PhD Dissertation 16/2010 Formation of hybrid N₂O and hybrid N₂ due to codenitrification and its analysis by a ¹⁵N tracer technique Oliver Spott ISSN 1860-0387 # Formation of hybrid N_2O and hybrid N_2 due to codenitrification and its analysis by a ^{15}N tracer technique Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät III der Martin-Luther-Universität Halle-Wittenberg Institut für Geowissenschaften von Herrn Dipl.-Geograph Oliver Spott geb. am 01.04.1977 in Leipzig Gutachter Prof. Dr. Manfred Frühauf Prof. Dr. Christoph Müller Verteidigt am: 23.11.2010 ## Contents | I. | Danksagung | IV | |------------------|--|------| | II. | Zusammenfassung | VI | | III. | Summary | VII | | IV. | List of Tables | IX | | V. | List of Figures | X | | VI. | List of abbreviations and units | | | | 92 | | | VII. | Appendix | XVII | | 1. Ir | ntroduction and objectives | 1 | | 2. T | he process of codenitrification | 4 | | | 2.1. Biochemical fundamentals | 4 | | | 2.1.1. Formation of hybrid N ₂ O and hybrid N ₂ by abiotic N-nitrosation reactions | | | | 2.1.2. Biotic N-nitrosation due to an enzymatic catalysis | | | | 2.1.3. The dual character of denitrification | 7 | | | 2.2. Reports on microbial formation of N ₂ O and N ₂ by codenitrification | 12 | | | 2.2.1. Formation of N ₂ O | 12 | | | 2.2.2. Formation of N ₂ | 20 | | | 2.3. Controlling factors of codenitrification | 22 | | | 2.3.1. O ₂ availability | 22 | | | 2.3.2. pH value | 22 | | | 2.3.3. Respiratory substrates | 23 | | | 2.3.4. Type and kinetic of nucleophiles | | | | 2.3.5. Physiology of denitrifying species | 25 | | 3. ¹⁵ | N-aided online determination of soil N_2 and N_2O release on a labora scale | | | | 3.1. Abstract | 28 | | | 3.2. Introduction | 28 | | | 3.3. Material and Methods | 30 | | | 3.3.1. Basic principle of flux determination | 30 | | | 3.3.2. Instrumental set-up | 31 | | | 3.3.3. Flux measurement | 32 | |----|---|--------| | | 3.3.4. Flux calculation | 33 | | | 3.3.5. Soil treatment and incubation | 35 | | | 3.4. Results | 36 | | | 3.4.1. Validation of N ₂ capturing by Köstrolith SX6® | 36 | | | 3.4.2. Validation of ¹⁴ N ¹⁶ O interference on N ₂ flux determination | 37 | | | 3.4.3. N-fluxes, soil moisture, and soil nitrate of incubated soil aggregates | 39 | | | 3.5. Discussion | 41 | | | 3.5.1. N ₂ flux determination by a ¹⁵ N aided gas flow soil core system with an | | | | artificial atmosphere | 41 | | | 3.5.2. Some aspects of N-transformation in soil aggregates gained by the present | | | | approach | 43 | | | 3.6. Conclusions | 44 | | | | | | 4. | A novel ¹⁵ N tracer model for studying hybrid N ₂ formation of anammox or codenitrification | lue to | | | anaminos of codelite incation | | | | 4.1. Abstract | | | | 4.2. Introduction | 45 | | | 4.3. Derivation of mathematical expressions | 48 | | | 4.3.1. Fundamentals | 48 | | | 4.3.2. Comprehensive approach | 51 | | | 4.3.3. Simplified approach | 52 | | | 4.4. Results and discussion | 53 | | | 4.4.1. General applicability of derived mathematical expressions | 53 | | | 4.4.2. Major critical aspects of application | 54 | | | 4.4.3. Application in case of denitrification and codenitrification within soils | 57 | | | 4.5. Conclusions | 59 | | 5. | Formation of hybrid N2O in a suspended soil due to codenitrificat | ion of | | | NH ₂ OH | | | | 5.1. Abstract | 61 | | | 5.2. Introduction | 61 | | | 5.3. Materials and Methods | | | | 5.3.1. Soil treatment and incubation | | | | 5.3.2. ¹⁵ N ₂ O and ¹⁵ N ₂ determination | 64 | | | 5.3.3. ¹⁵ N calculations | | | | | | | 5.4. Results | . 67 | |--|------| | 5.4.1. ¹⁵ NO ₃ ⁻ treatment (Experiment I) | 67 | | 5.4.2. ¹⁵ NH ₂ OH treatments (Experiment II and III) | 68 | | 5.4.3. ¹⁵ NO ₃ + NH ₂ OH treatments (Experiment IV and V) | 70 | | 5.5. Discussion | . 74 | | 5.5.1. Hybrid N ₂ O due to codenitrification of NH ₂ OH | 74 | | 5.5.2. Considerations on NH ₂ OH utilization as quantified by the ¹⁵ N tracer model | 76 | | 5.6. Conclusions | . 78 | | 5.7. Appendix | . 79 | | 5.7.1. Introducing R _{binom} as characteristic factor of hybrid N-N gas formation | 79 | | 6. Concluding discussion | 85 | | 6.1. ¹⁵ N-aided analysis of hybrid N ₂ O/N ₂ formation by codenitrification | . 85 | | 6.2. Considerations on codenitrification in the biosphere | . 88 | | 6.2.1. Terrestrial environments | 88 | | 6.2.2 Aquatic environments | 91 | | 6.2.3. Nitrogen immobilisation due to biotic nitrosation | 93 | | 7. References | 96 | #### I. Danksagung Mein erster und sehr persönlicher Dank gebührt Florian Stange, welcher mir über 6 Jahre meiner wissenschaftlichen Entwicklung am UFZ ein hervorragender Mentor, Doktorvater und Freund gewesen ist. Sein vielseitiges wissenschaftliches Interesse und die daraus resultierende Freiheit im Denken und Handeln bildeten das Fundament eines Weges, dessen Richtung und Grenzen stets meiner eigenen Schaffenskraft unterlagen. Und im Sinne des Biochemikers Erwin Chargaff können unsere gelegentlichen Meinungsverschiedenheiten nur mehr als eine Auszeichnung verstanden werden; denn "... ein guter Lehrer kann nur abtrünnige Schüler haben,..." (Das Feuer des Heraklit, E. Chargaff 1979). Des Weiteren gilt mein herzlichster Dank Herrn Prof. Dr. Dr. Manfred Frühauf (MLU Halle-Wittenberg) sowie Herrn Prof. Dr. Christoph Müller (JLU Gießen) für ihr Interesse und ihre Bereitschaft als Gutachter meiner Dissertationsschrift tätig zu sein. Ein ganz besonderer Dank gilt Bernd Apelt für seine "unerschöpfliche" Hilfe bei all meinen experimentellen Wegen (und Irrwegen), welchen er stets mit ausgesprochen guter Laune begegnete. Es mag kein Zweifel darüber aufkommen, dass ohne seine hervorragenden Fähigkeiten als Ingenieur viele der hier gewonnenen wissenschaftlichen Erkenntnisse wohl noch immer im Verborgenen verweilen würden. Ein ebenso besonderer Dank gebührt Rolf Russow, dessen jahrzehntelange Erfahrung auf dem Gebiet der Isotopenforschung, ein wichtiger Quell für die Bewältigung so manch gewichtigen Hindernisses gewesen ist. Insgesamt gilt mein Dank dem Department Bodenphysik des UFZ's, dessen ausgewogenes und offenes Arbeitsklima stets ein ambitioniertes wissenschaftliches Arbeiten ermöglichte. Insbesondere geht mein Dank an: Enrico Thiel für die entspannende Pendelei, bei der wir, eines Magiers würdig, so manche Sorgenfalten in Lachfalten verwandelt haben; Mark Pohlert für die wegweisenden Gespräche an der frischen Luft; Bernd Herrmann für seine stets blitzschnelle Hilfe bei meinen zahlreichen "IT-Nöten"; Doris Vetterlein für ihr immer offenes Ohr bei all meinen wissenschaftlichen Alltagssorgen; und Hans-Jörg Vogel für seine Geduld und seine Unterstützung bei der Fertigstellung meiner Dissertation. In aller Freundschaft danke ich all jenen an meiner Seite, welche mir bei den zahlreichen Höhen und Tiefen der vergangen Jahre stets zur Seite standen. Ich bin stolz auf euch "Jungs". In allertiefster Verbundenheit gilt mein besonderer Dank Krisztian Szegedi, der mir über die Jahre hinweg ein wertvoller Freund und geschätzter Kollege geworden ist. Ich hätte mir, frei von jedem Zweifel, keinen besseren und treueren Weggefährten wünschen können. Meinen Eltern danke ich dafür, dass sie immer an mich geglaubt haben und mir stets genügend Raum für eigene Fehler ließen. Mein allerletzter und besonderer Dank gebührt Saskia für ihre hingebungsvolle und aufopfernde Fürsorge unserer drei wunderbaren Kinder Ronja Maliah, Erik Maximilian und Arthur Finley, welche mir jeden Tag aufs Neue zeigen, dass die Wunder der Welt nur für jene sichtbar sind, die sich den unvoreingenommenen Blick ihrer Kindheit bewahren. "Trägheit ist eine Tugend, wenn sie einen daran verhindert, im Topf herumzurühren, nur damit gerührt wird. Die Bessermacher haben so viel schlechter gemacht, daß von dieser Art von Besserem wegzubleiben eine Tugend geworden ist" #### II. Zusammenfassung Der Stickstoffkreislauf ist einer der wichtigsten Nährstoffkreisläufe innerhalb der Biosphäre. Er beinhaltet die vier wesentlichen mikrobiellen Prozesse der Stickstoff-Fixierung, der Mineralisation, der Nitrifikation und der Denitrifikation (Hayatsu et al., 2008). Die Bildung der gasförmigen Stickstoffverbindungen N₂O und N₂, welche im Zuge des mikrobiellen Stickstoffkreislaufs gebildet werden, wurde bisher überwiegend auf die Prozesse der Nitrifikation und der Denitrifikation zurückgeführt (Jetten, 2008). Innerhalb der letzten Jahrzehnte haben zahlreiche Untersuchungen jedoch gezeigt, dass die mikrobielle N₂O und N₂ Bildung in der Biosphäre weitaus komplexer ist als bisher angenommen. Dies zeigt sich vor allem in einer wesentlich größeren Vielfalt an beteiligten mikrobiellen Spezies, möglichen Reaktionswegen und involvierten Stickstoffverbindungen (Hayatsu et al., 2008). Der Prozess der ko-metabolischen Denitrifikation (i.e. Codenitrifikation; Shoun et al. (1992) and Tanimoto et al. (1992)) bildet N₂O und N₂ in einem erstaunlichen Reaktionsweg, welcher es einer Reihe von organischen sowie anorganischen Stickstoffverbindungen erlaubt im Zuge der Denitrifikation ko-metabolisiert zu werden. Da die Gasbildung durch Codenitrifikation auf einer N-Nitrosierung basiert, bei der sich ein Stickstoffatom eines elektrophilen Denitrifikationsintermediärs direkt mit einem Stickstoffatom einer nucleophilen Spezies (bspw. Amine) verbindet, stellen die freigesetzten Gase N₂O und N₂ hybride Stickstoffverbindungen dar. Trotz der Einzigartigkeit des aufgedeckten Reaktionsweges wurde dem Prozess der Codenitrifikation, auch fast 20 Jahre nach seiner ersten Beschreibung durch Tanimoto et al. (1992), nur wenig wissenschaftliches Interesse
entgegengebracht. Demnach besteht auch noch heute ein enormes Wissensdefizit über die Bedeutung der Codenitrifikation für den Stickstoffkreislauf der Biosphäre. Basierend auf einer intensiven und tiefgründigen Literaturauswertung zeigt die vorliegende Dissertation, dass der Prozess der Codenitrifikation als prinzipiell ubiquitär innerhalb des mikrobiellen Stickstoffkreislaufs angenommen werden muss. Demnach sind eine Vielzahl bereits bekannter denitrifizierender Spezies aller drei Domänen (Archaea, Bacteria und Eukarya) in der Lage hybrides N2O und/oder hybrides N2 im Zuge der Codenitrifikation freizusetzen. Nahezu alle dieser durchgeführten Untersuchungen basieren auf Experimenten mit Zellsuspensionen oder denitrifizierenden Enzymen (bspw. Shoun et al., 1992; Tanimoto et al., 1992; Kumon et al., 2002; Immoos et al., 2004; Shoun, 2004; Su et al., 2004; Okada et al., 2005). Nur eine Studie wurde bisher auf der Basis von Bodenproben durchgeführt (Laughlin ¹⁵N-Isotopen-Technik und Stevens, 2002). Die bildete dabei die zentrale Untersuchungsmethode. Der deutliche Mangel an Forschungsarbeiten zur Codenitrifikation, insbesondere im Hinblick auf Untersuchungen jenseits der mikrobiellen Skala, ist im Wesentlichen verursacht durch (i) die extremen methodischen Anforderung bei der Messung mikrobieller N₂ Freisetzung (siehe Davidson und Seitzinger, 2006) sowie (ii) durch die Tatsache, dass die Freisetzung hybriden N₂O/N₂ im Zuge der Codenitrifikation, welche zeitgleich mit der Freisetzung nicht-hybriden N₂O/N₂ aus der Denitrifikation erfolgt in den bisherigen ¹⁵N-Isotopen-Modellen nur unzureichend berücksichtigt wird. Zur Überwindung dieser methodologischen Einschränkungen wurden im Rahmen der vorliegenden Dissertation ein neuartiges Boden-Inkubationssystem sowie zwei neue 15N-Isotopen-Modelle entwickelt. Das entwickelt Labormesssystem ermöglicht eine ¹⁵N-gestütze Online-Messung der simultanen N₂O und N₂ Freisetzung aus inkubierten Bodenproben. Das erste 15N-Isotopen-Modell erlaubt eine exakte Quantifizierung der hybriden N2O/N2 Freisetzung (Codenitrifikation) einerseits, sowie zeitlichgleich die exakte Quantifizierung der nicht-hybriden N2O/N2 Freisetzung (Denitrifikation) anderseits. Das zweite ¹⁵N-Isotopen-Modell wurde entwickelt, um eine prinzipiell einfache und schnelle Identifizierung einer hybriden N-Gasbildung zu ermöglichen. Die Anwendbarkeit der beschriebenen methodischen Entwicklungen wurde in individuellen Experimenten verifiziert. Daraus kann zusammenfassend geschlussfolgert werden, dass die im Rahmen der vorliegenden Dissertation entwickelten neuartigen methodischen Ansätze eine zuverlässige und umfassende Untersuchung mikrobieller N2O/N2 Freisetzung im Zuge der Denitrifikation sowie der Codenitrifikation ermöglichen. #### III. Summary The nitrogen cycle is one of the most important nutrient cycles within the biosphere. It includes four main microbiological processes: nitrogen fixation, mineralization, nitrification, and denitrification (Hayatsu et al., 2008). A production of the gaseous nitrogen species N_2O and N_2 in the course of microbial nitrogen cycling was so far considered to be largely related to denitrification and nitrification (Jetten, 2008). However, during the recent decades plenty of studies could reveal that microbial N_2O and N_2 formation in the biosphere might be significantly more complex inasmuch as it includes a much broader variety of microbial species, reaction pathways, and nitrogen compounds (Hayatsu et al., 2008). The process of co-metabolic denitrification (i.e. codenitrification; Shoun et al. (1992) and Tanimoto et al., (1992)) was shown to produce N₂O and N₂ in an intriguing reaction pathway, which permits a variety of organic and inorganic nitrogen species to be co-metabolised during denitrification. Since nitrogen gas production by codenitrification is based on an N-nitrosation, where a nitrogen atom of an electrophilic denitrification intermediate binds directly to a nitrogen atom of a nucleophilic species (e.g. amines), the liberated N₂O and N₂ represent hybrid nitrogen gas species. In spite of the uniqueness of the reaction pathway of codenitrification it remained almost unconsidered even two decades after its first description by Tanimoto et al. (1992). Thus, still today a tremendous gap of knowledge exists concerning its impact on nitrogen cycling in the biosphere. Based on a profound literature review the present doctoral thesis reveals that codenitrification has to be considered as a ubiquitous process in microbial nitrogen cycling. It was found that a variety of denitrifying species of all three domains (Archaea, Bacteria, and Eukarya) were already reported to be capable of hybrid N2O and/or hybrid N2 formation in the course of codenitrification. In general, the 15N tracer technique was the method of choice to study the phenomenon of codenitrification. Almost all of these studies were based on cell suspension experiments or were carried out with denitrifying enzymes (e.g. Shoun et al., 1992; Tanimoto et al., 1992; Kumon et al., 2002; Immoos et al., 2004; Shoun, 2004; Su et al., 2004; Okada et al., 2005). Until now only one study was conducted with soil samples (Laughlin and Stevens, 2002). The lack of research, in particular with respect to studies beyond the microbial species level, is mainly due to the fact that (i) a study of N₂ formation due to microbial nitrogen transformation is still today a tremendous methodological challenge (see Davidson and Seitzinger, 2006) and (ii) a formation of codenitrified N₂O/N₂ simultaneously with denitrified N₂O/N₂ is inadequately considered in contemporary ¹⁵N tracer models. To overcome these methodological constraints a novel soil incubation system and two novel ¹⁵N tracer models have been developed. The laboratory system was designed to permit a 15N-aided online determination of N2O and N2 gas simultaneously released by an incubated soil sample. The first 15N tracer model was designed to permit an individual quantification of non-hybrid and simultaneous hybrid N2O/N2, while the second 15N tracer model was developed to allow an easy and rapid identification of hybrid N2O/N2 gas production. The applicability of all methodological developments has been individually verified by experimental studies. Recapitulatory, it can be concluded that the novel approaches presented in this doctoral thesis represent reliable tools to study most comprehensively non-hybrid and hybrid N2O/N2 formation due to denitrification and codenitrification, respectively. | # N / | | | | - | | | |-------|---|------|------------------|-----|---|------------| | IV. | - | ist | Ot | 12 | n | ΔC | | 1 V . | _ | .131 | \mathbf{O}_{I} | ı a | | C 3 | | Table 2.1 | Summary of microbial species and nitrogen compounds reported to be | | |-----------|---|----| | | involved in N_2O and/or N_2 formation by codenitrification | 13 | | Table 4.1 | List of variables used for calculations related to Equation 4.1 to Equation | | | | 4 16 | 51 | ### V. List of Figures | Figure 2.1 | Abiotic formation of hybrid N_2 gas due to an N-nitrosation of a nucleophilic | |------------|---| | | primary amine by the electrophile NO^+ (after Hart, 1989; modified)5 | | Figure 2.2 | Abiotic formation of hybrid N_2O gas due to an N-nitrosation of NH_2OH by the electrophile NO^+ (after Zollinger, 1988; modified)5 | | Figure 2.3 | Scheme of the dual character of denitrification, which allows simultaneous occurrence of conventional denitrification and codenitrification (E = enzyme) (after Weeg-Aerssens et al., 1988; modified) | | Figure 2.4 | Proposed mechanism for the reduction of NO_2^- to N_2O via an enzyme bound nitrosyl species by a heme cd_1 -containing NIR (after Weeg Aerssens et al., 1988; and Averill, 1996; modified)9 | | Figure 2.5 | Proposed mechanism for the reduction of NO_2^- to N_2O via an enzyme bound nitrosyl species by a Cu-containing NIR (after Averill, 1996; modified)10 | | Figure 2.6 | Proposed mechanism for the reduction of NO to N_2O by fungal P450 NOR including the possibility of an enzyme bound NO^+ intermediate (after Lehnert et al., 2006; modified). | | Figure 2.7 | Scheme for a co-metabolic utilisation of NH_2OH during denitrification of NO_2 by a denitrifying bacterial species ($E = enzyme$) (after Garber and Hollocher, 1982b). | | Figure 2.8 | Proposed reaction scheme for a co-metabolic utilisation of N_2H_4 during denitrification of NO_2 (after Kim and Hollocher, 1984)20 | | Figure 3.1 | Schematic cross-section of an incubation entity: 1 - wing nut; 2 - headspace outlet; 3 - headspace; 4 - cap; 5 - upper and lower sealing ring; 6 - base; 7 - soil core; 8 - stand; 9 - screw thread; 10 - steel cylinder; 11 - headspace inlet; 12 - silicone gel sealing | | Figure 3.2 | Scheme of instrumental setup: AS - CO ₂ -trap (Ascarite); C - warming cupboard; CF - copper furnace; CG - Inlet for calibration gas; CT1 - cryotrap for N ₂ O sampling; CT2 - cryotrap for N ₂ O removal; CT3 - cryotrap for NO removal; IE - incubation entity A-C; PP - NO-trap (potassium permanganate); SI - H ₂ O-trap (Siccapent) SL - sample loop for calibration gas; V - Valve 1-4; Z - zeolite SX6® for N ₂ sampling | | Figure 3.3 N_2 flux determination based on different periods of N_2 capturing. (black star - regularly measured N_2 flux before and after capturing experiment on 16^{th} day of incubation; the first
