the other onasdegsing deeper soil water resources. In
contrast, the third defined species group has higbecific root lengtitompared to the other
groups (700 % increase), which increases its ghiditake up nitrogen resources. At least, the
fourth species group is characterized by an inedsgecific leaf ared10 % increase), which
advantages this group in absorbing light resoumeapared to the other species groups.
Trade-offs within the change of the specific partarefor the groups are not considered.
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Group 1 Group 2 Group 3 Group 4
reference soil water soil nitrogen light resource
advantage advantage advantage

Increase of —> Rooting depth Specific root length Specific leaf area

‘by 100 % 700 % 10% ‘

Figure 4.1: Summary of the defined species groups and theingd according to the reference speEiestuca

pratensis(“Increase of ... by ...”).1P<31rameterl’l is adjusted for deeper rooting depths to twice igh hs the

reference specie$ParameterSRLis changed eight times higher than the refereneeisg, which can be
interpreted as an increase in root surface arealoinger root branche&The parametelSLAis increased by
10% compared to the reference species.

We simulate monocultures and all combinations afp2eies mixtures using the
defined species groups on 50 m? in total. For eswwlulation of a mixture the initial number
of seeds to be sown of the respective species gsotgiculated based on the germination rate
and the number of species sown as done in thedigd@riments in year 2002 (Roscle¢ral.
2004, Heisseet al. 2007). By this, a total number of 1000 individugler patch (1 m?)
germinating at the beginning of the simulation aresured with equal abundances of the
respective species groups at seedlings emergemoealaBons have been performed for the
period starting at the sowing date in May 2002 lutiie end of year 2005. Site-specific
conditions according to climate, soil propertiesd ananagement activities are chosen as
explained in section 4.2.2.

The effects of diversity on productivity

We investigate on the increase of productivity franonocultures to 2-species-
mixtures. Net productivity is taken only from thast simulated year. We calculate
aboveground net productivity from the simulatiorimir to observations in the field
experiments (Weigekt al. 2010). That means, aboveground biomass is obsémeel a year
directly before a mowing event (assumed exact d2feof the respective month). Both
observations are summed up for the annual abovedrbiomass in [@M)/m?/yr] to estimate
the annual net productivity rate.
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4.3 Results

4.3.1 Can we simulate the observed structure and dynamiasf experimental

grasslands using the model Grassmind?

In year 2002, individual seedlings emerge two weeks after sowing with a cover of
approximately 20 % of the ground area (Fig. 4.2). As seedlings are exposed to a higher
mortality than a mature individual, within the next two weeks the seedling density and
community coverage decrease down to approximately 150 individuals per m? and 10 %. The
remaining individuals reach the stage of reproductive ability at about mid of June (not
distinguished between vegetative and generative type). During this period, the density of
individuals and the community coverage are rapidly increasing up to approximately 2700
individuals per m? and 100 % until the end of August (Fig. 4.2). With an increasing fraction of
yellowed leaves per individual, reproduction decreases, which results in a decrease of density
down to 1500 individuals per m? but a constantly remaining community coverage at 100 %.
By the start of winter (when daily temperatures, day length and daily radiation have been
decreased), the photosynthetic production of an individual is lowered down and no significant
changes in the density of individuals and community coverage can be observed anymore. In

general, we can observe for both simulated dynamics a good match to the field data (Fig. 4.2).
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Figure 4.2: Simulation of the parameterized species Festuca pratensis using the grassland model Grassmind
compared to observation data for (A) density of individuals and (B) community cover of individuals.
Simulations are run 100 times. Solid green line represents the average of 100 m? and light green shadows behind
indicate their standard deviation. For the community cover no data from October to December are available.
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For the following years 2003 to 2007, the leaf area index and grassland’s maximum
height increase during the vegetation period of favourable climatic conditions and decrease
according to mowing events (Fig. 4.3). Few field data values cannot be reached entirely, but
the general trend of the simulated leaf area index of approximately 2 and the dynamics of the
grassland height ranging between 60 and 10 cm match well the field measurements.
Community cover of total aboveground biomass, including green and yellowed leaves, in
general increases in the first year of establishing to 100 % coverage of the ground area and
remains at that level (Fig. A7.1). Within the growing periods in spring and summer, higher
variations in total community cover can be observed (Fig. A7.1). As leaves get senescent by
starting yellowing in late summer, the community cover is decreasing in late summer down to
approximately 20 % and again increasing in spring (here community cover includes only
green leaves; Fig. A7.1). Community cover of green leaves reaches maximum values of about
70 to 80 % (Fig. A7.1). In general, we can also observe good matches between simulated and

observed community cover despite some small discrepancies, especially in the year 2007 (Fig.
A7.1).
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Figure 4.3: Comparison of the simulated and measured community leaf area index and maximum height of the
sward for the parameterized species Festuca pratensis. Black points represent the field observations and vertical
black lines denote the range from the minimum to the maximum value. Solid green line shows the average of
100 m? simulation and the light green shadow behind denotes the standard deviation.

Simulations of aboveground biomass, including green and yellowed leaves, increase
since emergence of seedlings up to approximately 200 g dry matter per m? (Fig. A7.2).
Mowing events rapidly reduce aboveground biomass by approximately 20 to 50 g dry matter
per m? (Fig. A7.2). During spring and summer biomass is accumulated quickly again,

reaching around 200 g dry matter per m? with + 50 g dry matter per m? (Fig. A7.2). Observed
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and simulated aboveground biomass differ for thary€003 and 2004, for which extreme
values of 600 to 800 g dry matter per m? have lmeeasured (Fig. AZ; Weigelt et al. 2010).

4.3.2 How does aboveground productivity change from monagtures to 2-species-

mixtures?

By looking into detail in the species-mixture comdtions, we can compare the
annual productivity of monocultures with the redpex combinations of the 2-species-
mixtures (Fig. 4.4). Some of the simulated 2-speamxtures show a higher or lower
productivity compared to the best or worst monageltproductivity of the respective species
groups included in the mixture. Nevertheless, thange of productivity from a specific
monoculture to its corresponding 2-species-mixisien average below 10 g(DM) per m2 and
year.
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Figure 4.4: Comparison of the monocultures with the 2-speniedures of the defined species groups for 50
m2. For the monocultures, each species group isesepted by a point. For the 2-species-mixturesh ea
combination of the respective two simulated spegiesips is represented by two semicircles filledhwhe
corresponding colours. We indicate three exampfespecies-mixtures by solid lines (group 1 anddbited
lines (group 3 and 4) and dashed lines (group 24and

We select three examples of the 2-species-mixttoe,which the mean annual
aboveground productivity on 50 m2 changes compadcedoth respective monoculture
productivities (Fig. 4.4). The first selected spsemixture includes the nitrogen favourable
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group 3 and the light favourable species group Hickv shows an annual productivity 5
g(dM)/m23/yr higher than the monocultures of group 3 a&0dgbm)/m?3/yr higher than the
monoculture of group 4 (Fig. 4.4). The second getespecies-mixture shows in contrast an
annual productivity lower than those of the montaas of the reference species group 1 and
the light favourable group 4 (Fig. 4.4). This 2-gpe-mixture is on average 1Q@g1)/m?3/yr
lower than both monoculture productivities (Figd}¥.The third selected species-mixture
includes the deep rooting species group 2 and igi¢ favourable species group 4. The
mixture shows an annual productivity approximatatyhigh as the monoculture of species
group 4 (Fig. 4.4).

4.4 Discussion

We use the individual-based grassland model Grassfor simulating monocultures
and 2-species mixtures. Simulations concerning aaoalture of a typical Central European
grass specieSestuca pratensias reference type show a good match in compavigtbifield
measurements. Based on the reference species, fimeddadditionally species types and
carry out investigations concerning the change mfual aboveground productivity from
monocultures to 2-species-mixtures.

When parameterizing the grassland model for thereete grass specié®stuca
pratensissome field observations are not exactly reachegtef@l factors may influence the
results like (a) uncertainties in the field obseéimas and (b) assumptions of the model. Field
measurements of the biodiversity experiment arkeci@d in different ways and sub-areas of
the plots for the consecutive years (Weigglal. 2010). For example, different investigators
contributed measurements of the years 2002 to 2@0Bing at different temporal and spatial
scales. Measurement and mowing dates are not dotedhexactly and thus, only could
approximately be assumed for the parameterizatio@rassmind. Although weeding was
performed twice a year, the coverage of weeds a&se@ with increasing years of the
experiment (Weigelet al. 2010). This aspect, i.e. the invasion of weedweeding as a
management activity, is not included in the grasslanodel Grassmind, which can cause
some mismatches with our simulation results.

Further, not for all input parameters of our sintiola model is field data available. A
number of parameter values are found in literatbhtg,can be based on experiments, which
differ in design and environmental constraints. ptesthis, some plant attributes like the
specific leaf areaor specific root lengthmay change during the lifetime of an individual
(Schippers & OIff 2000), which we assume to rememamstant over time in our grassland
model. Such variations in input parameters may hawe additional influence on the
simulation results. By performing a local sensifivianalysis of the grassland model
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Grassmind based on the parameterizatioRastuca pratensjsve observe a high sensitivity
of the shoot allocation rate and geometrical patamme(Appendix A3). Especially, the
allocation rate of productivity attributed to theogith of aboveground biomass shows a high
sensitivity for all measurement dates from 2002@07 (Fig. A7.4). Trying to reach the few
extreme measured biomass values in year 2003 &%\&20uld also induce a change of other
well reproduced values in the years 2005 onwardsthEr, increasing the accumulation of
biomass, e.g. by adjusting the fraction of net paodigity allocated to shoot growth, induces
an increase in leaf area index (Fig. A7.8). Thisuim would result in mismatches with field
data of leaf area (Fig. 4.3 A). Thus, we have noluded measurements of the years 2003 and
2004 for calibration. Inverse parameterization dAtgms could be helpful in such cases
(Grimm & Railsback012; Hartig et al. 2011).

Based on the monoculture simulation of the grassiepFestuca pratensjsve carry
out a simulation study of 2-species-mixtures. Intcast to field observations of the planted
biodiversity experiments (Loreau & Hector 2001; Reich et al. 2012; Spehn et al. 2005;
Fargioneet al. 2006), our simulations show in the mean no pasigifect on productivity
from monocultures to 2-species-mixtures, but ameiased variability of productivity values
for the 2-species-mixtures. These discrepancies beagaused by the attributes we have
changed compared to the reference spdésssuca pratensidn measurements of Marquard
et al. (2009b), it is revealed that the grass spediestuca pratensiss on average
underyielding in diverse mixtures. That means,riéference species we used for our analysis
as a basis shows in highly diverse mixtures lessdymtivity than expected from its
monoculture performance (Marquagtal. 2009b). Marquaret al. (2009b) revealed that the
positive effect in diversity-productivity relatiomgs is mainly driven by the increasing
density of overyielding species in mixtures. In ast to the underyielding speciEsstuca
pratensis which we used, predominantly herbs and legumesetuout to be overyielding
species (Marquardt al. 2009b). So, our findings of the species-mixtur@sugations using
the defined species groups could suffer from attab similar to those dfestuca pratensis
Those traits we have changed for the defined spegmups, cannot explain positive effects in
diversity-productivity relationships alone. Congidg a higher density of additionally
parameterized herbs and legumes in future anatyaisyield positive effects in productivity
with increasing diversity as more attributes wil presumably different comparedRestuca
pratensis Further, we created these types without considdrade-offs explicitly. Trade-offs
are usually considered within such studies, so tleasupercompetitive species is included
(Kinzig et al. 2002). For example, species with higher specdaf larea may have shorter
lifespans (Reichet al. 1998). In pursuing future theoretical simulaticmdses using the
grassland model Grassmind, such trade-offs shaliddiuded.

We can conclude that our developed individual-basedl process-oriented grassland
model Grassmind is able to reproduce the monoauktnucture and dynamics of the grass
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speciesFestuca pratensisvell. Further parameterization of additional spsc¢iespecially
herbs and legumes, substantiate either the mogedlpproaches of Grassmind or lead to
required modifications of modelling parts in Gragsin Concerning our simulation study of
defined species types, we can conclude that difteteends (e.g. positive, negative and
neutral) in simulated monocultures compared tortherresponding 2-species-mixtures can
be observed, but in the mean we got no trend fapaicies combinations. This might indicate
that observed diversity-productivity relationshipannot be explained entirely by three
physical functionalities in acquiring resourcese@ps compete for. Future analyses on the
role of certain species traits in shaping the dilgrproductivity relationship in grasslands are
required.
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Chapter

On the Challenge of Fitting Tree Size Distributionsn Ecology®

Abstract

Patterns that resemble strongly skewed size disioibs are frequently observed in
ecology. A typical example represents tree siz&iligions of stem diameters. Empirical tests
of ecological theories predicting their parametease been conducted, but the results are
difficult to interpret because the statistical nogth that are applied to fit such decaying size
distributions vary. In addition, binning of fieldath as well as measurement errors might
potentially bias parameter estimates. Here, we evenfhree different methods for parameter
estimation — the common maximum likelihood estio@at{MLE) and two modified types of
MLE correcting for binning of observations or randoreasurement errors. We test whether
three typical frequency distributions, namely tlosvpr-law, negative exponential and Weibull
distribution can be precisely identified, and howargmeter estimates are biased when
observations are additionally either binned or aontmeasurement error. We show that
uncorrectedMLE already loses the ability to discern functionainfoand parameters at
relatively small levels of uncertainties. The meaatif MLE methods that consider such
uncertainties (either binning or measurement eigog)comparatively much more robust. We
conclude that it is important to reduce binningobkervations, if possible, and to quantify
observation accuracy in empirical studies for rgtistrongly skewed size distributions. In
general, modifiedMLE methods that correct binning or measurement egamnsbe applied to
ensure reliable results.

% Aresearch paper with analogous content has alieaen published (Taubest al. 2013).
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51 Introduction

Strongly skewed size distributions occur in a widiege of natural systems. Examples
include search patterns in animals known as Léight (Edwardset al. 2007; Edwards
2008; Sims et al.2008; Reynolds et al.2009; Reynolds et al. 2012), frequency distribution of
earthquake magnitudes (Gutenberg & Richter 195d)fma sizes (Claet al. 1996; Reed &
McKelvey 2002), and the relation of species abundarto their individual body size (White
et al.2007; Enquist et al.2009; West et al. 2009), in particular, stem size distributions refets
(Shinozakiet al. 1964; Shimano 2000; Enquist & Niklas 2001; Muller-Landauet al. 2006;
Wanget al. 2009). Several studies, for example the self-amgahcriticality (e.g. applied to
forest fires), or metabolic theories, focus ontéure of the processes that underlie such size
distributions and make specific predictions abokbé tfunctional form and associated
parameters (Enquisgt al. 2009; West et al. 2009; Drossel & Schwabl 1992; Turcotte &
Malamud 2004; Stegen & White 2008). For example, Enquist & Niklas (2001) propose a
power-law distribution with a scaling parameter=2 for the stem size frequency
distribution of natural forests (Enquist al. 2009).

When testing theoretical predictions, we have tosater that field data contain
uncertainties. For example, in forest science fadta on tree size are typically analysed by
constructing a stem size frequency distribution cthsummarizes the number of trees in
different measured stem diameter classes (Figaph.5uch a classification of the measured
data into diameter classes of a certain width $® &lalled binning of data. Thus, results of
analyses depend on the class width, whereby irstigrevidths of 5 cm or 10 cm are often
used. Besides the influence of binning, uncertaintin field data can also arise from
irregularities or errors that occur during the mgament process (Chaet al. 2004). Such
measurement errors typically lead to a symmetridatian around the true value. Both
binning and measurement errors change the fundtisinape of the analysed frequency
distribution (Fig. 5.1 b, 5.1 c).
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Figure 5.1: Outline of tree size measurements in forests. (a) In general, the stem diameter of a tree is measured
at breast height (1.3 m). Each tree in the area of interest is tagged, recorded and measured. Using a specific class
width (here 1 mm) each measured stem diameter is classified in its corresponding class. This results in a number
of stems per class and is summarized in a stem size distribution. (b)-(c) Change of the functional form of the
stem size distribution of stem diameters under binning or including measurement errors. (b) Change of the stem
size distribution using binning of measured stem diameters with bin widths of 1 cm and 5 cm. (c) Change of the
stem size distribution adding random measurement errors of standard deviations 0 =1 cmand 0 =5 cm to
the recorded stem diameters.

Two methods are mainly used to estimate the parameters of size distributions -
maximum likelihood estimation (MLE) and linear regression. Linear regression can only be
applied to pre-binned data and thus, leads to serious complications not only in assessing
parameters (Edwards 2008; White er al. 2008), but also in determining the correct
corresponding distribution as the best fit using the coefficient of determination ° (Franziska
Taubert, unpublished data). Instead, MLE is known to be the most accurate approach to date
as it does not require pre-binned data and thus, shows numerous advantages, for example, low
bias and low variance of parameter estimates (Edwards 2008; White et al. 2008; Clauset et al.
2009). Nevertheless, linear regression is still used (Sims et al. 2008; Enquist et al. 2009).
However, even when MLE is applied, difficulties may also arise when there are observation

uncertainties in the data.

In this study we analyse how parameter estimation and the selection of the true
corresponding frequency distribution are affected by (a) binning and (b) random measurement
errors. As far as we know, no previous study has systematically examined the effect of
binning and random measurement errors on MLE parameter estimates and distribution
selection results for decaying size distributions in ecology. To account for binning and to

correct random measurement errors, we propose modified MLE methods. Using large virtual
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data sets produced from three distributions (pdasr-negative exponential and Weibull
distribution) we also test whether potential efecan be corrected by these modified
methods. We investigate the following questions:

 Which effects do observation uncertainties have pamameter estimates and on
determining the underlying frequency distributionhem uncertainties are not
considered in th&ILE method?

» To what extent do the two modifieMLE methods reduce potential effects in
parameter estimation?

* Which advantages do the two modifiddLE methods show in determining the
frequency distribution that underlies the obseorati?

Finally, we demonstrate the application of the stigated methods on a large field data
set of measured stem diameters for a tropical fores

5.2 Materials and methods
5.2.1 Maximum likelihood estimation

In this study, we use maximum likelihood estimat{MLE) for inferring parameters
of frequency distributions. Given a sampte={x}", of observations, the likelihood. is
defined as the probability of obtaining these meaduield data. Assuming that the data
points are independent, can also be written as the product of the singlgbabilities

p(x;6) of each data point depending on unknown paraméters

(5.1)

L(x;6) = |j p(x;6),

where i is indexing the corresponding observation poine. estimate the unknown
parameterd, the likelihoodL(x;6) is maximized.