determined flux value of this sub-experiment has been set at zero on the x-axis) | |---| | Figure 3.4 (a) Comparison of N ₂ fluxes calculated either by including m/z 30 of captured N ₂ [Equation 3.1, Equation 3.2, and Equation 3.3] (x-axis) or without m/z 30 of captured N ₂ [Equation 3.4 and Equation 3.3] (y-axis). (b) Magnification of lowest flux values | | Figure 3.5 ¹⁵ N abundance of soil NO ₃ and denitrified NO ₃ of incubated soil aggregates: (a) aerobic (21 vol.% O ₂); (b) anaerobic; (c) aerobic (6 vol.% O ₂) (grey triangles: ¹⁵ N abundance of denitrified NO ₃ calculated via N ₂ O; light grey circles: ¹⁵ N abundance of denitrified NO ₃ calculated via N ₂ ; black squares: ¹⁵ N abundance of soil NO ₃ determined by the SPINMAS technique (Stange et al., 2007); bars indicate the standard deviation) | | Figure 3.6 N_2 fluxes of black earth soil aggregates during 21 days of continuous incubation: (a) aerobic (21 vol.% O_2); (b) anaerobic; (c) aerobic (6 vol.% O_2). (Note the discontinuity of the y-axis) | | Figure 3.7 Averaged release ratio of N_2 and N_2O during 9 days anaerobic incubation based on mol h^{-1} g^{-1} dry soil. (Bars indicate the standard deviation)41 | | Figure 4.1 Formation scheme of an N_2 mixture originating from atmospheric N_2 , denitrified N_2 , and anammox N_2 with respect to the fundamental mathematical expressions, which characterise the source of the mole fraction of masses 28, 29, and 30 (variables used are listed in Table 4.1)50 | | Figure 4.2 Error estimation (calculated value (c) vs real value (r)) of the simplified approach at a ^{15}N abundance of NH_4^+ of 1 at% in dependence on ^{15}N enrichment of NO_2^- and NO_3^- and the denitrification/anammox ratio: (a) calculation of the fraction of denitrification and (b) calculation of the fraction of anammox. (atmospheric fraction (A) has been set to 0.1; note that B_c/B_r and C_c/C_r are generally independent from A) | | gure 4.3 Error estimation [calculated value (c) vs. real value (r)] of the calculated | | |---|---| | fraction of denitrified N_2 based on a theoretical N_2 mixture evolved from | | | denitrification, codenitrification and atmosphere with respect to values | | | gained by former approaches compared to values gained by Equation | | | 4.13 of the simplified approach. The following conditions were set: | | | $denitrification/codenitrification\ ratio\ 1:1;\ atmospheric\ fraction\ (A)=0.2;$ | | | ¹⁵ N abundance of NH ₄ ⁺ (d) = 0.366 at%; ¹⁵ N abundance of NO ₂ equals | | | that of NO_3^- (b=c). (Note that all presented approaches are based on | | | equal input variables)5 | 8 | | gure 5.1 N_2 and N_2O release by denitrification in the ¹⁵ NO ₃ ⁻ treatment (experiment I) | | | (black and white symbols refer to replicate 1 and 2, respectively; time = 0 | | | represents ¹⁵ NO ₃ ⁻ application)6 | 8 | | gure 5.2 N_2 and N_2O production based on $^{15}NH_2OH$ conversion and relative fraction | | | of N ₂ O on total N-N gas production using non-autoclaved (left; | | | experiment II) and autoclaved (right; experiment III) soil suspension | | | (black and white symbols refer to replicate 1 and 2, respectively; time = 0 | | | represents NH_2OH application)6 | 9 | | gure 5.3 R_{binom} values (see chapter 5.7.1) of released N_2O and predicted ^{15}N | | | abundance of the N_2 and N_2O precursor in the $^{15}NO_3^- + NH_2OH$ | | | treatment (left; experiment IV and V) and in the $^{15}NH_2OH$ treatment | | | (right; experiment II and III) (black and white symbols refer to parallel 1 | | | and 2, respectively; time = 0 represents NH_2OH application; in Fig. 5.3a | | | and 5.3b NO ₃ was added 2-3 h prior to NH ₂ OH application)7 | 1 | | gure 5.4 N_2O release (please note the discontinuity of the y-axis) and ^{15}N abundance of | | | all determined nitrogen compounds in the $^{15}NO_3$ + NH_2OH treatment | | | using non-autoclaved (left; experiment IV; after $t = 0$ total N_2O release | | | was partitioned according to Equation 5.4 to Equation 5.6) and | | | autoclaved (right; experiment V) soil suspension (black and white | | | symbols refer to replicate 1 and 2, respectively; time = 0 represents | | | | | | NH_2OH application, while NO_3^- was added 2–3 h prior to NH_2OH | 2 | | application) | 2 | | Figure 5.5 | Microbial N_2 release (a) and composition of biogenic N_2 and N_2O (b) in the $^{15}NO_3^- + NH_2OH$ treatment using non-autoclaved soil suspension | |------------|--| | | (experiment IV; N-N gas release was partitioned according to Equation | | | 5.5 and Equation 5.6) (black and white symbols refer to replicate 1 and 2, | | | respectively; time = 0 represents NH_2OH application, while NO_3 was | | | added 2–3 h prior to NH ₂ OH application)73 | | Figure 5.6 | Composition of an N_2O gas mixture with an a R_{binom} value of 1 that consists of one hybrid N_2O species and two non-hybrid N_2O species formed by two | | | nitrogen sources with the ¹⁵ N mole fraction a and b | | Figure 6.1 | Postulated reaction scheme of anaerobic oxidation of NH_4^+ with NO_2^- to N_2^- | | | (after Fuchs and Schlegel, 2007; modified)93 | #### VI. List of abbreviations and units anammox - anaerobic ammonium oxidation at% - atom percent bspw. - beispielsweise $\begin{array}{ccccc} C & - & carbon \\ C_2H_2 & - & acetylene \\ C_6H_5\text{-NH}_2 & - & aniline \end{array}$ CH₃O-C₆H₅-NH₂ - p-methoxyaniline C₂H₆N-C₆H₄-NH₂ - dimethyl-p-phenylene diamine C₇H₇NO₃ - salicylhydroxamic acid CO₂ - carbon dioxide ConFlow IRMS - continuous-flow isotope-ratio mass spectrometer Cu - copper d - day DNRA - dissimilatory nitrate reduction to ammonium e.g. - exempli gratia et al. - et alii etc. - et cetera E - enzyme F₃CCH₂-HN₂ - trifluoroethylamine Fe - iron g - gram GC - gas chromatography h - hour H - hydride ion H₂N-NH₂ - hydrazine H₂N-CH₂CH₂-NH₂ - ethylenediamine H₂N-C₆H₄-NH₂ - p-phenylene diamine He - helium HNO₂ - nitrous acid HON=NOH - hyponitrous acid i.e. - id est IPT - isotope pairing technique KCl - potassium chloride KNO₃ - potassium nitrate L - liter n - number N - nitrogen N-N - here refers to N_2O and N_2 ``` ^{13}N radioactive nitrogen isotope with the molecular mass 13 u ^{14}N stable nitrogen isotope with the molecular mass 14 u 15N stable nitrogen isotope with the molecular mass 15 u N_2 molecular nitrogen or dinitrogen ^{28}N_{2} molecular nitrogen consisting of two ¹⁴N atoms (¹⁴N-¹⁴N) 29N2 molecular nitrogen consisting of a ¹⁴N and a ¹⁵N atom (¹⁴N-¹⁵N) ^{30}N_{2} molecular nitrogen consisting of two ¹⁵N atoms (¹⁵N-¹⁵N) N_2H_4 hydrazine N_3 azide NH_2 amino group NH₂OH hydroxylamine NH_3 ammonia NH_4^+ ammonium NH₄NO₃ ammonium nitrate N₂O nitrous oxide 44N2O nitrous oxide consisting of two ¹⁴N atoms (¹⁴N-¹⁴N-¹⁶O) nitrous oxide consisting of a ¹⁴N and a ¹⁵N atom (¹⁴N-¹⁵N-¹⁶O) 45N2O 46N2O nitrous oxide consisting of two ¹⁵N atoms (¹⁵N-¹⁵N-¹⁶O) N_2O_2^{2-} hyponitrite anion N_2O_3 dinitrogen trioxide NO⁺ nitrosyl cation or nitrosonium ion NO nitric oxide NO- nitroxyl anion NO₃ nitrate NO₂ nitrite mono-nitrogen oxides NO_x meter m molarity M min minute Mn manganese amount of substance mol mass-to-charge ratio m/z 16O stable oxygen isotope with the molecular mass 16 u ¹⁷O stable oxygen isotope with the molecular mass 17 u 18O stable oxygen isotope with the molecular mass 18 u molecular oxygen or dioxygen O_2 hydroxyl OH ON=NO hyponitrite ``` Pascal Pa pH - potentia Hydrogenii ppm - parts per million QPMS - quadrupole mass spectrometry R-NH₂ - primary amine RSD - relative standard deviation sp. - species SPINMAS - sample preparation of inorganic nitrogen mass spectrometry TMPD - N,N,N',N'-tetramethyl-p-phenylendiamine u - atomic mass unit w/w % - weight-per-weight in percent °C - degree Celsius V - volt vol.% - volume percent #### VII. Appendix The present doctoral thesis is based upon the following four papers, hereafter given by the respective chapters they are related to: Chapter 1, 2, and 6 Spott O., Russow R., Stange C.F., 2011. Formation of hybrid N_2O and hybrid N_2 due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation. *Soil Biology and Biochemistry*. published online 2^{nd} of July 2011. Chapter 3 Spott O., Russow R., Apelt B., Stange C.F., 2006. A 15 N-aided artificial atmosphere gas flow technique for online determination of soil N_2 release using the zeolite Köstrolith SX6[®]. *Rapid Communications in Mass Spectrometry*. 20 (22), p. 3267 – 3274. Chapter 4 <u>Spott O.</u>, Stange C.F., 2007. A new mathematical approach for calculating the contribution of anammox, denitrification and atmosphere to an N_2 mixture based on a ^{15}N tracer technique. *Rapid Communications in Mass Spectrometry*. 21 (14), p. 2398-2406. Chapter 5 <u>Spott O.</u>, Stange C.F., 2011. Formation of hybrid N₂O in a suspended soil due to co-denitrification of NH₂OH. *Journal of Plant Nutrition and Soil Science*. published online 26th of January 2011. #### 1. Introduction and objectives The nitrogen (N) cycle is one of the most important
nutrient cycles in terrestrial environments and includes four main microbiological processes: N2 fixation, mineralisation, nitrification, and denitrification (Hayatsu et al., 2008). Microbial production of nitrous oxide (N2O) and molecular nitrogen (N₂) in the course of N cycling was initially supposed to occur only among particular prokaryotic species either via (i) autotrophic nitrification (e.g. by Nitrosomonas sp.) or by (ii) heterotrophic denitrification (e.g. by Pseudomonas sp.). While the former process was shown to produce N2O during the aerobic oxidation of ammonia (NH3) under limited oxygen (O₂) availability (Bremner and Blackmer, 1978; Klemedtsson et al., 1988; Bollmann and Conrad, 1998; Khalil et al., 2004), the latter process was shown to produce both N-N gases (i.e. N₂O and N₂) during a stepwise anaerobic reduction of nitrate (NO₃) via nitrite (NO₂⁻) and nitric oxide (NO) to N₂O and ultimately N₂ (Knowles, 1982; Zumft, 1997). However, during recent decades many studies have revealed that microbial N2O and N2 formation within the biosphere is significantly more complex than originally assumed, inasmuch as it exhibits a much broader diversity of microbial species, possible reaction pathways, and range of N compounds utilised (e.g. eukaryotic nitrification and denitrification, heterotrophic nitrification, denitrification by nitrifying species, or anaerobic ammonium (NH₄⁺) oxidation; e.g. Hora and Iyengar, 1960; Bollag and Tung, 1972; Castignetti and Hollocher, 1981; Poth and Focht, 1985; van de Graaf et al., 1990; Shoun et al., 1992; Anderson et al., 1993; Bock et al., 1995; Wrage et al., 2001; Jetten et al., 2005; Müller et al., 2006; Op den Camp et al., 2006; Stange et al., 2009). Given that our knowledge on microbial N transformations has evolved significantly over the recent decades, Jetten (2008) is correct in stating that even today the microbial world still hides an enormous metabolic capability of N conversion. The intriguing, but less known process of codenitrification appears to perfectly demonstrate his supposition. Codenitrification was first described by Shoun et al. (1992) and Tanimoto et al. (1992) and has been demonstrated to produce N_2O and N_2 in a different manner compared to nitrification and denitrification. According to these two reports codenitrification refers to a co-metabolic process which utilises N compounds (e.g. NH_4^+ or amines) differently to the known denitrification pathway (i.e. $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$) yet converts them to N_2O or N_2 . By means of a N_2^{-1} tracer technique they revealed that N-N gas production by codenitrification results in a hybrid N-N species, where the N-N bond originates from a combination of an N atom from NO_2^- and an N atom from a co-metabolised compound. Concomitantly, non-hybrid N-N gas is also formed via the conventional denitrification pathway. In spite of the unique characteristics found for the codenitrification process (Shoun et al., 1992; Tanimoto et al., 1992) only a few studies have since focused on its elucidation (in particular with respect to microbial N-N gas formation in soils). Most of these were based on cell suspension experiments or were carried out with purified enzymes of denitrifying species (Shoun et al., 1992; Tanimoto et al., 1992; Kumon et al., 2002; Su et al., 2004; Immoos et al., 2004; Shoun, 2004). Only one codenitrification study has been conducted using soil samples (Laughlin and Stevens, 2002). This is despite the fact that microbial N_2O and N_2 formation due to codenitrification, as defined in 1992 by Tanimoto et al. and Shoun et al., was obviously already known at about the end of the 19^{th} century. In 1899 Grimbert reported N gas formation by a denitrifying species, where N gas production significantly exceeded the amount of NO₃-N supplied to a nutrient solution (peptonised broth). It was concluded that the observed surplus of N gas release was caused by amine compounds, which can be utilised in the course of conventional denitrification. "The evolution of nitrogen is no doubt due to a secondary reaction between the nitrous acid produced by the reduction of the nitrate by the bacillus, and the amino-nitrogen contained in the broth or extract,..." Grimbert (1900) Half a century later, Allen and van Niel (1952) pointed out that, if an amino group (-NH₂) is considered as an additional source of N gas formation during denitrification, then plenty of amines could be considered as possible reactants. Only a few years later Iwasaki et al. (1956; 1958) was able to identify some amine species, which in fact caused "excess" N-N gas production when supplied during denitrification. They concluded that in the denitrifying system an N-N-linkage can occur between the amino group of an amine species and an N compound of the denitrification pathway (e.g. NO₂-), which then results in the observed "excess" N-N gas production. By means of a 15N tracer technique Garber and Hollocher (1982b) and Kim and Hollocher (1984) confirmed the expected hybrid character of N₂O and N₂ formed by this reaction. It thus appears that these early reports of hybrid N₂O and N₂ production are consistent with the definition of codenitrification later on given by Tanimoto et al. (1992) and Shoun et al. (1992). Even in the light of these more recent findings it is intriguing that this apparently significant microbial process has remained almost unconsidered for over a century. As recently pointed out by Baggs and Philippot (2010) the contribution of codenitrification to soil N2O (and N2) release is still today mostly unknown. This substantial gap of knowledge appears to be mainly caused by the following two methodological constraints: (i) the tremendous methodological challenge of studying N₂ formation by microbial processes (see Davidson and Seitzinger, 2006) and (ii) the lack of ¹⁵N tracer models, which adequately consider the formation of codenitrified N₂O/N₂ simultaneously with denitrified N2O/N2. In order to overcome these deficiencies the present doctoral thesis is aimed at the following objectives: - to review the fundamentals of hybrid N₂O and hybrid N₂ formation due to codenitrification (Chapter 2) - to develop a laboratory method for an ¹⁵N-aided online determination of N₂O and N₂ gas simultaneously released from a soil sample (Chapter 3) - to develop a ¹⁵N tracer approach for a determination of hybrid N₂O/N₂ formation by codenitrification (Chapter 4) - to evaluate the applicability of the methodological developments by an experimental study on hybrid nitrogen gas production due to codenitrification (Chapter 5) #### 2. The process of codenitrification For more than a century studies have reported co-metabolic formation of N₂O and/or N₂ during conventional denitrification, when particular N compounds (generally amines) are supplied in addition to NO₃⁻ (Grimbert, 1899; Renner and Becker, 1970; Kumon et al., 2002), NO₂⁻ (Iwasaki et al., 1956; Iwasaki and Mori, 1958; Pichinot et al., 1969; Renner and Becker, 1970; Matsubara, 1970; Garber and Hollocher, 1982b; Kim and Hollocher, 1984; Aerssens et al., 1986; Weeg-Aerssens et al., 1987/1988; Hulse et al., 1989; Goretski and Hollocher, 1991; Shoun et al., 1992; Tanimoto et al., 1992; Usuda et al., 1995; Kumon et al., 2002; Immoos et al., 2004; Sameshima-Saito et al., 2004), or NO (Aerssens et al., 1986; Ye et al., 1991; Su et al., 2004; Okada et al., 2005), respectively. Because of the similarity between hybrid N-N gas formation via codenitrification and the abiotic process of N-nitrosation (e.g. Stevenson and Swaby, 1964; Bennett et al., 1982; Zollinger, 1994), it was suggested by a number of authors (e.g. Weeg-Aerssens et al., 1988; Shoun et al., 1992; Tanimoto et al., 1992) that the codenitrification process might be based on a microbially mediated (i.e. biotic) N-nitrosation reaction. #### 2.1. Biochemical fundamentals #### 2.1.1. Formation of hybrid N2O and hybrid N2 by abiotic N-nitrosation reactions The mechanism of nitrosation belongs to a particular class of electrophilic substitution reactions (Zollinger, 1994; Römpp, 1999). During this reaction a hydrogen atom of a nucleophilic substrate (negatively charged or with a free electron pair) is replaced by a nitroso group (-N=O) supplied by an electrophilic reactant (e.g. the nitrosonium cation NO⁺ formed by NO₂ under acidic conditions). The bonding of the electrophile is realized by the free electron pair of the nucleophile. The remaining positive charge from the electrophile is neutralized by deprotonation. This N-N bonding of two different N species (e.g. NO₂ and amines) leads to a hybrid N-N linkage. In this context, abiotic N-nitrosation reactions are already well known to result in the formation of hybrid N_2O as well as hybrid N_2 gas (e.g. Bothner-By and Friedman, 1952; Kainz and Huber, 1959; Bottomley et al., 1974; Bennett et al., 1982; Stamler et al., 1992; Zollinger, 1994/1995; Thorn and Mikita, 2000; Clough et al., 2001; Williams, 2004). The type of N-N gas formed was shown to be largely dependent on the nucleophilic substrate. Hybrid N_2 gas formation mostly occurs due to N-nitrosation reactions with primary amines or amides via a diazo ($R_2C=N_2$) and/or diazonium compound ($R_2C-N_2^+$) as the intermediate species (= diazoniation). The cleavage (= dediazoniation) of the N_2 -group can proceed by various ways (e.g. heterolytic dissociation) depending on the current reaction conditions (e.g. temperature, nucleophilic substrate etc.) (Hart, 1989; Zollinger, 1994/1995; Römpp, 1999; Williams, 2004) (Figure 2.1). The formation of hybrid N_2O was demonstrated to occur largely upon N-nitrosation reactions with oxime compounds (C=N-OH) or hydroxylamine (NH₂OH) (Freeman, 1973; Zollinger, 1995; Brand et al., 2006) (Figure 2.2). First Step $$(\text{formation of a nitrosa compound})$$ (First Step) Second Step (formation and release