Different types of assumptions can be made forptiobability p(x;6) of a measured
data point. Most simple is the presumption thas tprobability is given by an assumed
frequency distributionf (x;6) without observation uncertainties. Therefopgx; 6) is simply
replaced by the assumed frequency distributi¢ix; &) :
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p(x;6) = f(x6). (5.2)

In the following, we call this methagtandard MLE

Generally,standard MLEis applied to continuous data. But, field dataenfshow
inaccuracies. Such data inaccuracies occur eithéimming (e.g. rounding measured data) or
as random measurement errors (e.g. non-systematiertainties). Binnings,,, equals a
classification of data into half-open intervalswatith b>0 cm. Measurement stochasticity
£ is typically assumed to be Gaussian distributeth wimean =0 cm and standard
deviationg >0 cm.

meas

To account for binning of data, the multinomial eggeh is used to describe the
expected probability of observing a single datanpevithin a class of a certain width
(cm).This probability depends on the assumed frequéistribution f (x;6) :

nl Bj+b N (53)
p(x;6) = N'DD\I'E% [t B)dx] :

B;

with the j™ bin denoted a*B].,Bj +b) and N; as the number of observations falling in the
corresponding bin. Altogether there ageclasses, Wheré“?ﬂNi =n is the total number of
observations. A few studies have already followki tapproach (Edwardst al. 2007,
Muller-Landauet al. 2006). Here, we call thisILE which considers binning uncertainties the
multinomial MLE

For correcting measurement errors we use a hiaaaichtting function: first it is
assumed that the data points originate from theymned frequency distributiof (x;&) and
are then perturbed by a random measurement efror.

o= [ 1(x6) _ (% =x)? (5.4)
p(x,e)—loLr JEGrf(llx/E)B/ﬁTEex{ 2[b? ﬂdx,

where x; stands for thé" observation valuex,;, and X, correspond to their minimum and
maximum and erf() refers to the Gauss error function. In detail, assume for the
measurement error a truncated Gaussian distributitn mean £ =0 cm and constant
standard deviatioro >0 cm. We set the truncation alo, which results in limits of the
integral (cf. Eq. 5.4) ofupper= min(xmax;xi +3[]7) and Iower:ma><(x,mn;><i —3&7). As
before, for the purpose of this paper we refehte MLE, which amends measurement errors,
as theGaussian MLE
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5.2.2 Virtual data sets

A power-law distribution is mostly used to fit stigly skewed frequency distributions
(Edwardset al. 2007; Sims et al. 2008; Newman 2005). However, a typical question is
whether a given empirical distribution is reallysbeescribed by a power-law distribution, or
whether similar frequency distributions such as emative exponential distribution also
provide a good fit. Therefore we concentrate herteomly on the power-law, but also on the
negative exponential distribution and the Weibuistibution. We include the Weibull
distribution because some studies take it into @ectto possibly describe a size distribution,
for example, of tree diameters (Muller-Landeiual. 2006; Bailey & Dell 1973; Rennolls et
al. 1985). In general, our results will qualitativelgply to most functions that depict strongly
skewed distributions.

To test theMLE methods, we generate 1,000 virtual data setsmpkasizen from
each assumed frequency distributioi(x;&) using the inverse transformation method
(Appendix A4). Parameters of these distributioressat as follows:

e scaling parametesr = 2 for the power-law distribution,
» parameterd = 0.5 for the negative exponential distribution and
e parameterss = 05 and y = 05 for the Weibull distribution.

We choose an exponent af =2 for the power-law distribution because this vaise
suggested by Enquist & Niklas (2001) for the stame Srequency distribution of natural
forests. Parameters of the other distributions cdresen in a way that the shape of the
probability density function is comparable to thasehe power-law distribution. We assume
that these three distributions are truncated inrtreye of[xmin;xmax] (Table 5.1). We set
Xnin =1 cm and X, = 1000cm throughout the evaluations (typical values tiee size
distributions).
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Table 5.1: Presentation of the three assumed truncated freguelistributions f(X;6) used in our

investigations.

frequency distribution f(x60)

power-law distribution cx™@

(6=a) with ¢ = (o —1)/(x;e) - x:la)

exponential distribution Cc [exp{—/] [x}

(6 = /]) with c=A /(exd_ A D(min} - eXF{_ A D(max})
Weibull distribution c D((y—l) @XF{_ B D(y}

(9 = (ﬂ; V)) with

o= (ot} -ex- 530 )

To assess the accuracy MLE for imprecise data, we either apply binning to the
virtual samples or overlay them with a measureneerdr. Concerning binning, we increase
the widthb from b, ;, = 0.1 cm tob,_,, = 50cm with a step size of 0.1 cm. For measurement
errors we randomly generate values from a Gauslsrbution with £#=0 cm ando >0
cm and add them to the produced virtual data. Téametero of ¢, we use in our
investigations ranges froma,,, =01 cm to g, = 14cm increasing with a step size of 0.1
cm. For the example of stem diameter distributionfrestry, a standard deviatian=1 cm
results in an expected average deviation of 20 Ptsfemn diameters of 5 cm. Finally, we
evaluate each sample applying the tHveeE methods (cf. Eqg. 5.2, Eq. 5.3, Eq. 5.4). We also
vary the sample size of the produced virtual datan(= 100; 500; 1,000; 5,000; 10,000;
50,000) to check for an effect of sample size dimadion. Due to computational limitations,
we reduce repetitions and sample size forGaessian MLEfor which we only analyse 250
samples (of sample size = 100; 500).

The calculations result in parameter values fohedistribution dependent og,,, or
Eeas We fit the raw and modified virtual data sets dpplying standard MLEas well as
multinomial MLEor Gaussian MLE This allows us to compare the estimation biasefach
type of observation uncertainty and offers the oppuoty to evaluate the capability of error
correction (Fig. 5.2). For the binned virtual data use the centre of the bins as data values
when evaluated with th&andard MLE
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Figure 5.2: Scheme of the evaluation procedure of virtual data sets.

To evaluate which of the supposed distributions f (X;&) best represents a specific data
sample, we choose Akaike weights (Burnham & Anderson 2002). The distribution with the
highest Akaike weight expresses the data best according to the set of the supposed

distributions.

To apply our methods to real-world data, we use data from a forest inventory on Barro
Colorado Island (BCI) from the year 2000 (Condit 1998; Hubbell et al. 1999; Hubbell et al.
2005%. Stem diameter measurements are recorded as integers (in mm) at breast height (1.3
m). Here, we report data values in (cm). We only take into account those measured trees that
are declared as ‘alive’ and as ‘main stems’. We exclude measurements of the smallest possible
recorded diameter value (1 cm) to avoid distortions due to uncertainty about rounding for the
smallest values (Muller-Landau et al. 2006). Minimum and maximum measurements are set
to X, and X, , encompassing in total 207,105 observations. Bin width is documented as
b= 0.1 cm. The measurement error has been estimated by repeated measurements of 1,715
trees (Chave et al. 2004; Condit 1998). The corresponding deviations have been fitted with a
sum of two Gaussian distributions. The first Gaussian distribution depicts small deviations

increasing with stem diameter in (cm) (mean =0 cm; [Istandard deviation

* The BCI forest dynamics research project was made possible by National Science Foundation grants to Stephen P. Hubbell:
DEB-0640386, DEB-0425651, DEB-0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-
9615226, DEB-9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB-7922197,
support from the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and
Catherine T. MacArthur Foundation, the Mellon Foundation, the Small World Institute Fund, and numerous private
individuals, and through the hard work of over 100 people from 10 countries over the past two decades. The plot project
is part the Center for Tropical Forest Science, a global network of large-scale demographic tree plots.
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sd = 0.0062 diameter 0.0904 cm), according to 95 % of the observed trees. Jéwond
Gaussian distribution describes larger ones (mga&D cm; standard deviatiorsd, = 464
cm), associated with the remaining 5 % of treesa@@let al.2004).

All evaluations of the virtual and BCl data are fpemed with R-2.10.0 (R
Development Core Team 2009). FWILE optimization of the power-law or exponential
distribution, we employ a combination gblden section searchnd successive parabolic
interpolation (Kiefer 1953; Heath 2002); for the Weibull distribution, we choose the Nelder-
Mead algorithm(Nelder & Mead1965; Nocedal & Wright 2006). In cases of convergence
difficulties for Weibull distributed data, we chamthe optimization technique to theBFGS-

B algorithm(Nocedal & Wright 2006; Byrd et al. 1995). All optimization algorithms used are
already implemented in R-2.10.0.

53 Results

5.3.1 Effect of binning and measurement errors

Increasing bin widths generally affects the par@mestimates of all three considered
distributions, thus creating remarkable biases. (5ig a). Based on representative virtual data
of sample sizen = 500, only small bin widths of approximatdby<1 cm ensure a mean bias
of less than 5 % of the true parameter of the spoading distributions (Appendix A5). With
incrementing widths ob >1 cm, nearly all parameters are on average underat&d, except
the parametery of the Weibull distribution, which is highly ovestmated (Fig. 5.3 a).
Maximum absolute values of the mean bias range #8m (a -estimates) to 280 %(-
estimates) (Appendix A5). Standard deviations @f, A- and [-parameter estimates
decrease with bin width, whereas the standard tewiaf y -values increases (Fig. 5.3 a).
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Figure 5.3: Analyses of binned virtual data using differem midths. We evaluate 1,000 virtual data sets of
sample sizeN = 500 from a truncated power-law, a truncated tregi@xponential and a truncated Weibull
distribution. Virtual data are classified into @das of certain bin width (x-axis in cm) before apmd standard
MLE. (a) Effect of binning on parameter estimates radf three investigated distributions. (b)-(d) Effedt
binning on Akaike weightssupposing three distributions (power-law, negataxponential and Weibull
distribution) for (b) power-law distributed virtudhta, (c) negative exponentially distributed \aitdata and (d)
Weibull distributed virtual data. The highesktaike weightletermines the best fit of a frequency distributio

the data. Solid lines represent the mean valueslhaded areas show the standard deviation (of Lal@0lated
values).

Random measurement errors included in the virtaah dets with 500 values also
have substantial effects on parameter estimatgs 4 a). Fora -, A - and S -estimates the
mean parameter value is underestimated (again,pexoe the parametey). Significant
effects already start at a small measurement efoo = 01 cm with a mean bias of
approximately 5 % of the true parameter value (Bigd. a, Appendix A5). Absolute mean
biases reach their maximum in the range betweer®63{a -estimates) and 110 %y¢
estimates) (Appendix A5). Standard deviations oghpeeter estimates show similar trends as
was observed for binned data.
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Figure 5.4: Analyses of virtual data including different lesaf measurement errors. We evaluate 1,000 virtual
data sets of sample sid@ = 500 from a truncated power-law, a truncated tiegi@xponential and a truncated
Weibull distribution. An error value generated franGaussian distribution with meatt =0 cm and an
assumed standard deviatigh (x-axis in cm) is added to each virtual data poigfore applyingtandard MLE

(a) Effect of random measurement errors on paranestémates of the three investigated distributiqb-(d)
Effect of random measurement errors Akaike weightssupposing three distributions (power-law, negative
exponential and Weibull distribution) for (b) powexv distributed virtual data, (c) negative expaedty
distributed virtual data and (d) Weibull distribdteirtual data. The highestkaike weightletermines the best fit

of a frequency distribution to the data. Solid §imepresent the mean values and shaded areasshstandard
deviation (of 1,000 calculated values).

Binning strongly affects the correct determinatmna power-law distribution. Only
for small bin widths (< 0.67 cm) can the correcstdbution be identified using\kaike
weights (Fig. 5.3 b, Appendix A5). Thereby, the distrilauti with the highest weight best
represents the data with regard to the set offtleetsupposed distributions. For widths above
this threshold, an increasing chance of selectitg#oull distribution occurs instead (Fig. 5.3
b). Surprisingly, this effect is not improved bycieasing the sample size (Appendix A6).
Looking at exponentially distributed data, the tdistribution cannot be distinguished from
the Weibull distribution with high certainty everhen the data are not binned. For bin widths
below approximately 0.91 cm the probability of emtr identification is on average higher
than 50 % (Fig. 5.3 ¢, Appendix A5). Above thisasinold, the probability of selecting a
Weibull distribution instead increases stronglyafyg this problem is not solved by increasing
the sample size (Appendix A6). Binning of Weibuistdbuted data does not influence the
determination of the correct distribution over egarange of bin widths (Fig. 5.3 d, Appendix
A5). But, for bin widths between approximately Ih and 15 cm there is a small chance of
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wrongly selecting an exponential distribution. Withcreasing sample size, this small
probability of false selection decreases (Apperb). Note that the Weibull distribution is
more flexible than the other two as it includes additional parameter.

If we include measurement errors in the raw ddte, determination of the correct
distribution usingAkaike weightdased on thetandardMLE method shows different results
than for binning (Fig. 5.3.1.2 b, c, d). Only fonall measurement errors of< 014 cm can
a power-law be identified correctly by looking dtet meanAkaike weights(Fig. 5.4 b,
Appendix A5). For assumed standard deviati@nsgreater than this threshold, a steeply
increasing probability of determining a Weibull wilsution is observed. An exponential
distribution can only be detected for a small mearsent error ofo < 018 cm (Fig. 5.4 c,
Appendix A5). Weibull distributions are in most eascorrectly identified, except for very
large measurement errorg €12 cm) (Fig. 5.4 d, Appendix A5). At this value, tbieance of
selecting an exponential distribution increasemil@r effects can be observed for the data
sets with higher sample size (Appendix AG6).

5.3.2 Performance of modified MLE methods

Using multinomialMLE, the negative effects can be reduced to a largnefFig. 5.5
a, Appendix A5). For the entire range of investghbin widths, a significantly lower mean
bias ofa -, - and y -parameter estimates can be observed not exceadirean bias of 9 %
of the corresponding true parameter value (AppeA8ix For A -estimates binning correction
fails only for high widths (> 11 cm, Fig. 5.5 a)oWever, it reaches a maximum absolute
mean bias of 59 % of the trugé-value, which is still smaller than for employistandard
MLE (Appendix A5). Standard deviations of the paramegtimates increase with increasing
bin width for nearly all parameters, except oy which decreases (Fig. 5.5 a).
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Figure 5.5: Effects of binning and random measurement errarparameter estimation using different MLE
methods. (a) MLE including binningnultinomial MLE and (b) MLE accounting for measurement errors
(Gaussian MLE We evaluate virtual data sets of sample size 500 from a truncated power-law, a truncated
negative exponential and a truncated Weibull distion. Solid lines represent the mean estimatesshaded
areas show the standard deviation (of (a) 1000egaind (b) 250 values). (a) Effect of binning onapzeter
estimates. Virtual data are classified into classesertain bin width (x-axis in cm). (b) Effecf candom
measurement errors on parameter estimates. An etoe generated from a Gaussian distribution witran

M =0 cm and an assumed standard deviatibr{x-axis in cm) is added to each virtual data value

For data overlaid with a measurement error,GaeissianMLE provides significantly
better results than treandardMLE (Fig. 5.5 b). The mean bias remains below 3 %hef t
true a -, (- and y-parameter (Appendix A5). For a large range of meament errors (
o <99 cm), A -estimates are within the 5 % mean bias thresttfor increasing errors of
o > 99 cm, also th&aussian MLEproduces a higher mean bias, reaching up to 14 t#eo
true A -parameter value (Appendix A5).

5.3.3 Determination of the correct frequency distribution

The identification of the underlying distributionittv MLE including observation
uncertainties roultinomial MLE and Gaussian MLE shows a significant improvement
compared tostandard MLE(Fig. 5.6). An underlying power-law or Weibull tibution is
always correctly determined (Fig. 5.6 a, ¢, dFr exponentially distributed data, the correct
distribution is identified with at least 50 % prdiilegy for a large range of bin widthd& 27
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cm, Appendix A5). Above this threshol8lkaike weight$avour a power-law distribution (Fig.
5.6 b). Concerning measurement errors, the exp@bedistribution is identified for all
measurement errorsOfl< o <14) in the range of our investigations (Fig. 5.6 An
increment in sample size has considerable posgffects for both modifiedMLE methods
(Appendix AB).
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Figure 5.6: Effect of errors orAkaike weightdor the correct determination of the underlyingtdbution. In
each row virtual data sets of sample site= 500 which originate from the three truncatedritigtions (power-
law, negative exponential and Weibull distributioae evaluated. Weights are calculated supposiegeth
distributions (power-law, negative exponential akeibull distribution) with (a)-(cmultinomial MLEand (d)-
(f) Gaussian MLEThe highesAkaike weightetermines the best fit of a frequency distributio the data. (a)-
(c) Effect of binning of virtual data sets with dskin width (x-axis in cm) or\kaike weights(d)-(f) Effect of
random measurement errors added to the virtual sketa onAkaike weightswhereby errors are Gaussian
distributed with meant/ =0 cm and assumed standard deviati@n (x-axis in cm). Solid lines represent the
mean ofAkaike weightsand shaded areas show the standard deviatioraYg€)X 1000 values and (d)-(f) 250
values).
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5.3.4 Application: Stem size distribution of a tropical forest

We now employ the investigated fitting methods one$t inventory data, here on
measured stem diameters of a tropical rainfore3t,(®5 observations). We apmtandard
multinomialandGaussian MLEo the field data supposing a truncated power-anegative
exponential and a Weibull distribution (Table 5.HEdr comparison, we also estimated (using
algorithms implemented in R-2.10.0) the paramebdé(®) a truncated power-law distribution
with linear regression on log-log axes, (b) a tated negative exponential distribution with
linear regression on a logarithmic y-axis of stemgbiencies, and (c) a truncated Weibull
distribution with nonlinear regression on log-logea.

MLE parameter estimates do not differ significantlgaading to the different methods
used (whether observation uncertainty was accoumdedor not). For each supposed
distribution according to the different methods imckets from left to righttandard MLE
multinomial ~ MLE ~ Gaussian ~ MLE  estimates  arer =( 192 192 193),
A=(0247;0247; 0247), [=( 248 249 251) and y=(0285;0284;0283. These
results fit well to our findings where we showedttfor a width ofb = 0.1 cm no significant
difference in the mean estimates using standanduiinomialMLE is expected. Additionally,
we showed that for small measurement errorgaf 0.1 cm only small biases are expected
usingstandardMLE compared t@aussianMLE. The stem diameter of 80 % of the BCI data
is less than or equal to 5.8 cm and thus, a snséilnated measurement error of less than
o = 0.1 (with 95 % probability) is expected.

Results of regression methods differ significarftiygm those of theMILE methods
(Appendix A6). Regression provides the followingireates of parameters compared to
standard MLE(in brackets from left to right regressiostandard MLE: c_r:( 214 1.92),
A=(0037; 0247), B=(108 248) and y=(0352; 0285). Additionally, linear regression
favours the truncated power-law distribution astndard MLE the truncated Weibull
distribution. The residual standard error or deteation coefficient? used within regression
does not always reliably determine the underlyingtrithution (Franziska Taubert,
unpublished data).

5.4 Discussion

Maximum likelihood estimation MLE) has been recommended for fitting size
distributions by several authaidwards 2008; White et al.2008; Clauset et al. 2009). In this
study, we investigated the effects of different eéypof uncertainties on the estimation
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procedure usinyILE. We focused on the bias of parameter estimate®arite reliability to
determine the underlying frequency distributionngshkaike weightsOur results show that
using MLE without correcting uncertainties does not solve main problems arising when
estimating parameters of strongly skewed size idigions. This method is appropriate as
long as uncertainties in the observations do nwe leagreat influence. However, even when
the underlying ecological process can be describel by a strongly skewed frequency
distribution, random errors and rounding in theadatquisition process can lead to biased
parameter estimates and falsely selected distabsitiin these cases, we recommend the use
of modifiedMLE methods for including observation uncertainty.

A problem that arises in practical applicationd tiva have not addressed in this study
is the estimation of the truncation paramet[eq;%;xmax]. In particular, it is known that the
definition of x_;, influences the fitting results (Clausstal. 2009). Also the upper truncation
parameterx.., has an effect on the fitting. One could estimaithlparameters in such a way
that the interval[xmm;xmax] covers only a section of the entire empirical sizgtribution.
Fitting only such a section would lead to high bm# the estimation of parameters and in the
selection of the best fitting frequency distributioFitting segments of size distributions
caused either by estimating a narrow inter[\xz,-}ln ; xmax] or by assuming a composite function
to describe the size distribution, are not furtligscussed here. Related investigations
concerning binning can be found elsewhere (VirkaCl&uset 2012).