of the diazonium ion) $$R = N = N = N - OH \xrightarrow{+H^*} R - N = N = N - OH \xrightarrow{+H^*} R - OH \xrightarrow{-H,O} R - OH \xrightarrow{-H,O} R - OH \xrightarrow{+H,O} \xrightarrow{+H,O$$ Figure 2.1 Abiotic formation of hybrid N_2 gas due to an N-nitrosation of a nucleophilic primary amine by the electrophile NO^+ (after Hart, 1989; modified). Figure 2.2 Abiotic formation of hybrid N_2O gas due to an N-nitrosation of NH_2OH by the electrophile NO^+ (after Zollinger, 1988; modified). It thus follows that a formation of hybrid N-N gas due to an N-nitrosation reaction generally proceeds in the sense of an N comproportionation. The type of N-N gas which is formed by the reaction with the electrophilic N species (formal oxidation state of N is +3, e.g. NO⁺) can then be deduced by the following rules: - i. N₂ is formed, if the formal oxidation state of the nucleophilic N is -3 (e.g. R-NH₂, NH₃) - ii. N₂O is formed, if the formal oxidation state of the nucleophilic N is -1 (e.g. NH₂OH) - iii. N₂O and N₂ are formed, if the formal oxidation state of the nucleophilic N is -2 (e.g. hydrazine) #### 2.1.2. Biotic N-nitrosation due to an enzymatic catalysis In abiotic N-nitrosation reactions different N species (e.g. NO⁺, N₂O₃, etc., largely formed by NO₂⁻ under acidic conditions) have been reported to act as free nitrosating agents (Freeman, 1973; Mirvish, 1975; Bosch and Kochi, 1994; Zollinger, 1995; Da Silva et al., 2007). However, concerning biotically mediated N-nitrosation it was suggested (e.g. Kim and Hollocher, 1984; Leach et al., 1987) that free reactants such as those noted above have to be ruled out for the following two reasons. Firstly, at neutral and alkaline pH-values the equilibrium concentration of possible free nitrosating agents is insufficient to permit measurable rates of nitrosation. Secondly, observed biotic nitrosation revealed reactivities rather different from those known for abiotic nitrosating agents. Both Grimbert (1899) and Allen and van Niel (1952) assumed that during denitrification a reaction of NO₂ with amino compounds could occur via a biotically mediated catalysis, using particular enzymes of the denitrification pathway. Later on it was concluded by others (e.g. Mills and Alexander, 1976; Kim and Hollocher, 1984; Calmels et al., 1985; Leach et al., 1987; Weeg-Aerssens et al., 1987/1988; Hulse et al., 1989; Ye et al., 1991; Kumon et al., 2002) that this type of reaction originates from a microbially mediated nitrosation process. which proceeds via an enzyme (E) bound mono-N-species the type of E-NO. The proposed enzymatic nitrosyl compound is capable of attracting nucleophilic compounds (e.g. primary amines, NH₂OH) under conditions inappropriate for abiotic nitrosation. As pointed out by Stamler et al. (1992) NO complexes as proposed above (i.e. E-NO, E-NO, and E-NO⁺) exhibit a varying NO stretching frequency from ca. 1500 to 2000 cm⁻¹ (unbound form: NO⁺ = 2300 cm⁻¹ / NO = 1840 cm⁻¹ / NO⁻ = 1290 cm⁻¹), which fundamentally alters the electrophilic character of bound NO. As reported by Bottomley et al. (1973) NO complexes with a NO stretching frequency greater than ca. 1886 cm⁻¹ would be susceptible to attack by nucleophiles. Hence, these species can be in principle considered as electrophilic nitrosating agents. However, as shown by Conelly (1972) NO complexes can also exhibit stretching frequencies between 1500 and 1700 cm⁻¹. In this case they behave formally as a NO species (i.e. as nucleophiles) and thus are unable to combine with nucleophiles (e.g. NH₃). Hence, one can conclude that an enzyme bound N species such as E-NO+ or E-NO, formed via denitrification of NO₃ or directly delivered by NO₂ or NO, acts as an electrophilic denitrification intermediate (i.e. nitrosating agent) and attracts nucleophiles in the sense of Nnitrosation reactions. In fact, both NO₂ and NO were shown to be directly involved in biotically mediated formation of hybrid N-N gas (e.g. Garber and Hollocher, 1982b; Ye et al., 1991; Su et al., 2004). In addition, it was demonstrated (Garber and Hollocher, 1981; Averill and Tiedje, 1982; Hollocher, 1982; Garber and Hollocher, 1982a; Kim and Hollocher, 1984; Jackson et al., 1991) that under appropriate conditions the reactions between NO₂ and NO can be assumed as reversible, and thus might explain why the observed biotic N-nitrosation reactions occurred equally in the presence of NO₂ and NO, respectively. By contrast, the utilisation of NO₃ (reported by e.g. Grimbert, 1899; Renner and Becker, 1970; Kumon et al., 2002) was assumed to be only related to its function as a precursor to NO2 and NO in the denitrification pathway (Kumon et al., 2002; Okada et al., 2005). Considering both NO2 and NO as the nitroso donors responsible, then enzymes such as nitrite reductase (NIR) and nitric oxide reductase (NOR) can be expected to play a role as biotic catalysts in codenitrification. Averill (1996) notes that in many denitrifying species NIRs and NORs appear to be strongly coupled and therefore, may act as multi-enzyme complexes allowing NO₂ and NO conversion. Until now denitrifying enzymes such as cytochrome cd1 NIR gained from prokaryotic species (e.g. from Pseudomonas aeruginosa) and cytochrome P450 NOR gained from fungi species (e.g. Fusarium oxysproum) have been reported to (i) supply an enzyme bound nitrosating agent (e.g. E-NO⁺), (ii) perform nitrosation reactions, or (iii) form hybrid N₂O and/or N₂. Analogous to abiotic NO transformations via metal-nitrosyl complexes (e.g. with Fe, Cu, Mo etc.), it was suggested (Garber and Hollocher, 1982b; Kim and Hollocher, 1984; Tolman, 1995; Zhao et al., 1995; Hayton et al., 2002; Wasser et al., 2002) that an enzyme bound nitrosating agent produced during denitrification could be a biotic metal-nitrosyl complex. This assumption was supported by the fact that metal-nitrosyls are known to undergo oxygen exchange reactions, which were in fact also observed for denitrified and simultaneously codenitrified N₂O (Garber and Hollocher, 1982b; Kim and Hollocher, 1984; Ye et al., 1991). It was proposed that an enzymatic iron-nitrosyl compound could act appropriately as a nitrosating agent during denitrification (Averill and Tiedje, 1982; Garber and Hollocher, 1982b; Kim and Hollocher, 1984). In addition, biotic copper-nitrosyl complexes were also reported to act as key intermediates during denitrification (Hulse et al., 1989; Suzuki et al., 1989; Goretski and Hollocher, 1991; Jackson et al., 1991; Ye et al., 1991; Ye et al., 1994; Tolman, 1995; Tocheva et al., 2004). #### 2.1.3. The dual character of denitrification Many studies have reported (e.g. Garber and Hollocher, 1981; Averill and Tiedje, 1982; Ye et al., 1991; Ye et al., 1994; Averill, 1996; Wasser et al., 2002; Schmidt et al., 2004a) that during denitrification both NO₂ and NO can be converted to N₂O by either a parallel or a sequential reaction pathway. During the parallel pathway two NO₂ or two NO molecules bind simultaneously to one enzyme and form directly a non-hybrid N-N linkage (e.g. Ye et al., 1991; Schmidt et al. 2004a). This reaction scheme prevents in principle a nitrosation reaction with other nucleophiles and thus, excludes the possibility of a simultaneous codenitrification pathway for obvious reasons. During the sequential pathway, however, the N-N linkage is formed by a two step reaction, where one NO₂ or one NO molecule binds first to an enzyme and a free NO₂ or NO molecule then reacts with the enzyme bound species to form a non-hybrid N-N bond. Due to its two-step character the sequential scheme permits the occurrence of side reaction, if the first enzyme bound N species acts as an electrophilic N intermediate susceptible to attack by nucleophiles (e.g. amines). Hence, the process of denitrification, when taking place via the sequential pathway, could in principle exhibit a dual character, where (i) either a non-hybrid N-N linkage is formed by a two step reaction of two NO_2^- or two NO molecules or (ii) a hybrid N-N linkage is formed via the first bound N species due to a side reaction in the sense of N-nitrosation. Figure 2.3. Scheme of the dual character of denitrification, which allows simultaneous occurrence of conventional denitrification and codenitrification (E = enzyme) (after Weeg-Aerssens et al., 1988; modified). Concerning biotic N-nitrosation by prokaryotic denitrifying species Weeg-Aerssens et al. (1987/1988) strongly favoured a sequential reaction pathway. They suggested that different nucleophiles (e.g. NO₂, N₃, and H₂O), supplied during denitrification of NO₂ compete for an enzyme bound nitrosyl intermediate. Accordingly, the non-hybrid N-N bond is formed via a nucleophilic attack of a second NO₂ on a coordinated nitrosyl, while the hybrid N-N bond is formed by a competing N-nitrosation reaction with other available N nucleophiles (Figure 2.3). Also Garber and Hollocher (1982b) and Kim and Hollocher (1984) concluded that N-N gas production via prokaryotic denitrification and parallel N-nitrosation occurs largely or entirely via one common enzyme bound precursor. Later on, Goretski and Hollocher (1991) and Ye at al. (1991) demonstrated that during denitrification by prokaryotic species apparently only NO acts as the nitrosyl donor. Wang and Averill (1996) proposed a sequential mechanism for a heme cd1-containing NIR, which includes the formation of an enzyme bound nitrosyl intermediate with either NO2 or NO as the substrate (Figure 2.4). In each case a ferrous heme d₁-NO⁺ was assumed to be the key intermediate in the formation of the N-N linkage during denitrification (Averill, 1996). The N-O stretching frequency was found to be around 1910 cm⁻¹ (Wang and Averill, 1996) and thus, indicates the electrophilic character of the heme d_1 -NO⁺ complex (Bottomley et al., 1973). Zumft (1997) pointed out that the redox potential of a heme Fe²⁺-NO⁰/Fe²⁺-NO⁻ couple is at -0.9 V, which is too negative to be accessible by a physiological
reductant. It was therefore argued that the preferred reaction of a heme Fe2+-NO0 would be the oxidation to a heme Fe2+-NO+ and thus, the formation of nitrosating agent. Recently Radoul et al. (2009) in fact proved the formation of a nitrosyl d_1 heme complex (d₁NO) during NO₂ conversion to NO by a cd₁ NIR of Pseudomonas aeruginosa. Figure 2.4 Proposed mechanism for the reduction of NO_2 to N_2O via an enzyme bound nitrosyl species by a heme cd_1 -containing NIR (after Weeg-Aerssens et al., 1988 and Averill, 1996; modified). Moreover, Yoshimura et al. (1993) reported a five coordinated nitrosyl-hemoprotein (cytochrome c') during denitrification of NO_3^- by the bacterium *Achromobacter xylosoxidans*. Inasmuch as Fe^{2+} - NO^+ species are highly reactive, the following reactions were proposed by Averill (1996): (i) the NO⁺ species is trapped by a nucleophile (e.g. NO₂⁻ or N₃⁻), (ii) decomposition to NO and Fe³⁺ heme, and (iii) reduction by one electron to a stable heme Fe²⁺-NO species. Concerning NO₂ reduction by Cu-NIRs a similar mechanism with a Cu⁺-NO⁺ intermediate was proposed by e.g. Averill (1996) (Figure 2.5) and Tocheva et al. (2004). Also Suzuki et al. (1989) found evidence for a cuprous nitrosyl complex (E-Cu⁺-NO⁺) as an essential intermediate during denitrification of NO by a Cu-NIR (*Achromobacter cycloclastes*). With respect to N₂O production due to denitrification by *A. cycloclastes* similar results were reported by Hulse et al. (1989) and also Goretski and Hollocher et al. (1991). Nonetheless, it was underlined by others (Shimizu et al., 2000; Shoun, 2005; Oshima et al., 2004; Xu et al., 2006; Lehnert et al., 2006; Radoul et al., 2009) that the inherent structure of involved enzymes also distinctively alters the reactivity and hence, the reaction pathways during NO₂ and NO conversion. Figure 2.5 Proposed mechanism for the reduction of NO_2 to N_2O via an enzyme bound nitrosyl species by a Cu-containing NIR (after Averill, 1996; modified). In contrast to prokaryotic N-nitrosation reactions Su et al. (2004) suggested that fungal N-nitrosation might be only related to NO, which is first formed from NO₂ by a dissimilatory NIR. Nakahara et al. (1993) reported that unlike prokaryotic NORs the responsible fungal cytochrome P450 is obviously a monomer, which contains a single protoheme. In addition, they pointed out the unlikelihood of two NO molecules binding simultaneously to a single heme. It appears therefore not surprising that the fungal NOR P450 was later on shown to form N_2O by combining two NO molecules in a sequential two step reaction (e.g. Schmidt et al., 2004a). $$S-Fe^{3+} \xrightarrow{NO} S-Fe^{NO}$$ $$S-Fe^{NO}$$ Figure 2.6 Proposed mechanism for the reduction of NO to N_2O by fungal P450 NOR including the possibility of an enzyme bound NO^+ intermediate (after Lehnert et al., 2006; modified). Concerning a possible intermediate compound during NO reduction to N₂O by P450 NOR a Fe-NO complex was assumed (Xu et al., 2006; Lehnert et al., 2006). However, some studies showed (Nakahara et al., 1993; Kobayashi and Shoun, 1995; Shoun, 2005) that P450 NOR is the only heme-protein that can receive electrons directly from the physiological electron donor NADH. It was demonstrated that NO is only reduced to N₂O by P450 NOR in the presence of NADH. During this reaction two electrons are simultaneously transported from NADH to P450 NOR in form of a H⁻ (Shoun, 2005). Su et al. (2004) revealed that hybrid N₂O formation takes places when NADH is replaced by a nucleophilic N co-substrate (e.g. NH₄[†]). This type of multifunctional character of P450 NOR was also pointed out by Shoun (2005). According to them N₂O formation by fungal denitrification is performed by either (i) combining two NO molecules while receiving the required electrons directly from NADH or by (ii) using a nucleophile which then acts as the electron and N donor. In a similar manner to bacterial denitrification the reduction of NO by the fungal P450 NOR was assumed to include an enzyme bound nitrosyl species (Daiber et al., 2002; Lehnert et al., 2006). Lehnert et al. (2006) proposed that in the presence of NADH an enzyme bound Fe⁴⁺-NOOH species acts as the intermediate compound, which finally forms non-hybrid N₂O due to biotically mediated dimerization with a free NO molecule. By contrast, in the absence of the NADH an enzyme bound Fe-NO⁺ intermediate species can be formed (see Figure 2.6). They suggested that the two-electron reduction by NADH is actually performed to avoid the ferrous nitrosyl complex. However, Daiber et al. (2002) proposed that the direct hydride transfer from NADH to an NO complex suggests that the responsible intermediate species should be predominantly present as a Fe²⁺-(NO)⁺ species and thus is prone to H⁻ acceptance. #### 2.2. Reports on microbial formation of N2O and N2 by codenitrification Microbes belonging to *bacteria*, *archaea*, and *eukarya* (kingdom *fungi*) domains have been reported to act as codenitrifiers or can be at least assumed as codenitrifying species according to the definition of Tanimoto et al. (1992). In total one archaeal species (order *Sulfolobales*), 12 bacterial species (order *Actinomycetales*, *Burkholderiales*, *Enterobacteriales*, *Pseudomonadales*, *Rhizobiales*, and *Rhodobacterales*), and 3 fungal species (order *Hypocreales*) have been experimentally demonstrated to possess at least the first or both of the following two characteristics associated with codenitrification: (i) N compounds different to NO₃-, NO₂-, or NO are co-metabolically utilised during denitrification (e.g. amines) resulting in N₂O and/or N₂ formation, and (ii) the co-metabolically formed N-N gas exhibits a hybrid character. All studies presented here have been shortly summarised in Table 2.1. #### 2.2.1. Formation of N2O Co-metabolic N₂O formation in the sense of codenitrification, as described by Tanimoto et al. (1992), was shown for NH₂OH, N₃, NH₄, hydrazine (H₂N-NH₂), and salicylhydroxamic acid (C₇H₇NO₃). While some studies revealed an N incorporation into gaseous N species by exceeding the amount of available NO₂-N or NO₃-N (Iwasaki and Mori, 1958; Renner and Becker, 1970; Matsubara, 1970), others proved the hybrid character of N₂O formed via codenitrification by means of a ¹⁵N tracer technique (Garber and Hollocher, 1982b; Kim and Hollocher, 1984; Aerssens et al., 1986; Weeg-Aerssens et al., 1987/1988; Ye et al., 1991; Tanimoto et al., 1992; Su et al., 2004; Immoos et al., 2004). Table 2.1 Summary of microbial species and N compounds reported to be involved in N_2O and/or N_2 formation by codenitrification. | Microbial species | Denitrified compound | Co-metabolised compound | Determined N-gas | Hybrid N-N gas | Reference | |-------------------------------------|---|---|--|--|-------------------------------| | Sulfolobus solfataricus | NO ₂ - | ammonium | N_2O | N_2O | Immoos et al. (2004) | | Corznebacterium nephridii | 'ii NO ₃ ', NO ₂ ' | hydroxylamine | NO, N2O | p N ₅₁ ou | Renner and Becker (1970) | | Streptomyces antibioticus | NO ₃ ; NO ₂ - | amino compound ^c | N ₂ O, N ₂ | N_2 | Kumon et al. (2002) | | Achromobacter cycloclastes | es e NO ₂ -
NO ₂ - | hydroxylamine
azide | N ₂ O
N ₂ O | N ₂ O | Hulse et al. (1989) | | Achromobacter cycloclastes | ies NO ₂ - | azide | NO, N <u>2</u> O | N_2O | Goretski and Hollocher (1991) | | Escherichia coli | NO ₃ - | amino compound c | total N gas | p Nst ou | Grimbert (1899) | | Salmonella typhi | NO ₃ - | amino compound c | total N gas | p Nst ou | Grimbert (1899) | | Pseudomonas aeruginosa ^e | e NO ₂ . | p-phenylene diamine
dimethyl-p-phenylene diamine | z z z | N ²¹ on
N ²¹ ou | Pichinot et al. (1969) | | Pseudomonas aeruginosa ^b | b NO ₂ - | azide
hvdroxvlamine | NO, N ₂ O, N ₂
NO, N ₂ O, N ₂ | N ₂ O | Kim and Hollocher (1984) | | | NO ₂ - | hydrazine
p-methoxyaniline | NO, N ₂ O, N ₂
NO, N ₂ O, N ₂ | N_2O , N_2 N_2 | | | | NO ₂ - | trifluoroethylamine
ethylendiamine | NO, N ₂ O, N ₂
NO, N ₂ O, N ₂ | N ₂ | | | Microbial species | Denitrified compound | Co-metabolised compound | Determined N-gas | Hybrid N-N gas | Reference | |-------------------------------------|--|---|--|----------------------|----------------------------------| | Pseudomonas aeruginosa ^b | NO ₂ | aniline
ammonia | NO, N ₂ O, N ₂
NO, N ₂ O, N ₂ | N ₂ | Kim and Hollocher (1984) | | Pseudomonas chlororaphis | NO ₂ - | hydroxylamine
azide | NO, N ₂ O ^a
NO, N ₂ O ^a | N20 a | Garber and Hollocher (1982b) | | Pseudomonas denivificans | NO ₂ - | p-phenylene diamine
dimethyl-p-phenylene diamine | NO, N ₂
NO, N ₂ | p N ₅₁ ou | Iwasaki et al. (1956) | | | NO ₂ - | hydroxylamine | N ₂ O, N ₂ | p N51 ou | Iwasaki and Mori (1958) | | | NO ₂ - | hydroxylamine
dimethyl-p-phenylene diamine | NO, N ₂ O, N ₂
N ₂ | p N ₅₁ ou | Matsubara (1970) | | | NO ₂ -
NO ₂ - | hydroxylamine
azide | NO, N ₂ O ^a
NO, N ₂ O ^a | N ₂ O a | Garber and Hollocher (1982b) | | Pseudomonas stutzeri | NO ₂ -
NO ₂ - | hydroxylamine
azide | NO, N ₂ O ⁴