In our investigations we useBkaike weights based on théAkaike Information
Criteria (AIC), to select the best fitting frequency distribatierom our three assumed
skewed, decaying distributions. TA& may cause some difficulties, for example, wheradat
values are not independent of each other (Kiesd®8&). Additionally, theAIC does not
consider sample size in its calculation. NevertbeleheAlC is an often used criterion for
model selection in ecological studies. Please adlso, theAlC is only a criterion for model
selection, but does not ensure that the bestdittiaquency distribution is in fact the true
underlying one. For this purpose, hypothesis tassecommended.

Regarding the types of uncertainties and theirngtie (i.e. bin widthb and
measurement erray ) we assume them to be known in our study. Howewnepyactice this
may often not be the case. Random measurements eteor be detected in the field by
repeated measurements (Chaval.2004; Condit 1998). However, errors may also be hidden
in such repeated measurements, similar or diffeterthose in the first observations. For
example, similar errors might occur due to irregtiss in the observation object. In general,
it cannot be guaranteed that all possible sourtearmiom errors are captured correctly or
that each can be assumed to be Gaussian distributed
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In practice, both systematic and stochastic observaincertainties will often appear
together, also with differing relative importandeor example, field measurements of tree
diameter with high measurement precision may beenaffiected by stochastic measurement
errors. On the other hand, if field observations mreasured using pre-defined bins with a
width of, for example, 5 cm or 10 cm, the effectdbimning are expected to be greater than
those of random measurement errors. If equally tgeffects of these two observation
uncertainties are present, it might be necessacpnsider both. Therefore, another modified
MLE method should be created to include both uncérésin Further investigations are
needed to determine whether suchMbE method would show an advantage over those
MLEsthat correct only one type of observation uncetiai

Nevertheless, these limitations do not alter ounegal findings, namely, that
uncertainties in the observation process leadriosdifficulties in the correct determination
of the underlying frequency distribution and in #&imation of its parameters. This makes
comparing inferred parameters across data setdtlresological theory difficult. Modified
MLE methods that are discussed in this paper leagymifisantly better parameter estimates
and more reliable identifications of frequency digitions underlying size distributions.
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Chapter

Discussion and future perspectives

In the following, we discuss the presented redulthis thesis. We address three main
aspects: (i) developed approaches and performdgsasa (i) the main results of the thesis
with respect to our main research objectives amyl fiture perspectives and research
guestions.

6.1 The approach developed in this thesis
6.1.1 The developed grassland model Grassmind

Based on the review of grassland models, we deedl@pnew individual-based and
process-oriented grassland model for temperateabedus communities. Several simplified
components of our model allow extensions, whichl¢daon turn suffer from increased
complexity.

One main concept of the developed individual-bages$sland model Grassmind is
the assumption that competition acts spatially ioifplon a patch. This approach is
extensively applied in forest modelling, but regr@s a novelty for grasslands. In forest
models, for which radiation is the predominant tgse to compete for, the patch size
corresponds tahe projected crown area of the largest tree (Shugart 1998; Kohler & Huth
2004). In contrast, temperate grasslands are priedi more on belowground resource
competition like for soil water and soil nutriemtgher than aboveground for light (Ellenberg
& Leuschner 2010; Coffin & Urban 1993). The area of the influence aboveground can differ
from that belowground. By choosing too small paides, light competition may be modelled
correctly, but overestimate belowground resourceapetition. In contrast, too large patch
sizes would overestimate competition for light reses in grasslands. Integrating the
different spatial resolutions for above- and belougmd competition in the current Grassmind
model version is possible by weighting the cumuatommunity leaf area index in the light
climate calculations in Eq. (3.14) of the modelatggion in chapter 3. In the current version
of the grassland model Grassmind, we do so by uswwgighting factor of 1/9, which can be
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interpreted as subdividing a 1 m x 1 m patch inteersmaller sub-patches of homogenous
leaf area distribution, only affecting abovegrouigtit competition.

Another characteristic of our new model is the usadn of competition for light, soil
water and soil nutrients on the individual-leveddaior space on the community-level. For
each individual, reduction factor for light, watand nitrogen could be calculated as the ratio
between actual uptake and potential demands. Tineldadual-based reduction factors in
combination with the size structure of the commumian be used to estimate the relative
strength of intra- and interspecific competition light, water and nitrogen. For example, in a
two-species-mixture, one species consisting of msewdlings, which shows low reduction
factors (that means, strong reduction of potemiredtosynthesis), can be expected to grow in
biomass less than a monoculture. This would indisappression by a dominating species, if
the second species consists of a higher fractiomature individuals with high reduction
factors (that means, less reduction of potentiat@ynthesis). In this situation, individuals of
the second species in turn, will have a higher laissrgrowth than a monoculture. In this case,
intraspecific interactions are more intense thatergpecific ones (Kinziget al. 2002).
However, the above-mentioned example is time degendlhe strength of intra- and
interspecific interactions can change within tintleys resulting in different shapes of the
diversity-productivity relationships.

We built our model as simple as possible in refatto our research questions.
Nevertheless, we believe that some simplified mquets can be extended. One potential
extension includes the relationship between thghteind width of an individual. We use in
our grassland model a simple ratio between heigtweidth remaining constant over time.
Instead, height allometry of herbaceous speciedeatescribed using a power-law, for which
plant height scale with stem diameter to the powfet.53 (Niklas 1995). Another example
comprises the allometric relationship between agomend shoot biomass and belowground
root biomass, which we simplified by using onlyasio (shoot-root rati). However, using an
allometric relation, with an exponent different froone, includes dynamic changes in
allocation rates according to the individual’s gtbwin addition, environmental conditions
could also cause changes in allocation patterndl¢lét al.2000; Reich et al. 2003) or other
species traits (Schippers & OIff 2000). Increasdidcation of net productivity to the
belowground root system can be favoured in timedrotight or low nutrient availability to
ensure sufficient growth (Millegt al. 2000; Reich et al. 2003).This aligns with aspects of
adaptive plant strategies, for which currently remeral rules are available. Another aspect
comprises simplified assumption concerning recraittmof new individuals. In our current
model version of Grassmind, we do not distinguigtiwleen generative and vegetative
reproduction. Further, dispersal of seeds to naighhg patches is not included. We currently
consider new individuals to germinate on the saatelpas their mother plant. Additionally,
we do not include a persistent seed bank. Seedshwllo not germinate are assumed not to
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be viable to germinate ever. However, for simulatstudies on a regional scale or including
disturbances like wildfire, the integration of despal kernels as well as a persistent seed bank
would be required.

Adaptive behaviour of human actions, i.e. flexibl@nagement strategies, is another
interesting possibility for an extension. Currenthates of management actions have to be
planned before the start of the simulation. Howef@r example mowing may be planned
dependent on the further processing of the hargdestaterial. For example, mowing
grasslands, which are needed for combustion, wawdtd be planned for rainy days.
Management strategies could be timed dynamicalbetan structural characteristics of the
vegetation (e.g. ratio of green to dead leavesnoenvironmental conditions (e.g. days of low
precipitation probabilities).

6.1.2 Simulation studies using Grassmind

We simulated multi-species-mixtures using the dgwedl grassland model Grassmind
and defined species groups. The creation of thgsestis based on the parameterized grass
specied-estuca pratensis

During the process of parameterization and calitmabf Festuca pratensjswe had
difficulties in matching all field observations Wwisimulation results. These mismatches can
be traced back either to (a) simplified modellingp@aches in Grassmind or to (b)
inconsistencies in the field observations. For eamfield data of aboveground biomass of
years 2003 and 2004 are three to four times higien in the other years. The attempt to
reach these extreme biomass values results in riibes of other well reproduced data
points, especially concerning community leaf anedek. Techniques like pattern-oriented
modelling or inverse parameterization tools caméeful in such cases (Grimm & Railsback
2012, Hartiget al. 2011). Their use could reveal whether current Miodeapproaches in
Grassmind have to be modified or whether field olgons may include uncertainties.

The species types we defined for our simulatiodistiin chapter 4 are based on our
selection of specific traits concerning differetrategies in acquiring resources and compete
for them with other individuals. For example, welyoohanged the parameters of rooting
depth, specific root length and specific leaf avelaich are important for the groups to acquire
soil water, nutrient and light resources. All otparameters remain constant for all functional
groups based on the speckesstuca pratensisHowever, this grass species performs in field
experiments of multi-species-mixtures worse tharpeeted from their monoculture
performance — denoted asderyielding (Marquard et al. 2009b). Parameterizing other

98



species like herbs or legumes and using them agergfe type could result in different shapes
and effects in the diversity-productivity relatitms. Besides this aspect, no trade-offs
between physiological attributes of the competingecses are considered in these
investigations. Nevertheless, species show in éxgetal observations trade-offs, for
example between seed size and lifespan or betwssnifis leaf area and lifespan (Ryser &
Urbas 2000).

6.1.3 Methods for analysing stem size distributions of fieests

We explored the maximum likelihood approach foineating unknown parameters of
distributions, which describe stem size distribndi@f natural forests. Virtually produced data
of three decaying distributions, i.e. the power;l#we negative exponential and the Weibull
distribution, were analysed including binning anddom measurement errors.

During the analyses, we had to make some assumsptamcerning characteristics of
the chosen distributions. For example, we assurhatithe minimum and maximum stem
diameter values, i.&min andxmax are known before the analysis. However, in pcacthese
values can only be estimated from the minimum aadimum measurement values. Further,
the extent of the measurement error is also assumée known during the analyses. The
width of stem diameter classes of binning can ugua® estimated quite easily from the
measurements. However, uncertainties in the measumts (here the measurement of stem
diameters) can only be estimated by repeated measmts (Chaveet al. 2004). In our
analyses, we modelled measurement uncertainties ®gussian distribution with a mean of
zero. In practice, differences in repeated measeinésn are often fitted by Gaussian
distributions (using regression analysis or maximuikelihood estimation). Biased
estimations occurring within the analyses of errcosld then propagate in the analyses of
stem size distributions (Chavet al. 2004). For example, estimating a lower standard
deviation of a Gaussian distributed error from e¢pd measurements could lead again to
biased estimates in the analysed stem size digtibyi.e. in case of applyin@aussian
MLE).

Another issue for discussion comprises the sepa@atsideration of the systematic
and random errors. In practice, both errors camioxdifferent extents. For example, when a
diameter class width of 20 cm is chosen, an esticheindom measurement error of + 0.1 cm
is less influencing. In this case, maximum likebldoestimation considering binning in the
analyses would reduce the bias in the estimatesa tgreater extent. However, the
independence of both uncertainties cannot be ezdlud
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6.2 Main results

From our review, we have concluded that the alreaxigting grassland models are
only partly suitable for investigating and undemnsltiag diversity-productivity relationships in
grasslands. Some modelling approaches within tistieg grassland and vegetation models
provide good representation of specific procesSesme of these modelling approaches have
been followed within our newly developed grasslamatiel Grassmind.

Parameterization of the grassland model Grassnond ftypical Central European
grass species shows good matches with density dividuals, community coverage,
maximum sward height and community leaf area ind8®me discrepancies between
observed and simulated aboveground biomass vatueiyear 2003 and 2004 are present.
Further investigations have to be carried out oetiwbr either modification in Grassmind is
required or field data include measurement unaeiés.

A simulation study of 2-species-mixtures basedhengarameterized species has been
performed in the context of observed diversity-pcdrity relationships of large biodiversity
experiments. The study has been carried out fardefined species types, which differ only
in the main characteristics defining their compegitstrength in resource acquisition and
competition. Simulating the aboveground produggivior monocultures and 2-species-
mixtures show in the mean no significant trend, bah reveal increases for selected 2-
species-mixtures.

Regarding the analysis of stem size distributiongropical forests using maximum
likelihood estimation, we found by using virtualtyeated field data set that the bias of the
estimated parameter increases more than linearimgteasing uncertainties. That means, for
binning we observed a significant bias of the eated parameter for diameter class widths
greater than 1 cm, whereby for random measurenmemisebias of the estimated parameter is
already present for random errors of 0.1 cm. Moegowe noticed that both uncertainties-
either binning or random errors, complicate theadi@n of the true underlying distribution
usingAkaike weightand lead towards the detecting a wrong distrilbuti®y including such
uncertainties in the maximum likelihood method, @& show that negative effects can be
reduced to a large extent for both — parametemasion and detection of the underlying
distribution. An exemplarily application of the ddoped and examined methods to field
measurements of a 50 ha Panamanian forest on Batooado Island underpin our findings.
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6.3 Outlook

6.3.1 Future investigations using the grassland model Gssmind

The developed model offers the possibility of intpat theoretical investigations. It
would be important to know how a species mixtural(the species’ trait mixture) influences
the shape of the diversity-productivity relationshiThe question raises whether negative or
neutral diversity-productivity relationships arespible and which species traits, species
compositions, climatic conditions, soil propertsmanagement activities are responsible for
corresponding results. Further, by applying pattranted analyses, we can narrow the
range of species traits, which are able to crebsemwed diversity-productivity relationships.
We can link calculated biodiversity effects (compéntarity and selection using the additive
partitioning method) with the structure and dynanigbservable for the whole year rather
than only two measurement days per year. By tlegileéd examinations on the underlying
mechanisms responsible for experimentally obsefinelihgs can be carried out.

Besides such theoretical analyses using definedespéypes, a transfer to practice is
of main relevance. As already proposed in the wafrdilman et al. (2006b), mixtures of
perennial grass species have the potential to itutestfossil energy resources (or
monocultures of annual crops). In this context nedike Grassmind can be a useful tool.
Within the ‘Energiewende’ debate, policy claimstteaergy demands in Germany have to be
fulfilled predominantly by renewable energy souresgil 2050 (BMU). This entails also
challenges in the reliable and steady supply. Sdailifferential across the German landscape
and climate shows intra- and inter-annual fluctwagi The appropriate selection of species
composition for the planted mixtures as well as agg@ment options applied for cultivation
play an important role for the achievable potestifdr biomass production. Using the
grassland model Grassmind, the spatial and tempai@ntials of biomass production by
multi-species-mixtures can be explored. Possibéstions would be:

* Which species should be selected for planted gmadshixtures to obtain high annual
productivity at a specific site?

» Are productivity potentials of these species migtutemporally stable concerning
changing climatic conditions?

» Can we select species mixture, which even cantdrofn climate change?

* Which management options are best for achievinggsgharvest yield?

Besides the assessment of productivity of varioudtirapecies-mixtures, other
aspects like availability of land, conflicts witbdd production, technics for the conversion of
herbaceous biomass to energy products, cultivaimh transportation costs are influencing
the use of bioenergy. Ecological functions (e.dl ®emation or nutrient cycling) represent

101



ecosystem services, which can either (a) influepeductivity of the planted grassland
mixture positively later in time or (b) provide affer mechanism on a regional scale. Serving
as a buffer can be considered, for example, e(tjespatially as part of a regional landscapes
composed of different cultivations (e.g. togeth@hwheat or rapeseed) or (b) temporally on
a local scale as part of a crop rotation.

Besides selecting herbaceous species typically roogu in Central European
grasslands, new substrates or different forms dfvation systems could be included. For
example, perennial energy crop like switchgrasmimcanthus become increasingly relevant
in the context of biomass production for energy supply (McKendry 2002; Tilman et al.
2006b). Monocultures of miscanthus are in termgroductivity similar to maize and can
provide up to 30 t dry matter per hectare and ymatrthey show also positive environmental
effects as semi-natural grasslands show (low irgufertilizers and pesticides; FNR). In
addition to such new plants, different forms of timaltions can possibly provide new
perspectives. Using monocultures of annual or peatrcrops like maize or miscanthus
undersown by highly diverse mixtures of herbacegrassland species offers new options
(e.g. intercropping), which deserves further inigadton. Questions rise like:

*  Which energy crops perform best undersown with ipalgr herbaceous species
mixtures under given site conditions?

* Which crops and herbaceous species sown togethgslement or even facilitate each
other?

* In which system do crops and herbs interfere plajlgievith each other?

6.3.2 Maximum likelihood estimations of size distributiors

Possible applications oMLE for analysing size distributions to the ecosystem
structure of grasslands raise at first the questitvether functional relationships of size
structures as assumed for tropical forests can lasobserved in grasslands. In contrast to
forests, measurements in species-rich grasslamdseftan restricted to aggregated attributes
on the population- or community-level recorded omcetwice per year. For example, to
estimate the aboveground biomass of the commuh#yentire vegetation is cutted, dried and
weighted. Conversely, observations on the indiviidiengel are difficult as a clear definition of
an ‘individual’ for species of various growth fornean differ. Nevertheless, a few studies
recorded the growth of individuals in a grass sw&wd example by measures of individual
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height or shoot biomass (Nagashima & Fkima 1995; Turner & Rabinowitz 1983;
Marquardet al.2009b).

Histograms similar to the stem size distribution fofests can be created for
individual-based measurements of height, abovegttimmass or even diameter of a plant’s
stem in grasslands (Nagashima & Terashima 1995; Turner & Rabinowitz 1983). Factors
influencing the individual growth characteristicavie been tested in small-scale grassland
experiments. Experiments comprise different initedwing density, specific crowding
conditions and fertilization (Nagashima & Terash 1995; Turner & Rabinowitz 1983).
These demonstrate results of significant differenoethe shape of histograms. For example,
height distribution shifted from bimodal shapes@ting densities of 400 plants per m? to L-
shaped distributions at sowing densities of 8001860 plants per m? (Nagashima &
Terashima 1995). Currently, analyses comprise snlymary statistics like skewness and
kurtosis of the respective histogram (Nagashima & Terashima 1995; Turner & Rabinowitz
1983). Regression analyses or maximum likelihoadnagion, as they are applied to stem
size distributions of forests, are not yet commauoacpce for grasslands. By using simulations
of the grassland model Grassmind, we can haveyeasiless to the height and aboveground
biomass of individuals. Applying our developed nueth of stem size distributions in forest to
height and biomass distributions in temperate ¢mads can reveal interesting findings,
which could in turn also be linked to simulatededsity-productivity relationships.
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Appendices

Appendix Al List of reviewed vegetation models

Grassland Models

GEM

Hunt HW, Trlica MJ, Redente EF, Moore JC, Detlitg Kittel TGF et al. Simulation model
for the effects of climate change on temperatesimasl ecosystemEcol Model1991;
53:205-46.

HURLEY PASTURE MODEL

Thornley JHM, Verberne ELJ. A model of nitrogenvitoin grassland?lant Cell Environ
1989; 12:863-86.

Thornley JHM, Cannell MGR. Temperate Grassland Besgs to Climate Change: an
Analysis using the Hurley Pasture Modé&hn Bot200Q 80:205-21.

Thornley JHM. Grassland dynamics: an ecosystemlaiion model CAB International
1998.

LINGRA

Schapendonk AHCM, Stol W, van Kraalingen DWG, BoarBAM. (1998) LINGRA, a
sink/source model to simulate grassland produgtimitEuropeEur J Agron9:87-
100.

PaSim

Riedo M, Grub A, Rosset M, Fuhrer J. A pasture sathon model for dry matter production,
and fluxes of carbon, nitrogen, water and endeggl Model1998; 105:141-83.
Riedo M, Gyalistras D, Fuhrer J. Net primary pratutand carbon stocks in differently
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managed grasslands: simulation of site-specificsifigity to an increase in
atmospheric CO2 and to climate charigeol Model2000; 134:207-27.