NO, N ₂ O ⁴ | N2O a | Garber and Hollocher (1982b) | | | NO ₂ /NO | hydroxylamine | NO, N2O | N_2O | Aerssens et al. (1986) | | | NO _z - | azide | NO, N2O | N ₂ O | Goretski and Hollocher (1991) | | Pseudomonas stutzeri ^e | NO ₂ - | azide | O ₂ N | N ₂ O | Weeg-Aerssens et al. (1987/1988) | | Microbial species | Denitrified compound | Co-metabolised compound | Determined Ngas | Hybrid N-N gas | Reference | |--------------------------------------|--
---|---|--|-------------------------------| | Mesorhizobium sp. | ON | amino compound c | N2O, N2 | N_2 | Okada et al. (2005) | | Paracoccus denitrificans | NO ₂ -
NO ₂ - | p-phenylene diamine
dimethyl-p-phenylene diamine | N ₂ | N ²¹ on
N ²¹ ou | Pichinot et al. (1969) | | | NO ₂ -
NO ₂ - | hydroxylamine
azide | NO, N ₂ O, N ₂
NO, N ₂ O ^a | N2O 4 | Garber and Hollocher (1982b) | | Rhodobacter sphaeroides ^e | e NO | azide | N,O | N ₂ O | Ye et al. (1991) | | Cylindrocarbon tonkinense | e NO ₂ - | amino compound ^c | N2O, N2 | N_2 | Shoun et al. (1992) | | | NO ₂ - | azide | Oʻ | N ⁵¹ on | Usuda et al. (1995) | | Fusarium oxysporum | NO ₂ -
NO ₂ - | azide
salicylhydroxamic acid | NO, N ₂ O, N ₂ N ₂ O | N ₂ O
N ₂ O | Tanimoto et al. (1992) | | | NO
NO
NO | annonum
azide
ammonium | N ₂ O O ₂ N | N ₂ O N ₂ O N ₂ O | Su et al. (2004) ^f | | Fusarium solani | NO ₂ - | amino compound c | N ₂ O, N ₂ | N ₂ | Shoun et al. (1992) | | | NO ₂ - | amino compound ^c | N ₂ | N_2 | Sameshima-Saito et al. (2004) | a - N; formation was inhibited by acceptang, b - experiments with purified distimilatory nitries reductase (cytochrome cd.) of P. asergivoz a (Kim and Hollocher, 1984); c - unspecified amino compound contained in the paprone solution; d - N gas production exceeded the amount of supplied N substrate; e - experiments were conducted with crude or cell the strategy of - experiments with recombinant with recombinant point field Hydroxylamine (NH₂OH) - It was first shown by Iwasaki and Mori (1958) that denitrifier Pseudomonas denitrificans can co-metabolically utilise NH₂OH during denitrification. An "excess" N-N gas formation was observed when P. denitrificans was anaerobically incubated with NO27, NH2OH, and lactate (as electron donor). The volume of evolved N gas was 1.7 times as much as that produced using only NO₂ and lactate. When lactate was omitted N gas evolution was even higher and corresponded to 2.1 - 2.2 times that of a nitrite-lactate-system. In the presence of NO₂ and NH₂OH (without lactate) N₂O was almost exclusively produced with only little N₂. Matsubara (1970) subsequently reported similar results with P. denitrificans. Without lactate only N2O was produced, which accounted for the N contained in NH₂OH plus NO₂. In the presence of lactate, however, N₂ and NO were produced simultaneously. Furthermore, N gas production increased with an increasing NH₂OH concentration. At the highest concentration (25 mM) the total N gas produced increased by a factor of 1.7 compared to the N contained in available NO2. Under these conditions mainly N2O and NO was produced (almost no N2 was formed). The author concluded that NH2OH tends to favour N2O formation and furthermore, inhibits the total reduction of NO and N₂O. Renner and Becker (1970) reported a co-metabolic utilisation of NH₂OH by Corynebacterium nephridii. Under anaerobic conditions total N gas production by resting cells of C. nephridii clearly exceeded the total amount of N available in form of NO₂. Moreover, they proved that N gas evolution did not occur when C. nephridii was incubated with only NH₂OH. When NO₃ was used instead of NO₂ the same co-metabolic utilisation of NH₂OH has been observed. It has also been demonstrated that increasing the amount of NH₂OH (10 to 5000 μmol) affects N-N gas production. First, total N gas evolution increased and second, N gas production was simultaneously shifted from a NO/N₂O ratio of around 1:1 to solely N2O. By means of a 15N tracer technique it was first demonstrated by Garber and Hollocher (1982b) that substantial amounts of a hybrid 14,15N₂O are formed, when a denitrifying bacterial species (see Table 2.1) is anaerobically incubated with ¹⁵NO₂ (99 at%) and NH₂OH (please note that in all experiments acetylene was used to inhibit N₂O reduction). Moreover, hybrid N₂O production increased with increasing NH₂OH concentration. However, as indicated by a decrease in total N2O production, NH2OH application caused a general inhibition of the denitrification process. Moreover, all incubated bacterial species revealed substantial 15NO production in the presence of NH2OH, which was interpreted as an evidence for incomplete denitrification. This was additionally supported by the fact that denitrification inhibitors (antimycin A and retenone) distinctively diminished NO evolution, while simultaneously produced hybrid N₂O remained unaffected. Hence, NO was apparently formed as an intermediate or abortive product of denitrification of NO2 and not as a side product of the nitrosation reaction. An additional application of H₂¹⁸O revealed an incorporation of H₂O-O into denitrified non-hybrid N₂O and codenitrified hybrid N₂O (Figure 2.7). It was therefore concluded that the catalyzed N-nitrosation reaction with NH2OH proceeds via a symmetrical dinitrogen intermediate with the molecular formula $N_2H_2O_2$ (e.g. hyponitrous acid) analogue to chemical reactions under mildly acidic conditions as reported elsewhere (see Figure 2.2). $$E + {}^{15}NO_{2}^{-} \longrightarrow \begin{cases} E {}^{15}N^{18}O_{2}^{-} \\ \# \pm H_{2}{}^{18}O \end{cases} \xrightarrow{14,15} N_{2}^{18}O + 1.5 H_{2}O$$ $$NH_{2}OH, H^{+}$$ *nitrosation* Figure 2.7 Scheme for a co-metabolic utilisation of NH_2OH during denitrification of NO_2^- by a denitrifying bacterial species (E = enzyme) (after Garber and Hollocher, 1982b). ¹⁵N tracer experiments with NH₂OH were also reported by Kim and Hollocher (1984), Aerssens et al. (1986) and Hulse et al. (1989). The first study revealed hybrid 14,15N2O formation, when a dissimilatory nitrite reductase (cytochrome cd_1 purified from Pseudomonas aeruginosa) was incubated with ¹⁵NO₂ (99 at%) and NH₂OH. Later on Aerssens et al. (1986) demonstrated hybrid 14,15N2O formation by the denitrifying species Pseudomonas stutzeri, when it was anaerobically incubated either with ¹⁵NO (>99.9 at%) and NH₂OH or with ¹⁵NO₂ (>99.9 at%) and NH2OH. They showed that NO reduction to non-hybrid denitrified N2O was completely inhibited by NH₂OH concentrations ≥10 mM and hence, only hybrid ^{14,15}N₂O production occurred. By contrast, NO2 reduction to non-hybrid denitrified N2O was not significantly affected up to a maximum NH2OH concentration of 320 mM, while hybrid ^{14,15}N₂O production remained constantly low. It was therefore concluded that with only NO as the source of the enzymatic nitrosyl intermediate considerable competition with NH2OH takes place. Hulse et al. (1989) reported hybrid ^{14,15}N₂O production by a Cu-NIR of Achromobacter cycloclastes in the presence of 15NO2 and NH2OH under anaerobic conditions. Increasing amounts of NH2OH completely stopped denitrification, while the remaining N2O production by only N-nitrosation was significantly enhanced. Azide (N_3) – It was first reported by Garber and Hollocher (1982b) that hybrid $^{14,15}N_2O$ can be produced by denitrifying bacterial species (see Table 2.1), when $^{15}NO_2$ (99 at%) and N_3 are simultaneously supplied as the N substrate (please note that in all experiments acetylene was used to inhibit N_2O reduction). The N_3 compound delivers one N atom to the enzymebound nitrosyl species resulting in hybrid N_2O formation, while N_2 gas is simultaneously released as the residual of this reaction. All tested microbial species revealed an inhibitory effect of N₃ on denitrification rates as indicated by a decrease of total N₂O production. A simultaneous increase of ¹⁵N enriched NO was also detected and interpreted as an abortive denitrification product. Use of H₂¹⁸O treatments revealed the incorporation of H₂O-O into denitrified non-hybrid N2O and codenitrified hybrid N2O (see Figure 2.7). Kim and Hollocher (1984) reported hybrid ^{14,15}N₂O formation by a dissimilatory nitrite reductase (cytochrome cd₁) type purified from Pseudomonas aeruginosa) when it was anaerobically incubated with ¹⁵NO₂ (99 at%) and N₃. The overall reaction was dependent on a reducing system (ascorbate and TMPD), which delivers electrons to the enzyme. A high N_3 concentration (maximally 50 mM) had only little effect on ¹⁵NO₂ reduction, but caused an increase of ^{14,15}N₂O production. Likewise Garber and Hollocher (1982b) they found that *Pseudomonas aeruginosa* produces ¹⁵NO, ^{15,15}N₂O, and ^{14,15}N₂O species which are similarly enriched in ¹⁸O (gained from H₂¹⁸O). Weeg-Aerssens et al. (1987/1988) reported hybrid 14,15N2O formation in a cell-free crude extract of Pseudomonas stutzeri when 15NO2 and N3 were delivered under anaerobic conditions. Use of H₂¹⁸O revealed a pathway dependent ¹⁸O equilibration within gaseous N products. While N₂O from denitrification of NO₂ was 52.7 ±2 % equilibrated with ¹⁸O. hybrid N₂O gained from N-nitrosation of N₃ was 80.5 ±2.4 % equilibrated. This was interpreted as a sequential reaction pathway in which free NO2 without ¹⁸O dilutes the ¹⁸O content of the enzyme-bound nitrosyl, but does not affect the N-nitrosation with N₃. Hulse et al. (1989) demonstrated hybrid 14,15N2O formation by a Cu-NIR of Achromobacter cycloclastes when ¹⁵NO₂ and N₃ are supplied. An increasing N₃ supply, however, steadily decreased total N2O production by denitrification and N-nitrosation. They suggested that N3 inhibits the formation of the nitrosyl intermediate. Similar to the latter study Goretski and Hollocher (1991) reported hybrid ^{14,15}N₂O formation when Achromobacter cycloclastes or Pseudomonas stutzeri has been anaerobically incubated with ¹⁵NO₂ and N₃. The addition of N₃ decreased N-N gas release rate and in addition, caused a considerable release of ¹⁵NO as a result of NOR inhibition by N₃. When ¹⁵NO accumulation was inhibited (using a chemical NO trap) formation of hybrid N₂O by nitrosation of N₃ did not occur at all, while N₂O formation by
denitrification took place without any observable interference. Ye et al. (1991) revealed a hybrid 14,15N2O formation by a crude extract of Rhodobacter sphaeroides when anaerobically incubated with ¹⁵NO (99 at%) and N₃. Application of H₂¹⁸O revealed that denitrified non-hybrid and codenitrified hybrid N₂O exhibited comparable ¹⁸O incorporation. Besides bacterial species Tanimoto et al. (1992) revealed a codenitrification of N₃- by the denitrifying fungus Fusarium oxysporum with NO2 as the denitrification substrate. The presence of N₃ caused a short lag phase in the N₂O production, but ultimately resulted in a rapid N₂O and N₂ production. Nitrogen gas formation significantly exceeded the amount of added NO₂-N, but was found to be equal to the total amount of available N (i.e. NO₂ + N₃). Su et al. (2004) reported a hybrid ^{14,15}N₂O formation by a P450 NOR of F. oxysporum when it was anaerobically incubated with ¹⁵NO and N₃. Usuda et al. (1995) reported that the fungus Cylindrocarbon tonkinense shows suppressed cell growth when N₃ is applied during the denitrification of NO_2 . However, since no concomitant inhibition of N_2O formation was observed, it was concluded that a large fraction of the N_2O might have been evolved due to an energy intensive codenitrification. Ammonium (NH₄⁺) – Tanimoto et al. (1992) showed that hybrid ^{14,15}N₂O was produced by the fungus *Fusarium oxysporum* when it was anaerobically incubated with NH₄⁺ and ¹⁵NO₂. Although their results were not as conclusively as with other N compounds, it did prove the hybrid N₂O species evolved from a combination of a NO₂⁻-N and NH₄⁺-N. Su et al. (2004) reported hybrid ^{14,15}N₂O formation by the P450 NOR of *F. oxysporum* when anaerobically incubated with ¹⁵NO and NH₄⁺. When NO was omitted no N₂O formation occurred. Immoos et al. (2004) revealed the formation of hybrid ^{14,15}N₂O during NO₂⁻ reduction by a NOR of *Sulfolobus solfataricus* (type of cytochrome P450) via the co-metabolic utilisation of ¹⁵NH₄⁺. At an initial state only NH₄⁺ was produced upon NO₂⁻ reduction, while in the course of ongoing incubation the efficiency significantly decreased. It was proven that NH₄⁺ (if solution-based) formed by the reduction of NO₂⁻ can be reutilised for a simultaneous hybrid N₂O production. It was furthermore assumed that a hyponitrite anion (N₂O₂²-) may act as an intermediate species during codenitrification of NH₄⁺ to hybrid N₂O. **Hydrazine** (N₂H₄) – A co-metabolic utilisation of N₂H₄ during denitrification has only been reported by Kim and Hollocher (1984). They showed that a dissimilatory NIR (cytochrome *cd*₁ purified from *Pseudomonas aeruginosa*) formed hybrid N₂O (and hybrid N₂) when it was anaerobically incubated with ¹⁵NO₂ and N₂H₄. Based on the chemical nitrosation analogue under acidic conditions (see Biddle and Miles, 1968; Perrott et al., 1976) it was suggested that biotic nitrosation of hydrazine during denitrification of NO₂ should actually undergo a two step reaction (Figure 2.8). First, a nitrosation of N₂H₄ with ¹⁵NO₂ yields ¹⁵N labelled N₃ (^{15,14,14}N₃), hybrid N₂O (^{14,15}N₂O) and ¹⁴NH₄⁺. Second, the ¹⁵N labelled N₃ again undergoes a nitrosation reaction with ¹⁵NO₂ resulting in either non-hybrid ^{15,15}N₂O and hybrid ^{14,15}N₂ or hybrid ^{14,15}N₂O and non-hybrid ^{14,14}N₂. The remaining NH₄ was assumed to be relatively stable under neutral pH. Salicylhydroxamic acid $(C_7H_7NO_3)$ – A co-metabolic utilisation of $C_7H_7NO_3$ during denitrification was only reported by Tanimoto et al. (1992). The fungus *Fusarium oxysporum* produced hybrid ^{14,15}N₂O under anaerobic conditions when $C_7H_7NO_3$ and ¹⁵NO₂ were simultaneously supplied. The presence of $C_7H_7NO_3$ caused a short lag phase followed by a rapid N₂O formation. The total amount of N₂O evolved during incubation was equal to the amount of N contained in NO₂ plus $C_7H_7NO_3$. By contrast, absolutely no gas evolution occurred when only $C_7H_7NO_3$ was supplied to the fungus. Figure 2.8 Proposed reaction scheme for a co-metabolic utilisation of N_2H_4 during denitrification of NO_2 (after Kim and Hollocher, 1984). ## 2.2.2. Formation of N2 Dinitrogen formation via codenitrification, as described by Tanimoto et al. (1992), was shown by means of ¹⁵N tracer experiments for the N species NH₃, hydrazine (H₂N-NH₂), p-methoxyaniline (CH₃O-C₆H₅-NH₂), trifluoroethylamine (F₃CCH₂-HN₂), ethylenediamine (H₂N-CH₂CH₂-NH₂), and aniline (C₆H₅-NH₂) (Kim and Hollocher, 1984). A few authors also reported hybrid N₂ formation related to unspecified amino compounds contained in microbial nutrient solutions (Shoun et al., 1992; Kumon et al., 2002; Sameshima-Saito et al., 2004; Okada et al., 2005). In addition, hybrid N₂ formation has also been suggested to occur with respect to p-phenylene diamine (H₂N-C₆H₄-NH₂) and dimethyl-p-phenylene diamine (C₂H₆N-C₆H₄-NH₂) (Iwasaki et al., 1956; Matsubara, 1970). **Ammonia** (NH₃) – Only Kim and Hollocher (1984) reported the formation of hybrid N₂ by a co-metabolic utilisation of NH₃. Hybrid 14,15 N₂ evolved when a dissimilatory NIR (cytochrome cd_1 purified from *Pseudomonas aeruginosa*) was anaerobically incubated with 15 NO₂ and NH₃. **Hydrazine** (N_2H_4) – As already discussed in the previous section hybrid N_2 can be formed simultaneously with hybrid N_2O due to a two step N-nitrosation of N_2H_4 (Kim and Hollocher, 1984) (see Figure 2.8). Amino compounds – It was proven in some studies (Iwasaki et al., 1956; Pichinot et al., 1969; Matsubara, 1970; Kim and Hollocher, 1984) that hybrid N₂ formation occurred with aliphatic or aromatic amine or diamine compounds. With respect to aliphatic species, Kim and Hollocher (1984) reported that under anaerobic conditions a dissimilatory NIR (cytochrome cd_1 purified from *Pseudomonas aeruginosa*) produced hybrid ^{14,15}N₂ when ¹⁵NO₂ (99 at%) was applied simultaneously with ethylenediamine (H₂N-CH₂CH₂-NH₂) or trifluoroethylamine (F₃CCH₂-NH₂). Analogous to abiotic N-nitrosation reactions (see chapter 2.1.1) it was assumed that a diazonium intermediate was formed, where the alkyl diazonium precursor is expected to hydrolyse rapidly to form N₂. They also reported the formation of hybrid ^{14,15}N₂ in the presence of ¹⁵NO₂ (99 at%) and aromatic amine species such as aniline (C₆H₅-NH₂) or p-methoxyaniline (CH₃O-C₆H₅-NH₂). The reaction was assumed to be similar to the observed N-nitrosation of aliphatic amines. Considering aromatic diamine compounds Iwasaki et al. (1956) and Matsubara (1970) suggested hybrid N2 formation under denitrifying conditions, also by Pseudomonas denitrificans, due to a reaction of NO2 with p-phenylene diamine (H₂N-C₆H₄-NH₂) or dimethyl-p-phenylene diamine (C₂H₆N-C₆H₄-NH₂), respectively. Iwasaki et al. (1956) showed that in the presence of p-phenylene diamine (H₂N-C₆H₄-NH₂) reduction of NO₂ by P. denitrificans resulted in "excess" N gas production (mostly N₂ and a little NO) corresponding to 1.8 times that of the available N in the form of NO₂. Concerning dimethylp-phenylene diamine they observed "excess" N gas production (mostly N₂ and a little NO) corresponding to 1.6 times that of the available N in the form of NO₂. Matsubara (1970) incubated P. denitrificans anaerobically with NO₂ and dimethyl-p-phenylene diamine in the presence or absence of lactate. In each case only N2 was produced, but N2 formation was increased when lactate was additionally applied. They concluded that at first NO is produced from NO₂ by the denitrifying enzyme with a cytochrome c-552 and dimethyl-p-phenylene diamine as the hydrogen donor. Afterwards NO is converted to N2 by reacting with dimethylp-phenylene via diazoniation and dediazoniation (see chapter 2.1.1). Similar results with pphenylene diamine and dimethyl-p-phenylene diamine have been reported by Pichinot et al. (1969) concerning the biotic N-nitrosation by the bacterial species Paracoccus denitrificans and Pseudomonas aeruginosa. Shoun et al. (1992) observed that the fungi Fusarium solani and Cylindrocarpon tonkinense produce hybrid ^{14,15}N₂, when they are anaerobically incubated with ¹⁵NO₂ (99 at%). When peptone was omitted from the culture medium N2 was formed not at all. By contrast, NO and N₂O were produced with NO₂ as the only N source. Sameshima-Saito et al. (2004) observed hybrid 14,15N2 formation also by F. solani, when cultured in the presence of 15NO2 (99 at%) according to the method of Shoun et al. (1992) and Tanimoto et al. (1992). Kumon et al. (2002) demonstrated hybrid N2 formation by the Streptomyces antibioticus when anaerobically incubated with 15NO₃ (99 at%). However, since N-N gas formation continued long after NO3 was completely consumed, it was assumed that hybrid N2 formation was apparently directly related to NO2 or NO (evolved from NO3 and NO2 reduction, respectively). Besides hybrid ^{14,15}N₂ small amounts of denitrified non-hybrid ^{15,15}N₂ were also simultaneously released. They concluded that the unlabelled N of hybrid 14,15N2 originated from N compounds contained in peptone. Moreover, simultaneously produced N2O only occurred due to conventional denitrification. In contrast to all former studies, it was demonstrated by Okada et al. (2005) that even in the presence of O2 hybrid N2 production by codenitrification occurs. They showed that an aerobic denitrification of ¹⁵NO₂ (99 at%) by a Mesorhizobium sp. resulted in a formation of codenitrified hybrid ^{14,15}N₂ and denitrified nonhybrid 15,15N2O. It was suggested that the unlabelled N of the hybrid 14,15N2 originated from peptone and yeast extract (i.e. amino compounds). By contrast, under anaerobic conditions only non-hybrid ^{15,15}N₂O was formed, while N₂ was not produced at all. ## 2.3. Controlling factors of codenitrification In principle it can be assumed that the process of codenitrification is controlled by environmental constraints already recognized as controllers of denitrification (see e.g. Knowles, 1982; Zumft, 1997). Hence, an