GREENLAB

Yan HP, Kang MZ, de Reffye P, Dingkuhn M. A DynamdAechitectural Plant Model
Simulating Resource-dependent Growahn Bot2004; 93:591-602.

Other Grassland Models

Acevedo MF, Raventds J. Growth dynamics of threpital savanna grass species: an
individual-module modelEcol Model2002; 154:45-60.

Coffin DP, Lauenroth WK. A gap dynamics simulatimodel of succession in a semiarid
grasslandEcol Model1990; 49:229-66.

Coughenour MB, McNaughton SJ, Wallace LL. Modellprgnary production of perennial
graminoids — uniting physiological processes andpmometric traits.Ecol Model
1984; 23:101-34.
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Appendix A2 Details for the parameterization ofFestuca pratensis

Table A7.1: List of geometrical parameters found in literatarel estimated for the speciésstuca pratensis

Given is the description of the parameter, its datian in the grassland model Grassmind, its umit the value

found in literature or estimated (for the latteg teference is at last).

Parameter  Unit Description Value Reference

Mg cm maximum height of an individual 120 Estimated

hw cm/cm height:width ratio of an individual’'s encagin 2 Estimated
cylinder

fs g (DM)/cm?3 shoot correction factor 0.002 Estimated

fo - overlapping factor 1 Estimated

SLA cm?/g (DM) specific leaf area 160 Heisseet al. 2007

SRL cm/g (DM) specific root length 38000 Elberse et1&93

ryr - parameters of the rooting depth power-law 5.48/0.301 Estimated (Schenk & Jackson
relationship 2002)

S g (DM)/g (DM)  shoot:root ratio of biomass parts 2.2 Heisseet al. 2007

Table A7.2: List of process parameters found in literature estimated for the speci€gstuca pratensisGiven

is the description of the parameter, its denotaitiotihe grassland model Grassmind, its unit andvétiee found

in literature or estimated (for the latter the refece is at last).

Process Parameter  Unit Description Value Reference
Recruitment and B—-— g (DM) seed biomass 0.0018 Elberseet al. 1993
emergence of new e days time until emergence ofa 14 Heisseet al. 2007
seedlings seedling since sowing
germy, - germination rate of seeds 0.3 Roscheet al.2004
agegep years age at which recruitment 0.055 Estimated
starts
Nmin cm minimum height of a 3 Estimated
seedling at establishment
U Date initial sowing date 16.5.2002 Estimated (Roscher
et al.2004)
Mortality LLS days leaf life span (start of 42 Ryser & Urbas 2000
yellowing leaves)
RLS days root life span 709 Used frdPoa
pratensig(Tjoelkeret
al. 2005)
life years life span of the individual >2 Estimat@&dolflor;
Kihnet al.2004)
Myasic 1/year basic mortality rate of 0.02 Estimated
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Additional simulation graphics
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Figure A7.1: Comparison of observed and simulated community coverage. Visually estimated field data on
cover are available for the respective species Festuca pratensis (green), weeds (red), bare ground (grey) and
dead material (orange). The green line denotes the mean simulated community cover of green leaves of Festuca
pratensis and the black line represents the mean total community cover (green and yellowed leaves) of the grass
species Festuca pratensis for 100 simulation runs. Shadows behind the displayed lines represent the standard
deviation of 100 simulation runs.
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Figure A7.2: Comparison of observed and simulated aboveground biomass. Field data on aboveground biomass
is represented as black points. Repeated field measurements for each field data point are available for the
respective species Festuca pratensis. Vertical black lines denote the range between the minimum and maximum
value of the repeated field measurements. The green line denotes the mean simulated aboveground biomass
(green and yellowed leaves) of Festuca pratensis and the shadow behind the displayed line represents the
standard deviation of 100 simulation runs.
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Additional information on the site conditions usedfor the simulation

Field observations

In the experimental fields different plots wereaddished. Besides others, we use
published data of (a) small establishment plotS ¥33.5 m) and (b) larger monoculture plots
(20 x 20 m). On the small establishment plots mattaces were sown between the 11th and
16th of May 2002 and observed for the first yeareofergence only (Heisss al. 2007).
From the recorded observation data we use the nyoastimated coverage and the tiller
numbers (Heisset al. 2007). Seeds on the larger monoculture plots wk®@ sown between
the 11th and 16th of May 2002 and observed fromrant2002 on for six consecutive years
(Weigeltet al. 2010). Measurements were done twice a year. Ragesnly given in months
since the 1st May of the year of sowing. We asstimeen to be on the 25th of each month
documented as in some publication observationstated as done in late May or late August
(Weigelt et al. 2010, Roscheet al. 2004, Heisseet al. 2007). Observations comprise the
above-ground biomass, community leaf area indexximmam height and community
coverage (Weigeltet al. 2010). For both experimental plots, the small dadje one,
measurements are given for 1 m2 resolution. Onthiwithe large monoculture plots repeated
measurements for biomass and height were done.&i®mas measured in three to four sub-
samples of an area of 0.1 m2 randomly selecteddrstib-area of 15 m x 5 m inside the large
plot (Weigeltet al. 2010). Maximum sward height was measured in 20030 individuals
along a transect of 5 m (with 10 cm distance iwieen), in 2004 three times within a
selected sub-area and from 2005 on at ten spatg @dransect of 10 m (with 1 m distance
between each) within the core sub-area of 15 mm #iside the large plot (Weigedt al.
2010). Individuals were stretched in year 2003 fefmeasurement, but not in year 2004.
From 2005 on, the appearance of the highest leaf mvaasured (Weigekt al. 2010).
Measurement areas or transects differ between #esunement years 2003, 2004 and 2005-
2008. For all other observations no replicatioresaailable.

Soil properties

The experimental plots of the Jena Experiment aveped into four blocks, whereby
within each block soil conditions are assumed tdhdmogeneous. The first block is located
beside the river Saale and the fourth block ishiest from the river. The blocks are arranged
in parallel to the river. From Steinbeiss al. (2008) information on the soil texture in the
upper horizon (down to 30 cm soil) is available.dgeneral, soil is classified asEutric
Fluvisol (Oelmannet al. 2007). In particular, soil types range from saisdyl near the soil
river to silty soil furthest from the river Saalgtéinbeist al. 2008).
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The large monoculture plot &estuca pratensjswvhich we use for parameterization, is
located in the second block. We estimated thetesture in block two by assuming a linear
increase or decrease of the corresponding samdarsi clay contents from locations near the
river to those furthest from the river. From sakture, the other soil parameters can be
derived (Maidment 1993). Table A7.3 shows the pailameters in the upper horizon (0 — 30
cm) used in the simulation and derived from fieldasurements (Steinbestsal. 2008).

Table A7.3: Summary of the important soil parameters used Her garameterization of the soil type in the
model Candy (Franko et al. 1995). Given is a dpson of the parameter, its unit, and the estimaigdes for
the soil of the Jena Experiment found in literatarel the comparison to the corresponding valuakeoil

type from Bad Lauchstéadt used for parameterization.

Description Unit Estimated value in Jena Experiment Value in Candy
Sand content % 29 approx. 25 - 40
Silt content % 52.33 approx. 30 — 65
Clay content % 18.67 approx. 10 — 30
Bulk density glcm3  1.32 1.37
Particle density glcm3  2.56 2.56
Field capacity V% 33 29.9
Permanent wilting point V% 13.3 17.7
Saturated soil conductivity mm/d  163.2 260

Details on the inverse parameterization steps

We estimate the geometrical parameter (pmax) bryodeing the leaf photosynthetic
rate of a single individual under various light dgions (comparison of Fig. A7.3 (b) with
Fig. A7.3 (a) of Haucket al. 1997). In contrast to Hauc&t al. (1997), which fitted an
exponential functionP_. = p,..,—K[' to the measured leaf photosynthetic rafs,
[Lumol/m?/s], we reproduced their functional cunang the functional approach of Thornley
& Johnson (1990) ofP, =(alp,.[1)/(all +p,,) with | as the photon flux density

PPFD in [umol/m?/s],p,... the maximum photosynthetic rate [pmol/m?/g],the initial slope
of the light response curve [umol/umdjandr specific parameters.
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Figure A7.3: Curves of leaf photosynthetic rate for differennditions of photosynthetic photon flux density
PPFD. (a) Figure copied and modified from Haetlal. (1997). Hauclet al. (1997) measured rates at different
PPFDs on leaves of the grass speEestuca pratensifpen circles: wild-typ&Rossaclosed circles: stay-green
mutant Bf993. Their measurements are fitted to an exponefiattion dependent on PPFD (Hauek al.
1997). Grey dotted vertical and horizontal lineswdt help to compare the results of Hauck et @97} with
(b) our fit of the functional approach for leaf phgynthetic rate of Thornley & Johnson (1990).
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Appendix A3 Local sensitivity analyses
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Figure A7.4: Local sensitivity analysis for the response vagabboveground biomassf the specific
measurement dates of the Jena biodiversity expatirdéfferent parameters categorized into geomefrywth,
mortality and recruitment are one at a time vatgdt 20 %. From the resulting response of aboveustou
biomass at a specific date, a sensitivity indegalkulated. This index ranges between 0 and 3.l8evaf 1
indicates that an increase of a parameter by 28suits in a similar increase of aboveground biorbgs20 %.
Those indices smaller than one indicate a smallange and those higher than one a greater incréage.
means, a value of 0.5 indicates that an increasa phrameter by 20 % only results in an increase of
aboveground biomass by 10 %. In contrast, a val@eimdicates that an increase of a parameter b3628sults

in a higher increase of aboveground biomass by 4(H&se, aboveground biomass is mostly sensitive to
geometrical parameters and a growth parameterthieefraction of net productivity allocated to theowth of
aboveground shoot biomaakocsp oo
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Figure A7.5: Local sensitivity analysis for the response vagablaximum sward heightf the specific
measurement dates of the Jena biodiversity expatirdéfferent parameters categorized into geometrgyth,
mortality and recruitment are one at a time valigd: 20 %. From the resulting response of maximuigt at
a specific date, a sensitivity index is calculafBlais index ranges between 0 and 3. A value oflicates that an
increase of a parameter by 20 % results in a ginm@ease of maximum height by 20 %. Those indgrealler
than one indicate a smaller change and those hitjlagr one a greater increase. This means, a vdlGe50
indicates that an increase of a parameter by 2Bt results in an increase of maximum height by%40In
contrast, a value of 2 indicates that an incredsemarameter by 20 % results in a higher incrediseaximum
sward height by 40 %. Here, maximum sward heighthm sensitive to most of the parameters. Howardy,
the 28" of May for the years 2004, 2005 and 2007 seerbe tgensitive to the parameters.
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Figure A7.6: Local sensitivity analysis for the response vaBabbmmunity coverageof the specific
measurement dates of the Jena biodiversity expatirdéfferent parameters categorized into geometrgyth,
mortality and recruitment are one at a time vakgd: 20 %. From the resulting response of commuaityer at
a specific date, a sensitivity index is calculafBlais index ranges between 0 and 3. A value oflicates that an
increase of a parameter by 20 % results in a similerease of community coverage by 20 %. Thoseéaxd
smaller than one indicate a smaller change ancethimher than one a greater increase. This mearaua of
0.5 indicates that an increase of a parameter 9 2@y results in an increase of community cowed® %. In
contrast, a value of 2 indicates that an incredseparameter by 20 % results in a higher increas®mmunity
cover by 40 %. Here, community cover seems to gensitive to almost all parameters.
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Figure A7.7: Local sensitivity analysis for the response vddatbmmunity coverage of green leawssthe
specific measurement dates of the Jena biodivessitgriment. Different parameters categorized gagometry,
growth, mortality and recruitment are one at a tiraged by = 20 %. From the resulting responseoafimunity
coverage of green leaves at a specific date, disigsndex is calculated. This index ranges beém 0 and 3. A
value of 1 indicates that an increase of a parantgt@0 % results in a similar increase of commundverage

of green leaves by 20 %. Those indices smaller tm@nindicate a smaller change and those higherdha a
greater increase. This means, a value of 0.5 itefidhat an increase of a parameter by 20 % oslyltsein an
increase of community coverage of green leavesOod1in contrast, a value of 2 indicates that amease of a
parameter by 20 % results in a higher increase oofincunity coverage of green leaves by 40 %. Here,
community coverage of green leaves seems to be segitive to geometrical parameters and a growth
parameter, i.e. the fraction of net productivitgitis allocated to the growth of aboveground siimhass.
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Figure A7.8: Local sensitivity analysis for the response vddatbmmunity leaf area indeaf the specific
measurement dates of the Jena biodiversity expatirdéfferent parameters categorized into geometrgyth,
mortality and recruitment are one at a time vabgdt 20 %. From the resulting response of commulaaf
area index at a specific date, a sensitivity indegalculated. This index ranges between 0 and Aléde of 1
indicates that an increase of a parameter by 28sUits in a similar increase of community leaf anelex by 20
%. Those indices smaller than one indicate a smaliange and those higher than one a greater serdhis
means, a value of 0.5 indicates that an increasepairameter by 20 % only results in an increasmofmunity
leaf area index by 10 %. In contrast, a value afdicates that an increase of a parameter by 2@4dlts in a
higher increase of community leaf area index by%40Here, community leaf area index seems to be only
sensitive to geometrical parameters and a growthnpeter, i.e. the fraction of net productivity tihsallocated
to the growth of aboveground shoot biomass.
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Appendix A4 Details on the evaluation procedure andlormulas

Standard MLE

As perfect observation values of the sampale(x1 ..... xn) are assumed, we maximize the
likelihood (cf. Eqg. 5.1). Thereby, faviLE that do not consider observation uncertainties the
probability p(x; 8) is merely replaced by the corresponding densitgtion f(x; 8) for each
frequency distribution (Table 5.1):

@ in(Lxd)=Y (@0 B %8017 )

(b)  In(LecH)= > IN( Texp(A ) - expEA )l BXPEA X))

i=1

©  In(L(x8)= X In(By Texp(-BT,) -exp- AL expl-B 1) )

Transforming these likelihoods leads to:

min max

(@  In(L(x;8)=nln(a-1)-n IZIh(x'(”'l) - X, )— a Dzn: In(x)

(b) In(L(xA)=n0n(A)-nn(exp(- A &, ) - exp- A X)) - A Eﬁ:x

i
i=1

© (g =nin(p0p)-ninlexl-px )-exsl- A5+ (-3 im(x ) -2

Multinomial MLE

Following Eq. (5.1) we also maximize the likelihodzlit the probabilityp(x; 8) accounting
for binning of data is now expressed by the mutnra distribution including the
corresponding density function(x; 8) of the assumed frequency distributions. Thereby
denotes the sample sizn, the number of observations falling in the biinwith j=1..,q
and q the total number of bins. Bins are half-open ideB’[Bj;Bj +b) of width b (cm) and
start atB, =x_,, (cm). For each bin a theoretical probability, désng an observation value
to fall within that bin, is calculated based on #ssumed distribution with its density function

f(x; 6):

B. +b ~(a-1) -(@-D)
N j B“? -(B, +b
(@) f(xa):= j f(xa)dx=— -ga-l)( _]X—(o)l)
B min max

]
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B +b exp- A B, )-expl- EﬁBj +b))

b s — . =
(b) f(xA): If(X’A)dX exp(= A Xy, ) - exp(= 4 X, )

B

]

coc e o e P BB )-exil- (B, +b))
© By = [fxBy)dx= exil- B0 )—exd- B

B

]

For each density function of the three distribusiome then get the following specific
likelihood:

In(L(x6))= |n(n!)—jz:[|n(Nj!)+ N, tn(F(x0)

Gaussian MLE

Following Eqg. (5.1) we maximize the likelihood acdimg to the probabilityp(x; 6), which is
expressed by the convolution of an assumed trudidagissian distribution for measurement
errors ¢,...~ N(z=0,0>0) and the corresponding density functigfx; ) of the assumed
frequency distribution (Table 5.1):

n(L(x6))=Y |n[min (Xm];x'+3w) f(x6) &xp(—%)dx}

max (Xpin ;% —30 ) o Lerf (3/ \/E)D\/Z Ut

whereerf () represents the Gauss error function.

Random number generators for the considered frequesy distributions

Using the inverse transformation method to genevateal data values from an assumed
frequency distributionf(x; 6), the inverse of the cumulative distribution fuoctiF *(r; 4),
also known as the -quantile, is calculated. On the basis of a rangoptbduced number
r0[0;1] drawn from a uniform distribution, we calculateuetinverse of the cumulative
distribution function in the following manner, sbat it is easier to solve them afterwards
according tox :

1-F(x6)=1-r - [1-F]*1-r;6)=x
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This results in the following random number genarébr r -quantiles) for each distribution:
() Xoouerims = [ )T -0 e ile [
) e = =5 I(( ) oXF- A () - eXpl- A ) + x4 T, )

© xWeibu..{—;Eﬂn((l—r)Eﬁexp(—ﬁtx;m)—exp(—ﬁcx;ax))+exp(—m;ax))}w
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Appendix A5 Specific key points of the evaluationfahe virtual data samples

Table A7.4: Display of specific key points evaluated during #ssessment of maximum likelihood methods.

distribution  Specific key points Binning Measurement error
f(x;6) Standard Multinomial Standard Gaussian
Power-law  Mean bias greater than or equalto 5% b >1.5 none o >0.33 none

true parameter for a bin width or o
(cm) of:
Max. absolute value of mean bias (% o 48 % 0.95 % 37 % 0.55 %
true parameter)
Next best distribution having the same b > 0.67 none o >0.14 none
a higher mean weight for a bin width
or g (cm) of:
Negative Mean bias greater than or equalto 5% b > 1.6 b>11 g >027 o0 >99
exponential true parameter for a bin width or o
distribution  (cm) of:
Max. absolute value of mean bias (% o 92 % 59 % 84 % 14 %
true parameter)
Next best distribution having the same b >0.91 b >27 o >0.18 none
a higher mean weight for a bin width
or g (cm) of:
Weibull Mean bias greater than or equalto 5% b > 1 none o >0.08 none
distribution  true parameter for a bin width or o
(cm) of:
Max. absolute value of mean bias (% a b >1.2 b >44 g >0.17 none

true parameter)

Mean bias greater than or equal to 5% 100 % 4.8 % 92 % 2.8 %
true parameter for a bin width or o

(cm) of:

Max. absolute value of mean bias (% o 280 % 8.6 % 110 % 24 %

true parameter)
Next best distribution having the same none none o >12.0 none
a higher mean weight for a bin width

or g (cm) of:
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Appendix A6 Further graphics on theAkaike weights
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Figure A7.9: Effect of binning omAkaike weightsvith increasing sample size usisgaindard MLE Weights are
calculated with MLE assuming perfect observatistar(dard MLE dependent on the used bin width (x-axis

in cm). The higheskaike weightdetermines the best fit of a frequency distributio the data. The evaluated
virtual data sets originate from the three trundadéstributions (per column from left to right: pewlaw,
negative exponential and Weibull distribution) whienderlie them. Rows from top to bottom: Effecbaining

on the identification of the correct distributioaded on virtual data of sample sile= 100; 500; 1,000; 5,000;
10,000 and 50,000. Solid lines represent the midaike weightand shaded areas show the standard deviation
(of 1,000 calculated values).
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deviation (of 1,000 calculated values).
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the Gaussian distributed errors with megr=0 cm and assumed standard deviati@n (x-axis in cm). The
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