occurrence of codenitrification within the biosphere appears to be mainly controlled by (i) O₂ availability, (ii) pH, and (iii) availability of respirable organic carbon substrates. In addition, it can be assumed that codenitrification will be dependent on (iv) the type of nucleophiles and their reaction kinetics as well as (v) the capability of denitrifying species to perform codenitrification. ## 2.3.1. O₂ availability Since codenitrification is dependent on the microbial reduction of NO₃, NO₂, and/or NO in the course of denitrification it can be expected to be largely restricted to anaerobic conditions. Nevertheless, as pointed out by e.g. Zumft (1997) some microbial species appear to denitrify even in the presence of O2. A few studies (Zhou et al., 2001; Zhou et al., 2002; Takaya et al., 2003b) revealed that for fungal species (e.g. Fusarium oxysporum) a low O2 level appears to be even required for denitrification. Takaya (2002) supposed that fungal denitrification was apparently a hypoxic metabolism inasmuch as it still proceeds at low O2 concentrations. However, the phenomenon of aerobic denitrification has also been reported for bacterial species (e.g. Pseudomonas stutzeri) (Takaya et al., 2003a). Concerning codenitrification one study (Kumon et al., 2002) in fact proved that under low O₂ conditions (2 Vol.%) hybrid N-N gas production could take place (based on the actinomycete Streptomyces antibioticus). Moreover, it was demonstrated by Okada et al. (2005) that a Mesorhizobium sp. produced hybrid N₂ during denitrification even under nearly full atmospheric O₂ tension. Furthermore, Ralt et al. (1988) found that e.g. E. coli performed nitrosation of 2,3-diaminonaphtalene with NO₂ equally efficiently under aerobic and anaerobic conditions. Nonetheless, one can finally assume that within environments characterised by variable O₂ supply and a heterogeneous O₂ distribution (e.g. soils) codenitrification will be significantly triggered by the impact of O2, i.e. will tend to diminish with increasing O2 availability and tend to rise with decreasing O2 concentration. ## 2.3.2. pH value It was shown in some studies that biotically mediated nitrosation occurs in principle at pH values around neutral conditions (Calmels et al., 1985; Leach et al., 1987; Smith and Smith, 1992). By contrast, abiotic acid catalysed nitrosation reaction via e.g. HNO₂ occurs on its optimum between 2 to 3 pH (Mirvish, 1975). Kim and Hollocher (1984) reported that at pH 7.5 an abiotic N-nitrosation of N₃⁻ by HNO₂ was not observable, while it was readily detectable in the presence of a NIR of *Pseudomonas aeruginosa*. A similar result was reported by Calmels et al. (1985) concerning nitrosation of morpholine to N-nitrosomorpholine. Nonetheless, they also pointed out that biotic and abiotic nitrosation can occur simultaneously depending on the current pH conditions (e.g. at weakly acidic pH). Leach et al. (1987) reported that biotic nitrosation of morpholine by *P. aeruginosa* occurred at an optimum between pH 8 to 8.5. Ralt et al. (1988) demonstrated that biotic nitrosation of 2,3-diaminonaphtalene with NO₂ by *E. coli* was indistinguishable from chemical nitrosation below pH 6, but 10 to 100 times faster than the chemical nitrosation at pH 7.3. Smith and Smith (1992) assumed that a bacterial catalysed N-nitrosation occurs over a pH-range of about 6 to 9. This is in good agreement with the pH values of all studies summarised in Table 2.1 which ranged between 6.0 and 7.5. Thus, one can conclude that biotic nitrosation (i.e. codenitrification) in the biosphere will be restricted to environments which exhibit pH values from weakly acidic to weakly alkaline conditions. ## 2.3.3. Respiratory substrates Most denitrifiers represent aerobic heterotrophic organisms that under anaerobic conditions transfer redox equivalents from organic carbon sources to the respective N oxides of the denitrification chain (Zumft, 1997). Thus, denitrification is depending on the availability of respirable organic carbon substrates. For example, denitrification activity in soil has been already proven to be highly correlated with the amount of water-soluble organic carbon or mineralisable carbon (e.g. Burford and Bremner, 1975; deCatanzaro and Beauchamp, 1985). It can be therefore assumed that codenitrification is in principle also dependent on organic carbon respiration. Nonetheless, it has also been reported elsewhere (Iwasaki and Mori, 1958; Pichinot et al., 1969; Matsubara, 1970; Garber and Hollocher, 1982b; Su et al., 2004; Shoun, 2005) that some co-metabolisable nucleophiles do apparently act as both electron and nitrogen donor. Pichinot et al. (1969) demonstrated that extracts of Paracoccus denitrificans and Pseudomonas aeruginosa can catalyze the reduction of NO₂ to hybrid N₂ even in the absence of strong organic electron donator (such as glucose or lactate) when only a nucleophilic amine species like p-phenylene diamine is delivered. Similar results have also been reported with respect to the formation of hybrid N2O by codenitrification of NH2OH (Iwasaki and Mori, 1958; Matsubara, 1970; Garber and Hollocher, 1982b). Su et al. (2004) demonstrated that the fungal P450 NOR catalyzes the N-nitrosation of N₃ or NH₄ (with NO as the nitrosyl donor) in the absence of the commonly utilised electron donor NADH. Weeg-Aerssens at al. (1988) reported that the codenitrification/denitrification ratio increases, when the electron supply by the reductant (e.g. succinate) becomes rate limiting for denitrification of NO₂, i.e. with decreasing availability of electron donors the contribution of denitrification on total N-N gas formation decreases. Nonetheless, inasmuch as codenitrification is at least dependent on NO₂ production (by e.g. NO₃ reduction during denitrification) the question remains to what extent codenitrification can occur even in the absence of respirable organic substrates. Besides organic reductants, however, autotrophic denitrifiers have been shown to utilise reduced sulphur compounds, H_2 , or Fe^{2+} for the reduction of NO_3^- and NO_2^- to N_2O and/or N_2 . As recently reported by Shao et al. (2010) autotrophic denitrifiers are apparently widely distributed within different environments (e.g. wet soils, lake sediments etc.). Until now, however, no clear evidence has been delivered that autotrophic denitrifiers perform codenitrification. ## 2.3.4. Type and kinetic of nucleophiles Gutierrez et al. (2008) recently pointed out that a variety of nitrogenated species, e.g. NH₃, amines and amino acids, NH₂OH, NO₂, and thiolates (cysteine, glutathione, etc.) have to be considered as biorelevant nucleophiles. However, a release of hybrid N₂O or hybrid N₂ following a nitrosation is fundamentally related to the type of nucleophile which undergoes codenitrification. E.g. Iwasaki et al. (1956) demonstrated that the bacterial species *Pseudomonas denitrificans* was able to enhance N-N gas production due to N-nitrosation of p-phenylene diamine, while a similar stimulating effect on N-N gas formation could not be observed in the presence of o- and m-phenylene diamine, respectively. Similar effects concerning microbial nitrosation of amines have been reported by Pichinot et al. (1969). In principle it can be deduced that all nucleophilic N compounds known to be converted to N₂O and/or N₂ by abiotic N-nitrosation (mainly primary amines and amides as well as oxime compounds, see chapter 2.1.1) will be also co-metabolised to hybrid N₂O and/or N₂ in the course of codenitrification. In fact, all N compounds shown to be converted to hybrid N-N gas by microbial N-nitrosation fit into this scheme (see Table 2.1). While the type of a nucleophile determines its suitability for N-N gas formation upon nitrosation (i.e. probability of dediazoniation, see chapter 2.1.1), its affinity (e.g. K_m value) to a codenitrifying enzyme (i.e. NIR/NOR) determines the nitrosation rate at a particular availability (i.e. concentration). Until now, however, only a few studies have reported K_m values of nucleophilic species which undergo hybrid N-N gas production via codenitrification (Iwasaki and Mori, 1958; Kim and Hollocher, 1984; Su et al., 2004). Among tested nucleophiles only slight differences have been observed. All determined K_m values are within a millimolar range and extent between 2 and 60 mM. Iwasaki and Mori (1958) reported that K_m values of N_2 formation via dimethyl-p-phenylene diamine (K_m value of 30 mM) are rather similar to K_m values of N₂O formation via NH₂OH (K_m value of 60 mM). Kim and Hollocher (1984) could show that at concentrations of ≥50 mM most enzymatically nitrosated nucleophiles (using prokaryotic cd1 NIR from Pseudomonas aeruginosa) reveal a zero order reaction and hence, indicate a saturation kinetic (e.g. K_m value of N_3 11 mM, K_m value of aniline 4 mM). Similarly, Su et al. (2004) found saturation kinetics (K_m value of 3 mM) during nitrosation of N₃ by NO, using a purified P450 NOR of the fungi Fusarium oxysporum. For nucleophiles which undergo microbial nitrosamine formation (e.g. pyrrolidine, dimethylamine) Calmels et al. (1985) reported $K_{\rm m}$ values between 4.5 and 58.5 mM. In addition, they revealed that K_m values of NO_2 reduction (i.e. denitrification) and amine nitrosation, respectively, (by Escherichia coli) have been very similar. Furthermore, it was found that biotic nitrosation of tested amines clearly followed a Michaelis-Menten kinetic. They also showed that the degree of nitrosation was clearly dependent on the amine compound which was nitrosated to a nitrosamine. Also Leach et al. (1987) revealed that bacterial catalysed nitrosation shows a dependence on the nucleophile and can be best described by classical Michaelis-Menten kinetic. Calmels et al. (1985) reported that nitrosamine formation by microbial nitrosation appears to be dependent on the pK_a value $(-\log_{10}$ of the acid dissociation
constant K_a) of a nitrosated amine species. It was shown that the logarithm of the specific nitrosation rate was inversely linear related to their pKa value. Ralt et al. (1988) reported microbial nitrosamine formation by Escherichia coli where nitrosation of morpholine, despite of a 75-fold-higher concentration, was slower than the nitrosation of 2,3-diaminonaphtalene. Also here it was assumed that the differences in nitrosation rates were directly related to their acid dissociation constant. Similar dependencies on the pK_a vlaue have been reported by Kim and Hollocher (1984) concerning hybrid N₂O formation by enzymatic nitrosation of N₃, NH₂OH, and H₂N-NH₂, respectively. Furthermore, Kim and Hollocher (1984) demonstrated that when two nucleophiles are present at equal concentrations, the one with the lower K_m will inhibit nitrosation of the one with the higher K_m value, while an obverse inhibition is insignificant. However, since K_m values known for NO₂/NO reduction during denitrification mainly extent between nM and μM range (Conrad, 1996; Zumft, 1997) it appears that microbial nitrosation rates are significantly affected by the availability of NO₂ and NO, respectively. It was shown by some studies (Weeg-Aerssens et al., 1987/88; Hulse et al., 1989) that the codenitrification/denitrification ratio decreases considerably when the ratio of nitrosyl donor concentration (e.g. NO₂) to nucleophile concentration (e.g. N₃) increases. It should be noted, however, that some microbial studies revealed significant nitrosation rates even under conditions where the nucleophile has been delivered at a similar concentration as the nitrosyl donor (e.g. NO₂) (Garber and Hollocher, 1982b; Calmels et al., 1985; Weeg-Aerssens, et al. 1988; Tanimoto et al., 1992). ## 2.3.5. Physiology of denitrifying species As shortly summarised in Table 2.1 N₂O and N₂ gas production due to codenitrification is known to occur in all three domains of microorganisms: *bacteria*, *archaea*, and *eukarya* (kingdom *fungi*). However, many studies (e.g. Mills and Alexander, 1976; Calmels et al., 1985; Leach et al., 1987) revealed significant differences in their individual capabilities to perform codenitrification. These differences seem to depend on the setup of an enzyme and hence, its individual reaction kinetic (e.g. Kim and Hollocher, 1984; Hulse et al., 1989; Suzuki et al., 1989; Ye et al., 1991) and furthermore, appear to be affected also by the location of an enzyme within a microbial species (e.g. membrane bound or cytosolic enzymes; see Aerssens et al., 1986; Weeg-Aerssens et al., 1987/1988). For example, biotic nitrosation activity was proven to be strongly related to the metal species of the binding site for NO and NO₂, respectively (e.g. exhibiting a Fe-NIR or a Cu-NIR, see also chapter 2.1.2 and 2.1.3) (e.g. Hulse et al., 1989; Suzuki et al., 1989; Ye et al., 1991). Trapping experiments with H₂¹⁸O and NO2 revealed that with a purified Cu-NIR of Achromobacter cycloclastes no detectable incorporation of ¹⁸O into N₂O took place (Hulse et al., 1989), while with Fe-NIR (e.g. from Pseudomonas stutzeri) a considerable ¹⁸O incorporation into denitrified and codenitrified N₂O occurred (Garber and Hollocher, 1982b; Aerssens et al., 1986; Weeg-Aerssens et al., 1987). Ye et al. (1991) pointed out that with microbial species using Fe-NIRs a generally extensive exchange between the oxygen of H2O and NO2 takes place. By contrast, microbial species using Cu-NIRs revealed oxygen exchange rates from near zero to almost complete exchange. Ultimately it was therefore assumed that the nitrosation kinetic of an enzymatic Cu⁺-NO⁺ intermediate is significantly different from the that of Fe²⁺-NO⁺ intermediate. In fact, a few studies (Goretski and Hollocher, 1991; Jackson et al., 1991; Ye et al., 1991) demonstrated significantly higher N-nitrosation rates by copper-containing NIRs compared to ironcontaining NIRs. As supposed by Averill (1996) NO₂ reduction by copper NIRs appears to proceed via a more labile Cu-NO species, which is observable by an increased NO accumulation during denitrification of NO₂ as well as hybrid ^{14,15}N₂O production in the presence of ¹⁵NO₂ (99 at%) and unlabelled NO. In fact, Jackson et al. (1991) showed that a ^{14,15}N₂O production was performed by a Cu-NIR (A. cycloclastes) in the presence of ¹⁵NO₂ and ¹⁴NO, while with a ferrous NIR (Pseudomonas stutzeri) the incorporation of free NO was not found at all. Garber and Hollocher (1982b) demonstrated that hybrid N2O formation due to codenitrification of NH₂OH with NO₂ as the nitrosyl donor significantly alters depending on the denitrifying species. While with Paracoccus denitrificans and Pseudomonas stutzeri the mole fraction of hybrid N2O to total N2O production accounted for ca. 47 and 63%, respectively, the species Pseudomonas denitrificans and Pseudomonas chlororaphis achieved mole fractions of 91 and 98%, respectively (incubation time of 30 min). Similar results have been found when NH₂OH was replaced by N₃. With Pa. denitrificans and P. stutzeri the mole fraction of hybrid N₂O to total N₂O production was 6 and 8%, respectively, while with P. denitrificans and P. chlororaphis a mole fraction of 54% was achieved. Two studies (Calmels et al., 1985; Leach et al., 1987) demonstrated that even different isolates of the same species can show considerable variation in their ability to catalyse nitrosation reactions. As figured out by Leach et al. (1987) the most rapid catalysis is associated with those bacteria capable of reducing NO₃ and NO₂ via denitrification (e.g. P. aeruginosa, E. coli etc.). Ralt et al. (1988) suggested that observed differences in nitrosation activity of different E. coli strains might be related to genetic or phenotypic differences. Mills and Alexander (1976) could show that even the physiological state of microorganism alters its ability to perform nitrosation reactions. It was found that E. coli catalyses a nitrosation of dimethylamine during a resting phase, but was incapable of performing nitrosation during the growing phase. Furthermore, they observed differences between microbial components responsible for biotic nitrosation. While boiled cells of *P. stutzeri* maintained their ability to enhance nitrosation, other species (e.g. *E. coli*, *Cryptococcus terreus*) completely lost their capability to enhance nitrosation after boiling. It was concluded that in the latter case a nitrosation was performed enzymatically, while in the former case a nitrosation was biotically enhanced by cell constituents other than enzymes. Also Collins-Thompson et al. (1972) reported nitrosation of secondary amines with NO_2^- mediated by a *Streptococcus* species via an unknown non-enzymatic reaction with one or more metabolic products. Weeg-Aerssens et al. (1988) revealed that the accessibility of a nucleophile to an enzyme (e.g. passage through the cell membrane) can significantly alter the efficiency of hybrid N-N gas formation. While only $\leq 1\%$ of N_2O was found to be formed by biotic N-nitrosation of N_3^- using whole cells of *P. stutzeri*, ca. 30% N_2O was gained from biotic N-nitrosation when cell-free extracts (using a French Press) were used. # 3. ^{15}N -aided online determination of soil N_2 and N_2O release on a laboratory scale ## 3.1. Abstract N₂ is one of the major gaseous nitrogen compounds released by soils due to N-transformation processes. Since it is also the major constituent of the earth's atmosphere (78.08 vol.%), the determination of soil N2 release is still one of the main methodological challenges with respect to a complete evaluation of the gaseous N-loss of soils. Commonly used approaches are based either on a C₂H₂ inhibition technique, an artificial atmosphere or a ¹⁵N tracer technique and are designed either as closed systems (non-steady state) or gas flow systems (steady state). The intention of this work has been to upgrade the current gas flow technique using an artificial atmosphere for a 15N aided determination of the soil N2 release simultaneously with N2O. A 15N aided artificial atmosphere gas flow approach has been developed, which allows a simultaneous online determination of N2 as well as N2O fluxes from an open soil system (steady state). Fluxes of both gases can be determined continuously over long incubation periods and with high sampling frequency. The N₂ selective molecular sieve Köstrolith SX6® was tested successfully for the first time for N₂ collection. The present chapter mainly focuses on N₂ flux determination. For validation purposes soil aggregates of a Haplic Chernozem were incubated under aerobic (21 and 6 vol.% O₂) and anaerobic conditions. Significant amounts of N2 were released only during anaerobic incubation (0.4 to 640.2 pmol N₂ h⁻¹ g⁻¹ dry soil). However, some N₂ formation also occurred during aerobic incubation. ## 3.2. Introduction Scientists from different disciplines have focused their studies on processes of transformation and transport of nitrogen compounds in soils due to an increased gaseous nitrogen release from agricultural fields as a result of N fertiliser application. Different studies revealed that gaseous nitrogen species (e.g. NO, N₂O or N₂) are produced in soils mainly as a consequence of microbial oxidation and reduction processes during soil N-transformation (Quastel and Scholefield, 1951; Knowles, 1982). Since NO and N₂O occur only in trace amounts within the earth's atmosphere, flux measurements are relatively easy to carry out. In contrast to this, N₂ is the major component of the earth's atmosphere (78.08 vol.%) and thus measurements of N₂ fluxes are very difficult to realise. However, for a complete evaluation of the gaseous nitrogen release from soils during the soil/atmosphere N-cycle it is essential to consider NO, N₂O and N₂, separately. In soils N₂ is mainly formed during denitrification (Knowles, 1982). At present three basic approaches for measuring N₂
fluxes from soils have been developed: (i) application of acetylene (C₂H₂) (e.g. Weier et al., 1993; Rudaz et al., 1999), (ii) use of N isotopes (stable ¹⁵N or radioactive ¹³N) (e.g. Speir et al., 1995; Wolf and Russow, 2000) and, (iii) creation of an artificial atmosphere (e.g. Butterbach-Bahl et al., 2002; Cardenas et al., 2003). The use of C₂H₂ as a component of the soil atmosphere (10 kPa) will block the N₂O reductase of denitrifying species and subsequently inhibit the formation of N2 (Yoshinari and Knowles, 1976). The N2 flux isn't directly measured but can be calculated as the difference between the N2O amount released by soil samples incubated with and those incubated without C2H2. The main advantage of this approach is that it can detect very low levels as only N2O has to be measured by gas chromatography. However, different studies revealed some uncertainties concerning the applicability of this approach. Wrage et al. (2004) published that the inhibition effect of C₂H₂ on the N₂O release of soil samples is inconsistent even at a constant C₂H₂ headspace concentration. Furthermore C2H2 additionally impedes the supply of NO3 during nitrification by inhibiting the enzyme NH₄⁺-monooxygenase produced by nitrifying species (Malone et al., 1998). Thus, N2 fluxes can be calculated only for a short period of time due to a shortage of NO₃ supply. Jordan et al. (1998) have shown that an in situ application of C₂H₂ affects the N₂O flux only during simultaneous addition of NO₃. Bollmann and Conrad (1997) showed that C2H2 also affects the reduction of NO to N2O resulting in an underestimation of denitrification rates. Finally, the simultaneous determination of NO, N2O and N2 released from one soil sample is impossible. Taken together these factors lead to the conclusion that the acetylene inhibition technique should be replaced by other methods, as has already been proposed by Butterbach-Bahl et al. (2002). The application of N isotopes is another basic approach for measuring N₂ fluxes from soils (e.g. Speir et al., 1995; Bergsma et al., 2001). Since the utilization of the radionuclide ¹³N allows a measurement period of only one hour (half life time approximately 10 min) the stable ¹⁵N is commonly used. Depending on the individual objectives of a study, a variety of tracer substances can be introduced into the soil (¹⁵NH₄⁺, ¹⁵NO₃⁻ etc.) for labelling N₂ formed due to soil N-transformation. N₂ fluxes can easily be calculated by various mathematical approaches (Hauck and Bouldin, 1961; Mulvaney and Boast, 1986; Russow et al., 1996), the choice of which depends on the ¹⁵N treatment and the method by which the output data is assayed. A third basic approach for measuring N₂ fluxes from soil samples is based on an artificial atmosphere with helium or argon as a substitute for atmospheric N₂. Based on that principle, different gas flow soil core techniques have been developed during the last 10 years (Swerts et al., 1995; Scholefield et al., 1997a; Butterbach-Bahl et al., 2002; Cardenas et al., 2003; Mander et al., 2003). Soil cores are initially purged with an artificial gas or gas mixture (up to 200 mL min⁻¹) in order to replace atmospheric N₂ within the soil. Afterwards the artificial gas or gas mixture is used as a continuously streaming gas flowing over the soil surface (5 to 80 mL min⁻¹) (Scholefield et al., 1997a) and generating a permanent artificial atmosphere. Soil N₂ formation will be measurable as long as the N₂ efflux of the soil exceeds the N₂ background concentration of the artificial atmosphere. N₂ fluxes are determined online by gas chromatography based on either a steady state (Scholefield et al., 1997a; Cardenas et al., 2003) or a non-steady state approach (Butterbach-Bahl et al., 2002; Mander et al., 2003). The intention of this work has been to upgrade the common soil core gas flow technique for an improved determination of the soil N2 release and simultaneous determination of other gaseous N species (e.g. N₂O) released by soils. Based on the experience of a former ¹⁵N supported flow-through incubation system (Russow et al., 1995) we developed a ¹⁵N aided artificial atmosphere gas flow technique for a continuous online determination of soil N₂ release and simultaneous determination of N₂O release. The combination of the gas flow soil core technique using an artificial atmosphere with ¹⁵N tracer technique leads to a number of advantages which are essential for detailed studies of the complete gaseous N-loss of soils. First of all current detection limits concerning N₂ flux determination could be markedly extended. Furthermore investigations of different gaseous nitrogen species released simultaneously by soils (e.g. N₂O, N₂), but generated by different biotic and abiotic pathways could be conducted. Because of the steady state condition (open soil system) fluxes can be determined for long incubation periods without disturbing the gas headspace. Furthermore, online determination permits a high sampling frequency. Finally, flux calculation based on ¹⁵N tracer technique is performed by a single measurement, which minimizes the amount of work and additionally increases the sampling frequency. The presented approach has been validated by soil aggregates of a Haplic Chernozem and examination will be mainly focused on N2 flux determination. ## 3.3. Material and Methods ## 3.3.1. Basic principle of flux determination Comparable with the cryoenrichment technique for capturing NO and N₂O (e.g. Speir et al., 1995; Sich and Russow, 1998) from a carrier gas, the basic idea of this approach was to develop a technique for a controlled capturing and release of N₂. A carrier gas continuously passes over the surface of an incubated soil core at a constant flow rate (10⁰ to 10² mL min⁻¹). Under steady state conditions it is assumed that the current headspace gas concentration of any gas (e.g. N₂) produced in the soil is controlled only by the current biotic and abiotic conditions of the soil sample itself. Consequently the headspace concentration of a certain gas under study correlates with its current efflux from the incubated soil sample. Capturing this gas completely from the downstreaming carrier gas for a short period of time and analysing the captured amount would allow the determination of its current efflux (amount/time) under given conditions. Concerning N₂ the dinitrogen selective molecular sieve Köstrolith SX6[®] (Chemiewerk Bad Köstritz) has been used for dinitrogen collection. SX6[®] is a synthetic crystalline aluminosilicate with a regular micropore structure (faujasite type, 0.9 nm). Since contamination with ambient air is inevitable a ¹⁵N tracer technique is used for a distinct differentiation between N₂ produced during soil N-transformation (e.g. denitrification) and atmospheric N₂ derived from leakages. ## 3.3.2. Instrumental set-up Stainless steel assemblies designed for sealing a soil core (0.8 dm in diameter) from bottom and top were used for soil incubation. Sealing was ensured by using wing nuts to tighten the soil core against rubber rings at the top and the bottom. Additionally silicone gel was used to improve the sealing of the soil core (Figure 3.1). He 5.3 (Linde AG, Pullach, Germany) was used as the major carrier gas and mixed with O_2 5.0 (Linde AG, Pullach, Germany) by using two mass flow controllers (Series 5850; Westphal M&R GmbH, Ottobrunn, Germany), according to experimental procedures. The actual O_2 concentration of the carrier gas was monitored by a micro-optical oxygen sensor (oxy 10 micro-trace, Precision Sensing GmbH, Regensburg, Germany). The main carrier gas stream was divided into three parallel pathways providing three separate incubation entities (Figure 3.2, IE A to C). In front of the inlets of each entity a nickel capillary (I.D. 32 μ m) 50 mm in length was assembled resulting in a higher pressure upstream of the capillary and guaranteeing a continuous and constant flow rate through all incubation entities even when minor back-pressure changes occur. To achieve controlled capture and release of N2, an open gas circuit (Figure 3.2) was designed. During no-load running, the gas circuit was flushed with He 5.3 (50 mL min⁻¹). For flux determination the outlet of an incubation entity was connected to the inlet of the gas circuit (Figure 3.2, V1). First the carrier gas was purified from NO, CO₂ and H₂O by a NO_x filter p/n79275 (ECOM America, Gainesville, USA), Ascarrite (Fluka Chemie AG, Buchs, Switzerland) and Siccapent (Merck KGaA, Darmstadt, Germany), respectively (Figure 3.2, PP/AS/SI). Afterwards the carrier gas passed a stainless steel accumulation loop (Figure 3.2, CT1) assembled on a 6-port-valve (Figure 3.2, V2) and used for N2O capturing by a cryoenrichment technique. O2 was subsequently removed completely from the carrier gas by a copper oxidation furnace (500 °C) (Figure 3.2, CF), since it is readily adsorbed by SX6® resulting in interference with the N2 flux determination. In front of the furnace a second cryotrap (Figure 3.2, CT2) was inserted to assure that no N₂O entered the furnace. Otherwise N₂O would be partially reduced to N₂ resulting in an erroneous N₂ flux determination. At the outlet of the furnace a third cryotrap was assembled for NO removal (Figure 3.2, CT3), since NO is formed in very small amounts by N2 and O2 passing the furnace. The carrier gas subsequently passed a second stainless steel accumulation loop (Figure 3.2, Z) assembled on a 6-port-valve (Figure 3.2, V3) and filled with SX6® (0.1 g; granular 1.2 - 2 mm) for N₂ capture by cooling with liquid dinitrogen. Figure 3.1 Schematic cross-section of an incubation entity: 1 - wing nut; 2 - headspace outlet; 3 - headspace; 4 - cap; 5 - upper and lower sealing ring; 6 - base; 7 - soil core; 8 - stand; 9 - screw thread; 10 - steel cylinder; 11 - headspace inlet; 12 - silicone gel sealing. Finally the carrier gas was streamed through the outlet of the open gas circuit (Figure 3.2, V3). By
switching valve 2 and 3 captured N₂O and N₂ were transferred into the gas circuit of a continuous-flow isotope-ratio mass spectrometer (ConFlow IRMS - delta S; ThermoFinnigan MAT, Bremen, Germany) downstreaming to a gas chromatograph (GC 5890 Series II; HP – Agilent, Palo Alto, USA). Captured N₂ was released by electrical resistance heating, which resulted in a rapid heating-up of the N₂ accumulation loop to approximately 200 °C. Activation of SX6[®] was carried out at 450 °C for 5 min and repeated every day prior to the flux measurements. Captured N₂O was released by removing rapidly the N₂O accumulation loop from the Dewar vessel. Total amount of gas and abundance of ¹⁵N was measured by a ConFlow IRMS equipped with a triple collector for a simultaneous detection of mass-to-charge ratios (m/z) 28, 29, and 30. N₂O was reduced to N₂ by a copper furnace (730 °C) prior determination. ## 3.3.3. Flux measurement The outlet of an incubation entity was connected to valve 1 (Figure 3.2, V1) by Swagelok® couplings. After 5 min the connected carrier gas stream was switched into the open gas circuit. For N₂O capturing, the N₂O accumulation loop (Figure 3.2, CT1) was switched into the open gas circuit and immersed in liquid dinitrogen prior to switching valve 1. Figure 3.2 Scheme of instrumental setup: $AS - CO_2$ -trap (Ascarite); C - warming cupboard; CF - copper furnace; CG - Inlet for calibration gas; CT1 - cryotrap for N_2O sampling; CT2 - cryotrap for N_2O removal; CT3 - cryotrap for cryot The capture of N_2 was started after 15 min of continuous flushing. N_2 was captured throughout the setup for 2 min. Afterwards the N_2 accumulation loop was switched into the inner circuit of the GC-ConFlow-IRMS (Figure 3.2, V3) and N_2 was released 10 seconds later. After a total of 20 min flushing valve 1 was switched back to the starting position thereby initiating no-load running conditions. After a further 3 mins, the N_2O accumulation loop was switched into the inner circuit of the GC-ConFlow-IRMS (Figure 3.2, V2) and N_2O was released and measured. Since the three faraday cups of the delta S have a measuring range of 13 V in maximum (amplitude) the capturing time had to be shortened when soil N-fluxes increased. Thus, N_2 capture took between 1 and 2 min and N_2O capture between 3 and 20 min. When it was necessary to capture N_2O for less then 17 min, the N_2O flux was measured during a second run immediately after the N_2 flux measurement. ## 3.3.4. Flux calculation Amounts of captured N_2 and N_2O were calculated via a calibration curve generated by using differently sized sample loops (Figure 3.2, SL) flushed with a standard gas mixture (2530 ppm N_2 and 2500 ppm N_2O in helium). Relative standard deviation (RSD) was $\leq 1.0 \%$ (n = 5) for N_2 and ≤ 3.0 % (n = 5) for N_2O . The accuracy of the delta S with regard to the determination of ¹⁵N abundance beyond the natural background occurrence was confirmed by calibration standards of ¹⁵N₂O. The standards were generated by heating up (>170 °C) ¹⁵NH₄¹⁵NO₃ salt (¹⁵N abundance of 4.73, 15.45, 35.51 and 55.64 at%) contained in 12 mL vials. To remove atmospheric N₂O, vials were flushed with helium before heating them up. Measurements were conducted via an auto sampling procedure published by Schmidt et al. (1997). The RSD calculated was ≤ 1.5 % (n = 5). N₂ flux calculation is based on a two-pool model using the non-random distribution approach (Hauck and Bouldin, 1961), which involves the following assumptions: (i) the soil NO₃⁻ pool is homogenously labelled, (ii) labelled NO₃⁻ is the only source of N₂ formation, and (iii) N₂ formed by denitrification is only mixed in with atmospheric N₂. The same model can be used with regard to the N₂O flux calculation. However, since no detectable amounts of atmospheric N₂O interfered with the N₂O flux determination, the two-pool model approach can be applied to two different soil N sources instead of one. Thus, the differentiation between nitrified (NH₄⁺) and denitrified N₂O (NO₃⁻) is possible with the following assumptions: (i) soil NO₃⁻ pool is homogenously labelled, (ii) soil NH₄⁺ pool has natural ¹⁵N abundance and, (iii) N₂O formed by denitrification is only mixed in with nitrified N₂O. The flux calculation of both gases is based on the same equations, but only presented for N₂. Since the 15 N abundance of the soil N source of N_2 (NO₃) can not be measured directly we used a modified equation derived from equations published by Russow et al. (1996): Equation 3.1 $$a_2 = \frac{a_m - a_1 \cdot a_m}{a_m - a_1}$$ a_2 - ¹⁵N abundance of pool 2 (NO₃⁻) a₁ - ¹⁵N abundance of pool 1 (atmospheric N₂) a_m - measured ¹⁵N abundance of captured N₂ α_m - measured fraction of m/z 30 of captured N₂ The fraction of soil N_2 within the captured N_2 gas mixture (air/soil) was calculated subsequently by using the obtained value of the ^{15}N abundance a_2 for the following equation (Russow et al., 1996): Equation 3.2 $$f_s = \frac{a_m - a_1}{a_2 - a_1}$$ f_s - relative fraction of captured N₂ released by the soil (Pool a_2) Finally the current N₂ flux was calculated as follows: Equation 3.3 $$F = \frac{n \cdot f_s}{t \cdot m}$$ F - N_2 flux [mol h^{-1} g^{-1} dry soil] n - amount of captured N₂ [mol] t - time of N₂ capturing [h] *m* - dry mass of the incubated soil [g] During ionisation of N_2 small amounts of $^{14}N^{16}O$ are formed simultaneously within the ion source of the delta S resulting in an erroneous determination of m/z 30 signal when ^{15}N abundance of N_2 is near natural abundance. The application of α_m and α_m in Equation 3.1 would then give an overestimation of the ^{15}N abundance of denitrified NO_3^- (α_2) and would lead to an incorrect calculation of the soil N_2 fraction (f_s). To evaluate uncertainties of m/z 30 due to $^{14}N^{16}O$ formation, we derived an equation that calculates the soil fraction of captured N_2 (f_s) independently from m/z 30 (Equation 3.4): Equation 3.4 $$f_s = \frac{1}{1 - \frac{R_{29}(1 - a_2)^2 - 2a_2(1 - a_2)}{R_{29}(1 - a_1)^2 - 2a_1(1 - a_1)}}$$; with $R_{29} = \frac{\frac{m/29}{m/28}}{\frac{m/2}{28}}$ R_{29} was calculated by using the isotopic distribution data of captured N_2 . The required a_2 value is gained from the isotopic distribution of simultaneously determined N_2O (Equation 3.1). Since the ¹⁵N abundance of captured N_2O was always > 5 at%, uncertainties on m/z 30 due to ¹⁴N¹⁶O formation are negligible concerning N_2O . ## 3.3.5. Soil treatment and incubation For validation purposes soil samples of an A-Horizon of a Haplic Chernozem (Bad Lauchstädt, Germany) were used. The soil sampling area belongs to an agricultural research site unfertilized since 1905 (Körschens et al., 1981). The soil form is a well-textured loess black earth (21 % clay, 68 % silt, 11 % sand). As source material only soil aggregates were used. The aggregates were gained by sieving the collected soil (6.3 mm sieve) without prior drying. The soil NO₃⁻ pool was labelled with ¹⁵N using a K¹⁵NO₃ (95 at% ¹⁵N) solution (120 mg N L⁻¹). The solution was added by spraying 20 mL onto a 950 g of fresh soil aggregate. Subsequently 250 g were placed within each incubation entity (three parallel entities: A, B and C). Afterwards incubation entities were sealed, placed in a warming cupboard (25.8 ± 0.3 °C) and connected to the carrier gas stream (Figure 3.2). The flushed headspace volume of the incubation entities was approximately 25 mL. The flow rate of the carrier gas was set to 6.4 mL min⁻¹ and was kept constant. Soil aggregates were continuously incubated for a total of 25 days. For flux measurements only the outlets of the incubation entities were out with the warming cupboard. During the first phase of incubation (8 days) oxygen content of the carrier gas was set to 21 vol.%. After this the O₂ supply was stopped for the next 9 days and only helium was used as carrier gas (2nd phase of incubation). O₂ concentration was subsequently set to 6 vol.% for the following 8 days (3rd phase of incubation). First flux measurement was carried out 3 hours after incubation started. The soil moisture (w/w %) was determined at the beginning (24 h before incubation, three samples from 950 g of ¹⁵N treated soil aggregates) and the end of incubation (25th day of incubation, one sample per incubation entity) by drying 10 g of the soil aggregates at 105 °C for 24 h. Additionally, initial and final ¹⁵N abundance of soil NO₃⁻ as well as NO₃⁻ concentration of treated soil aggregates were determined. Soil samples (25 g of soil aggregates) were taken in the same manner as for soil moisture analysis. 100 mL 1 M KCl-solution was added to a soil sample and shaken for 2 h. Subsequently the soil slurry was filtered through a folded filter (Schleicher & Schuell MicroScience, Dassel/Relliehausen, Germany) and two 5 mL samples were used for NO₃⁻ analyses by the SPINMAS technique (Stange et al., 2007). Total soil N and ¹⁵N abundance were determined at the end of incubation (three parallel soil samples from each incubation entity), by a CN-Analyser (Elementar Analysesysteme, Hanau, Germany) coupled to an QPMS (InProcess Instruments, Bremen, Germany) (Russow and Götz, 1998). ## 3.4. Results ## 3.4.1. Validation of N2 capturing by Köstrolith SX6® By using variously sized sample loops (Figure 3.2, V4) flushed with N₂ calibration gas (2530 ppm N₂ in helium) it was shown that N₂ was adsorbed completely by SX6[®] up to a loop volume of 5 mL (ca. 500 nmol N₂). Since the current upper detection limit of the delta S is around 100 nmol for N₂ at natural ¹⁵N abundance, it is apparent that sampled N₂ was removed completely from the carrier gas during N₂ flux determination. Following release of the captured N₂, a second heating of the N₂ accumulation loop to 450 °C gave no detectable peak indicating a complete and rapid desorption of
adsorbed N₂. The effect of varying duration of N₂ capture on the accuracy of N₂ flux determination was also investigated (Figure 3.3). For this purpose the incubation entity B was connected to the gas circuit on the 16th day of incubation (anaerobic incubation) for 127 min and N₂ was captured for 0.5, 1, 2, 3 and 4 min (a total of three times per sample time) at time intervals of 5 to 9 min. At the end an additional single N₂ capture of 0.5 min was performed. Figure 3.3 N_2 flux determination based on different periods of N_2 capturing. (black star - regularly measured N_2 flux before and after capturing experiment on 16^{th} day of incubation; the first determined flux value of this sub-experiment has been set at zero on the x-axis). Between the first and the last measurements, the N₂ fluxes decreased continuously from 43.5 pmol N₂ h⁻¹ g⁻¹ dry soil (0.5 min) to 38.6 pmol N₂ h⁻¹ g⁻¹ dry soil (0.5 min). Looking at the N₂ flux values determined before and after the experiment suggests that the observed decline occurred because the soil N₂ release decreases (Figure 3.3 and Figure 3.6), and does not occur due to changes of capture duration. With respect to 1 to 4 min capture, flux rate changes of approximately 0.5 pmol h⁻¹ g⁻¹ dry soil within 6 to 9 min intervals were clearly quantified, independent of the capturing period. Fluxes which were determined based on 0.5 min capture revealed slight deviations from the generally decreasing trend of soil N₂ release. Thus, the capturing period should not be set lower than 1 minute. ## 3.4.2. Validation of ¹⁴N¹⁶O interference on N₂ flux determination For the evaluation of the interference of $^{14}N^{16}O$ formation on m/z 30 of captured N₂, we compared the results of the N₂ flux calculation based on Equation 3.1 to Equation 3.3 with the results based on Equation 3.4 and Equation 3.3. Figure 3.4 illustrates that there is good concordance between both approaches, which indicates a negligible influence of $^{14}N^{16}O$ formation on the N₂ flux calculation using Equation 3.1 to Equation 3.3. However, results of both approaches start to differ at the lowest end of determined fluxes (Figure 3.4b). Figure 3.4 (a) Comparison of N_2 fluxes calculated either by including m/z 30 of captured N_2 [Equation 3.1, Equation 3.2, and Equation 3.3] (x-axis) or without m/z 30 of captured N_2 [Equation 3.4 and Equation 3.3] (y-axis). (b) Magnification of lowest flux values. The lowest flux values are calculated from captured N_2 with the lowest ^{15}N abundance. During aerobic incubation ^{15}N abundance of captured N_2 was ≤ 0.42 at%, whereas during anaerobic incubation ^{15}N abundance ranged between 0.38 and 13.23 at%. A comparison of the calculated a_2 values (^{15}N abundance of denitrified NO_3^-) based upon both N_2 and N_2O (Equation 3.1) revealed that particularly during aerobic incubation the calculated ^{15}N abundance of denitrified NO_3^- based on N_2 is up to 8-times higher than values calculated for N_2O (Figure 3.5). This overestimation of a_2 concerning N_2 is caused by the exponentially increasing impact of formed $^{14}N^{16}O$ on m/z 30 against natural ^{15}N abundance. This overestimation consequently leads to an imprecise N_2 flux determination as shown in Figure 3.4b. The minimum ^{15}N abundance for an accurate flux calculation based on Equation 3.1 to Equation 3.3 was determined to be 0.5 at% (not shown) and resulted in an N_2 flux determination limit of around 4 pmol N_2 h^{-1} g^{-1} dry soil ($\approx 4 \mu g N_2$ - $N m^{-2}$ h^{-1}) with respect to this study (Figure 3.4b). Figure 3.5 ^{15}N abundance of soil NO_3^- and denitrified NO_3^- of incubated soil aggregates: (a) aerobic (21 vol.% O_2); (b) anaerobic; (c) aerobic (6 vol.% O_2) (grey triangles: ^{15}N abundance of denitrified NO_3^- calculated via N_2O ; light grey circles: ^{15}N abundance of denitrified NO_3^- calculated via N_2 ; black squares: ^{15}N abundance of soil NO_3^- determined by the SPINMAS technique (Stange et al., 2007); bars indicate the standard deviation). ## 3.4.3. N-fluxes, soil moisture, and soil nitrate of incubated soil aggregates Measured N2 fluxes ranged between 0.2 and 640.2 pmot N2 h⁻¹ g⁻¹ dry soil. All three soil samples, incubated in parallel, showed comparable results (Figure 3.6). Significant amounts were released only under anaerobic conditions. During the first phase of incubation (21 vol.% O₂) N₂ fluxes were very low and ranged between 0.2 and 5.0 pmol N₂ h⁻¹ g⁻¹ dry soil. A clearly decreasing trend with the highest fluxes at the beginning and lower fluxes towards the end was observed. On the 8th day of incubation the O2 supply was shut off. Within 2 to 3 hours N2 fluxes began to increase steadily and peaked after 3 days at 640.2, 608.1, and 639.6 pmol N₂ h⁻¹ g⁻¹ dry soil, respectively. During the following 5 days fluxes decreased to values comparable to the end of the first phase of incubation. On the 18th day of incubation O2 concentration of the carrier gas was set to 6 vol.%. During this incubation period N2 fluxes remained very low and ranged between 0.2 and 2.1 pmol N₂ h⁻¹ g⁻¹ dry soil. Two of the three incubated soil samples showed a minor and short increase of N2 fluxes at the beginning of this incubation period. Integrated flux values of N2 and N2O revealed that during the anaerobic incubation 557.6 \pm 22.8 μ g N per incubation entity was released, whereas during both aerobic incubation periods 1.5 ±0.4 µg N per incubation entity was released. Under anaerobic conditions the determined N-loss via N₂ was 489.1 ±23.4 µg N per incubation entity, whereas N_2O accounts for 68.5 ± 0.7 μ g N per incubation entity. During this incubation period the N_2/N_2O ratio increased exponentially from 2.3 to 55.2 (Figure 3.7). Figure 3.6 N_2 fluxes of black earth soil aggregates during 21 days of continuous incubation: (a) aerobic (21 vol.% O_2); (b) anaerobic; (c) aerobic (6 vol.% O_2). (Note the discontinuity of the y-axis). Soil moisture of incubated soil aggregates decreased from 20.2 ± 0.1 % to 15.7 ± 0.8 % (w/w) during 25 days of incubation. The calculated water loss of an incubation entity was 0.4 ± 0.1 mL d⁻¹. The initial and the final NO₃ concentrations of the incubated soil samples were 5.3 ± 0.5 mg N kg⁻¹ dry soil (26.4 ± 2.2 mg N L⁻¹ soil solution) and 4.9 ± 0.3 mg N kg⁻¹ dry soil (31.5 ±2.1 mg N L⁻¹ soil solution), respectively. Corresponding NO₃ content per incubation entity was very low (initial 1.1 ±0.1 and final 1.1 ±0.1 mg N per incubation entity, respectively). The initial 15 N abundance of soil NO₃⁻ (24 h before incubation) was 54.05 ± 0.83 at% (Figure 3.5). During an incubation experiment ¹⁵N abundance of denitrified NO₃ was surveyed by calculating the a2 value via N2O and N2 levels (Equation 3.1), respectively. During aerobic incubation periods a2 values calculated via the N2 level was distinctly overestimated, as described above. ¹⁵N abundance calculated via the N₂O level showed a clear decrease from 43.58 to 33.73 at% during the first phase of incubation (21 vol.% O2). During the following anaerobic incubation ¹⁵N abundance increased slightly up to 37.76 at%. The same increase was found based on calculations via the N2 level. After O2 concentration was set to 6 vol.%, the ¹⁵N abundance of denitrified NO₃ (based on N₂O) showed a rapid and clear decrease from 37.76 to 10.32 at% (21st day of incubation). The 15N abundance of soil NO₃ determined after the incubation experiment was 5.83 ±0.64 at% (Figure 3.5). Figure 3.7 Averaged release ratio of N_2 and N_2O during 9 days anaerobic incubation based on mol h^{-1} g^{-1} dry soil. (Bars indicate the standard deviation). ## 3.5. Discussion ## 3.5.1. N₂ flux determination by a ¹⁵N aided gas flow soil core system with an artificial atmosphere The present 15N assisted gas flow soil core system with an artificial atmosphere has significantly improved the current methodology of N2 flux determination of soils on a laboratory scale. By combining both approaches together with the first time application of the dinitrogen selective molecular sieve Köstrolith SX6®, a number of advantages have been merged. Based on the steady state approach the present system allows a continuous determination of soil N2 release. In contrast to non-steady state approaches (Malone et al., 1998; Bergsma et al., 2001; Stevens and Laughlin, 2001a) flux determination is not interrupted by reopening of the incubation vessel. Furthermore, soil gas release is not interfered with gas accumulation within a closed headspace. In contrast to the 15N assisted offline steady state approach as e.g. published by Ruser et al. (2006), the developed online determination of soil N2 release allows a considerably higher sampling frequency. Since N2 fluxes can change rapidly over time (Figure 3.3 and Figure 3.6) a high resolution in short sampling times is essential for detailed studies of soil N2 release. Using one incubation entity the present approach allows a N2 flux determination at 5 min intervals. Based on the isotopic distribution of captured N2 flux calculations can be performed on the basis of one single measurement, which minimises the amount of work and additionally increases the sampling frequency. In contrast to studies (Speir et al., 1995) using the radionuclide ¹³N a lengthy determination of soil N_2 release over several weeks or months is possible by using the stable isotope ¹⁵N. During this study N_2 fluxes were studied continuously for 21 days in total. With respect to N_2 gas sampling, the application of common sample loops allows a sampling volume of around 10 mL of carrier gas in maximum. However, in dependence on the flow rate of the carrier gas the capturing procedure of N_2 via the zeolite Köstrolith $SX6^{\text{@}}$ allows a preconcentration of N_2 gained from
distinctively more than 10 mL of carrier gas (e.g., when the flow velocity of the carrier gas is 10 mL min⁻¹ and the capture duration is 3 min then a total volume of 30 mL of carrier gas could be used for N_2 analysis). Thus, Köstrolith $SX6^{\text{@}}$ permits the detection of N_2 at significantly lower concentrations within the carrier gas. Additionally the preconcentration procedure allows an excellent peak performance even at high sampling volumes. The N_2 flux determination limit is not restricted by the N_2 detection limit of the delta S, but by the ^{15}N abundance of the captured N_2 air/soil gas mixture. This is caused by the erroneous measurement of m/z 30 of N_2 due to $N^{14}O^{16}$ formation within the ion source of the delta S. In this study a ^{15}N abundance of 0.5 at% was found to be the minimum value for a precise flux calculation. However, at high ^{15}N abundance, flux determination is additionally restricted by the maximum detection range of the amplified detectors measuring m/z 29 and m/z 30. This was compensated for by shortening the time of N_2 capture when signal intensity of m/z 29 and/or m/z 30 was expected to reach the maximum (13 V). The application of a quadrupole mass spectrometer could help to overcome the upper detection limit, but would simultaneously be detrimental to the lower detection limit, which had itself been improved by using the delta S. The combination of an artificial atmosphere with a ^{15}N tracer technique allowed a lowering of the current detection limit to 4 pmol N_2 h^{-1} g^{-1} dry soil ($\approx 4 \mu g \ N_2$ -N m^{-2} h^{-1}). A steady state approach based on ambient air and ^{15}N tracer technique published by Ruser et al. (2006) resulted in a determination limit of $\ge 180 \ \mu g \ N_2$ -N m^{-2} h^{-1} . Compared to ambient air, however, diffusion rates of soil gases towards the headspace of an artificial helium atmosphere might be expected to differ. Scholefield et al. (1997a) and Butterbach-Bahl et al. (2002) published that at least for N_2O , no interferences concerning amounts and efflux rates could be observed. The lengthy flushing of a soil core should affect the soil moisture. Butterbach-Bahl et al. (2002) published that no significant decrease in soil moisture during up to 48 h initial flushing (200 mL min⁻¹) through a soil core had been observed. However, during this study alone the continuously streaming carrier gas above the soil surface with 6.4 mL min⁻¹ caused a significant decrease in soil moisture. After Parkin et al. (1984) this could be solved by hydrating the carrier gas immediately in front of the incubation entities. Cardenas et al. (2003) proposed that a permanent gas flow could readily be used for studies concerning the influence of different wind speeds as the flow rate of the carrier gas would alter accordingly. In the absence of isotope tracer technique, flux determination starts with a time-lag of 36 to 48 h after incubation, since soil cores must to be flushed initially (up to 200 mL min⁻¹) in order to displace atmospheric N₂ by an artificial substitute (e.g. helium) (Scholefield et al., 1997a; Butterbach-Bahl et al., 2002; Cardenas et al., 2003). By using the ¹⁵N tracer technique a ¹⁵N tracer has to be introduced, homogeneously, into the soil, but flux determination can be started quite near to the beginning of incubation. Taking all of the above into account, the developed approach represents a comprehensive method for a continuous, long-term determination of soil N₂ release at a high sampling frequency combined with a very low determination limit. ## 3.5.2. Some aspects of N-transformation in soil aggregates gained by the present approach The determined N_2 fluxes of black earth soil aggregates (0.2 to 640.2 pmol N_2 h⁻¹ g⁻¹ dry soil; 0.2 to 742.9 μ g N_2 -N m⁻² h⁻¹) were in the same range as published elsewhere. Based on soil dry mass Malone et al. (1998) published N_2 fluxes between 235 and 5260 pmol N_2 h⁻¹ g⁻¹ dry soil. In relation to the horizontal soil surface, fluxes from < 0.1 to 18.75 mg N m⁻² h⁻¹ have been published (Nommik, 1956; Reddy et al., 1989; Russow et al., 1996; Scholefield et al., 1997b; Delaune et al., 1998; Butterbach-Bahl et al., 2002; Cardenas et al., 2003; Ruser et al., 2006). Significant N₂ fluxes occurred only during anaerobic incubation (Figure 3.6). However, compared to former studies the highest fluxes seen were rather low; this is assumed to be mainly caused by the low depth of soil samples used during this study. During aerobic incubation determined N2 fluxes were extremely low, since soil aggregates were loosely packed within the steel core, which permitted an unresisted and rapid spreading of the artificial He/O2 atmosphere through the whole core. In combination with the small diameter of the aggregates as well as the medium water content the O2 supply to the soil aggregates were thus sufficient to inhibit denitrification almost completely. Nevertheless N2 was released during denitrification, even under 21 vol.% O2 concentration and could be measured only due to the very low determination limit of the present approach. Similar results concerning denitrification within soil aggregates during aerobic incubation (20.4 kPa O₂) have been published elsewhere for N₂O (Khalil et al., 2004). This lends support to former results of anaerobic microsites within soil aggregates (Smith, 1980; Renault and Stengel, 1994) and/or to aerobic denitrification (Lloyd et al., 1987). During anaerobic incubation the ¹⁵N abundance of denitrified NO₃ increased significantly (Figure 3.5). We assume that during ongoing denitrification introduced NO3 is more strongly delivered to microorganisms compared to the original soil NO₃. This implies that soil NO₃ as a whole doesn't need to be equally involved within the soil N-cycle. Stevens et al. (1997) found that the ¹⁵N abundance of extractable soil NO₃ was lower as the ¹⁵N abundance of denitrified N₂O, an observation which they explained by an incomplete mixing of soil NO₃ and added NO₃. The decreasing ¹⁵N abundance of denitrified NO₃ calculated via N₂O during aerobic incubation revealed that a direct coupling between nitrification and denitrification occurred. Similar results have been published by Russow et al. (2000). A comparison of the initial and the final amounts of $^{15}NO_3^-$ (597.0 $\pm 63.4~\mu g$ ^{15}N vs. 62.2 $\pm 10.9~\mu g$ ^{15}N per incubation entity) stocked within an incubation entity shows, that approximately 90 % of added ^{15}N atoms have left the soil NO_3^- pool after 25 days of continuous incubation. Using both the ^{15}N amount released via N_2O and N_2 during anaerobic incubation (207.6 $\pm 13.4~\mu g$ ^{15}N in average per incubation entity) as well as the ^{15}N amount stocked in the whole soil N pool (123.4 $\pm 19.7~\mu g$ ^{15}N in average per incubation entity) at the end of incubation gives a deficiency of around 45 % with respect to the originally added ^{15}N atoms. Since significant amounts of N_2 and N_2O have been released only during anaerobic incubation, this discrepancy can not be explained by a gaseous loss of ^{15}N ($N_2O + N_2$) during aerobic incubation. We assume this might be explained by a strong release of NO via denitrification during anaerobic conditions as a result of given soil structure and bulk density. #### 3.6. Conclusions The developed technique represents the first approach combining a ^{15}N tracer technique with the gas flow soil core technique using an artificial atmosphere for an online determination of soil N_2 release. The application of the zeolite Köstrolith SX6® significantly improved the N_2 sampling procedure. In combination with the ^{15}N aided artificial atmosphere gas flow technique it allows an excellent online determination of the soil N_2 release simultaneously with N_2O . Fluxes of both gases can be determined continuously for long incubation periods and at a high sampling frequency. Due to the application of ^{15}N tracer technique the N_2 flux determination limit could be lowered to 4 pmol N_2 h⁻¹ g⁻¹ dry soil (\approx 4 μ g N_2 -N m⁻² h⁻¹). Furthermore the ^{15}N tracer technique allows investigations concerning the metabolic pathways of N_2 and N_2O (denitrification/nitrification). In addition to its application in soil science, detailed studies of anaerobic ammonium oxidation (anammox) (Mulder et al., 1995) should also be possible by applying the developed approach to aquatic samples instead of to solid samples # 4. A novel ^{15}N tracer model for studying hybrid N_2 formation due to anammox or codenitrification ## 4.1. Abstract Denitrification and anaerobic ammonium oxidation (anammox) have been identified as biotic key processes of N₂ formation during global nitrogen cycling. Based on the principle of a ¹⁵N tracer technique new analytical expressions have been derived for a calculation of the fractions of N₂ simultaneously released by anammox and denitrification. An omnipresent contamination with atmospheric N₂ is also taken into account and furthermore calculable in terms of a fraction. Two different mathematical approaches are presented which permit a precise calculation of the contribution of anammox, denitrification, and atmosphere to a combined N₂ mixture. The calculation is based on a single isotopic analysis of a sampled N₂ mixture and the determination of the ¹⁵N abundance of NO₂⁻ and NO₃⁻ (simplified approach) or of NH₄⁺, NO₂⁻, and NO₃⁻ (comprehensive approach). Calculations are even processable under conditions where all basal educts of anammox and denitrification (NH₄⁺, NO₂⁻, and NO₃⁻) are differently enriched in ¹⁵N. An additional determination of concentrations of dissolved N compounds is unnecessary. Finally, the present approach is also transferable to studies focused on terrestrial environments where N₂ is formed by denitrification and
simultaneously by codenitrification or chemodenitrification. ## 4.2. Introduction N₂ is one of the major gaseous nitrogen compounds released by soils and aquatic environments during global nitrogen cycling (Galloway et al., 2004). Denitrification (Knowles, 1982) and anammox (van de Graaf et al., 1990) have been identified as biotic key processes of N₂ formation in the course of nitrogen cycling (Op den Camp et al., 2006; Davidson and Seitzinger, 2006). During anammox and denitrification N₂ is formed on the basis of two different metabolic pathways of microbial N transformation. Whereas N₂ gained by anammox is formed as a hybrid species due to a combination of two single N atoms of two different N species (NH₄⁺-N combined with NO₂⁻-N) (Jetten et al., 1999), denitrified N₂ represents a combination of two single N atoms based on one single N species (e.g. NO₂⁻) (Knowles, 1982). Recent studies revealed that both processes do coexist at least in aquatic environments (van de Graaf et al., 1997; Thamdrup and Dalsgaard, 2002; Dalsgaard et al., 2003; Kuypers et al., 2003; Risgaard-Petersen et al., 2003; Rysgaard et al., 2004; Dalsgaard et al., 2005). During the last four decades ^{15}N tracer technique (Faust, 1993) has been evolved as the most suitable tool with respect to investigations of N_2 formation by denitrification or anammox (Reddy et al., 1989; Malone et al., 1998; Dalsgaard et al., 2003; Kuypers et al., 2003; Ruser et al., 2006; Groffman et al., 2006). However, only three ^{15}N aided approaches have been developed to estimate a simultaneous N_2 formation by anammox and denitrification (Thamdrup and Dalsgaard, 2002; Risgaard-Petersen et al., 2003; Trimmer et al., 2006). Another ¹⁵N based approach (Laughlin and Stevens, 2002) facing this problem was published currently with respect to an N₂ formation in the course of denitrification and codenitrification in soils. Considering the formation of hybrid N-N gas species codenitrification is a microbiological process (Tanimoto et al., 1992) quite similar to that of anammox. The principle applicability of former approaches was shown in a few studies (Laughlin and Stevens, 2002; Thamdrup and Dalsgaard, 2002; Dalsgaard et al., 2003; Risgaard-Petersen et al., 2003; Trimmer et al., 2003; Rysgaard et al., 2004; Risgaard-Petersen et al., 2004; Thamdrup et al., 2006). Nevertheless, basal difficulties coupled to these methods need to be discussed in detail. The first 15N based approach quantifying N2 formation in the course of anammox and denitrification was published by Thamdrup and Dalsgaard (2002). Considering the distribution of ¹⁵N and ¹⁴N within process related N compounds the quantification of anammox and denitrification is based either on a time dependent production rate of the N2 mole masses 29 and 30 (14N15N and 15N15N, respectively) in case of 15NO3 treatment or on time dependent production and/or consumption rate of 15NH₄+, NO₂-, and NO₃- in case of ¹⁵NH₄⁺ treatment. Thus, each N species needs to be analysed leastwise at two different time steps to estimate N2 production. Moreover, since all calculations are expressed as total N amounts (mol) quantifications based on 15NH₄+, NO₂-, and NO₃- need to consider other processes (e.g. microbial assimilation of NH₄⁺) interfering with the production and/or consumption of ¹⁵NH₄⁺, NO₂⁻, and NO₃⁻ during an incubation. Hence, experimental efforts increase, since separate incubation experiments are necessary to quantify these additional processes. Furthermore, the given equations derived for a quantification of N₂ production based on a ¹⁵NO₃ treatment neglect the fact that under the given experimental conditions (≈ 95 at% ¹⁵NO₃ and 0.366 at% ¹⁵NH₄⁺; see Thamdrup and Dalsgaard, 2002) both anammox and denitrification will produce the N2 masses 28, 29, and 30. First, anammox is assumed to produce only mass 28 and 29 of N2 when only NO3 is highly enriched in 15N. And second, based on the assumption that anammox produces only mass 28 and 29, respectively, mass 30 of a sampled N₂ mixture is completely assigned to denitrification. These assumptions, however, contradicts with a possible formation of mass 30 in the course of anammox due to a combination of ¹⁵NH₄⁺ and ¹⁵NO₃⁻ (see Figure 4.1). The impact of these assumptions on the estimation of an N2 production in the course of both processes may be negligible, but only as long as NH₄⁺ remains at natural ¹⁵N abundance (0.366 at% ¹⁵N) (e.g. Trimmer et al., 2003) and NO₃ remains highly enriched in ¹⁵N (e.g. Thamdrup et al., 2006). However, it was already shown by Trimmer et al. (2003) that during an incubation experiment based on ¹⁵N labelled NO₃ a labelling of NH₄ could occur due to dissimilatory nitrate reduction to ammonium (DNRA). Moreover, Kartal et al. (2007) recently reported that the anammox bacteria Kuenenia stuttgartiensis reduced ¹⁵NO₃ to ¹⁵NH₄ via ¹⁵NO₂ as the intermediate which was followed by the anaerobic oxidation of the produced ¹⁵N labelled NH₄⁺ and NO₂⁻ resulting in a significant ¹⁵N¹⁵N production. It is apparent that in consequence of DNRA N₂ production during anammox would be underestimated whereas denitrification could be significantly overestimated when the approach given by Thamdrup and Dalsgaard (2002) is applied. Finally, an interference from atmospheric N₂ (as an omnipresent contaminant) is not optimally taken into account, since it is estimated based on a single reference sample. However, an equal contamination with atmospheric N₂ among parallel samples can not be assured. Moreover, an additional contamination during sampling and measuring procedure can also not be excluded. A second approach quantifying N₂ formation of anammox and denitrification was published by Risgaard-Peterson et al. (2003). This approach is based on the Isotope Pairing Technique (Nielsen, 1992) (IPT) and was developed in consequence of confronting the IPT (originally designed for denitrification measurements only) with a simultaneous occurring anammox process. It represents a calculation of microbial N₂ production in aquatic sediments associated with error estimation due to anammox. However, severe difficulties connected with the approach were already reported (see Risgaard-Petersen et al., 2003; Rysgaard et al., 2004; Trimmer et al., 2006). Similar to Thamdrup and Dalsgaard (2002), calculations are based on time dependent production rates of masses 29 and 30 when NO₃⁻ was enriched in ¹⁵N. Therefore, each molecular mass needs to be analysed at least at two different time steps to estimate the current N₂ production of anammox and denitrification. Moreover, the anammox process is also mistakenly assumed to form only mass 28 and 29 of N₂ which leads to comparable erroneous calculations as already discussed above. Furthermore, a contamination by atmospheric N₂ is also not optimally taken into account, since it is also based on measurements of a single reference sample. The most recent approach was presented by Trimmer et al. (2006). This approach is also based on the IPT (Nielsen, 1992) and represents a further development of the revised IPT (r-IPT) published by Risgaard-Peterson et al. (2003). An improved estimation of microbial N_2 production in the course of anammox and denitrification was achieved by using denitrified N_2 O in addition to N_2 for a more accurate quantification of N_2 production (Trimmer et al., 2006). Nevertheless, since it is based on the same experimental principles as approaches discussed above similar difficulties have to be considered. A fourth ¹⁵N aided approach was published earlier by Laughlin and Stevens (2002) and was focused on a calculation of denitrified and codenitrified N₂ simultaneously produced in soils. The approach presented by them is based on common ¹⁵NO₃⁻ treatments of soils and is associated with equations published by Siegel et al. (1982), Mulvaney (1984), Stevens and Laughlin (2001b), and Clough et al. (2001). In contrast to approaches discussed above, these mathematical expressions allow a calculation based on only one analysis of the mole fraction of mass 28, 29, and 30 within an N₂ mixture and the ¹⁵N abundance of soil NO₃⁻. Moreover, a contamination of a sampled N₂ mixture with atmospheric N₂ is taken into account based on the isotopic analysis of the sampled N₂ mixture. However, three principle mathematical assumptions of this approach do also not fully correspond to the contribution of codenitrification, denitrification, and atmosphere to the final mole fraction of masses 28, 29, and 30 within a sampled N_2 mixture. First, mass 30 is completely assigned to denitrification without considering a possible contribution of codenitrification. Second, calculated N_2 production in the course of codenitrification is based on mass 29 only. Third, mass 28 is completely assigned to atmospheric N_2 without considering codenitrification or denitrification. Taking all the above into account, former approaches do not allow a precise calculation based on analytical expressions, but serve as estimators for a simultaneous N₂ release in the course of denitrification and anammox (or codenitrification). Particularly, aspects like (i) interferences with atmospheric N₂, (ii) a low ¹⁵N abundance of NO₃⁻, and (iii) experimental conditions where NH₄⁺ and NO₃⁻ are simultaneously enriched in ¹⁵N could cause severe calculation errors. In order to overcome all of these difficulties and also considering the growing demand of a quantitative survey of N₂ formation by anammox and denitrification within natural environments (Galloway et al., 2004; Davidson and Seitzinger, 2006) and waste water treatment systems (Schmidt et al., 2003; Paredes et al., 2007) (e.g. fluidized batch reactor (Mulder et al., 1995; van de Graaf et al., 1997)) two mathematical approaches were developed based on a ¹⁵N tracer technique. Derived analytical expressions allow a precise calculation of the contribution of denitrification and anammox to an N₂ mixture and in addition
take into account a contamination with atmospheric N₂. The present chapter focuses on derivation of fundamental mathematical expressions and discusses in detail the applicability of the developed approaches. ## 4.3. Derivation of mathematical expressions ## 4.3.1. Fundamentals A ^{15}N based characterisation of an N_2 mixture formed by anammox N_2 , denitrified N_2 , and atmospheric N_2 requires definite mathematical expressions which allow a precise calculation of the contribution of each individual source to the resulting mole fraction of the masses 28, 29, and 30 within the N_2 mixture. Based on probability theory this can be best solved by expressing the respective mole fractions of $^{28}N_2$, $^{29}N_2$, and $^{30}N_2$ (referred here to as m_{28} , m_{29} , and m_{30}) with the isotopic abundance of involved ^{14}N and ^{15}N atoms (referred here to as a_{14} and a_{15} , respectively) which form the N_2 molecule. With regard to atmospheric N_2 the mole fractions of $^{28}N_2$, $^{29}N_2$, and $^{30}N_2$ can mathematically be expressed by a binominal distribution function where (i) $m_{28} = (a_{14})^2$; (ii) $m_{29} = 2a_{14}a_{15}$; (iii) $m_{30} = (a_{15})^2$; and (iv) $(a_{14})^2 + 2a_{14}a_{15} + (a_{15})^2 = 1$ (e.g. Hauck et al., 1958). However, with respect to a ^{15}N based characterisation of anammox and denitrification, which in fact represent active N_2 forming processes, some more detailed explanations shall be given here in order to clearly demonstrate differences and similarities between the mathematical expressions applied to these two processes. With regard to fundamental probability algebra the mole fraction of ²⁸N₂, ²⁹N₂, and ³⁰N₂ of each individual N2 source considered here is expressible as the probability of an occurrence of the event ¹⁴N¹⁴N, ¹⁴N¹⁵N, and ¹⁵N¹⁵N, respectively. By using the isotopic abundance of involved ¹⁴N and ¹⁵N atoms which forms a N₂ molecule of either mass 28, 29, or 30, respectively, the mole fractions of $^{28}N_2$, $^{29}N_2$, and $^{30}N_2$ can mathematically be expressed as follows: (i) m_{28} $a_{14} \cdot a'_{14}$; (ii) $m_{29} = a_{14} \cdot a'_{15} + a_{15} \cdot a'_{14}$; (iii) $m_{30} = a_{15} \cdot a'_{15}$ (where a and a' represent the isotopic abundances (14N and 15N, respectively) of the sources of the two N atoms which form a N2 molecule). With respect to anammox a and a' describe two different N sources (NH4+ and NO2-) and thus the given mathematical expressions represent the fundamental equations which have to be applied considering the formation of ²⁸N₂, ²⁹N₂, and ³⁰N₂ during an anammox process. By contrast, N₂ formation during denitrification is based on only one N source (e.g. NO₃) and thus a and a' are equal. It follows that with respect to denitrification the given mathematical expressions can be simplified to the commonly used binomial distribution function: (i) $m_{28} = (a_{14})^2$; (ii) $m_{29} = 2a_{14}a_{15}$; (iii) $m_{30} = (a_{15})^2$. With regard to anammox a simplification to a binominal distribution function can only be made in the special case of an equality of the ¹⁵N abundances of NH₄ and NO₂. A schematic overview of the formation of an N2 mixture evolved from anammox, denitrification, and atmosphere concerning the fundamental mathematical expression's given above is illustrated in Figure 4.1. According to this, the contribution of each considered source to the mole fraction of mass 28, 29, and 30 of the final N2 mixture can mathematically be expressed as follows (variables used are listed in Table 4.1): Equation 4.1 $$\alpha_{28} = A(1-a)^2 + B(1-b)^2 + C(1-c)(1-d)$$ Equation 4.2 $$\alpha_{29} = A2a(1-a) + B2b(1-b) + C[c(1-d) + d(1-c)]$$ Equation 4.3 $$\alpha_{30} = Aa^2 + Bb^2 + Ccd$$ Where the sum of the fractions of all three N_2 sources (A, B, and C) as well as the sum of the mole fraction of mass 28, 29, and 30 $(\alpha_{28}, \alpha_{29}, \text{ and } \alpha_{30})$ within an N_2 mixture must be one: Equation 4.4 $$1 = A + B + C$$ Equation 4.5 $$1 = \alpha_{28} + \alpha_{29} + \alpha_{30}$$ Figure 4.1 Formation scheme of an N_2 mixture originating from atmospheric N_2 , denitrified N_2 , and anammox N_2 with respect to the fundamental mathematical expressions, which characterise the source of the mole fraction of masses 28, 29, and 30 (variables used are listed in Table 4.1). Based on Equation 4.1 to Equation 4.5 two different mathematical approaches were developed for the calculation of the contribution of denitrification and anammox to an N_2 mixture in consideration of atmospheric N_2 . The first approach (comprehensive approach) was developed for experimental conditions where all of the basal nitrogen sources of denitrification (NO_3) and anammox (NH_4 ⁺ and NO_2) are enriched in ¹⁵N. However, since the anammox process is also calculable based on a ¹⁵N enrichment of only one of the two involved N species a second approach (simplified approach) was developed based only on a ¹⁵N enrichment of NO₂⁻ and NO₃⁻. Thus, the simplified approach allows less complex experimental conditions for the determination of a simultaneous N₂ production by anammox and denitrification, and still takes into account atmospheric N₂ contamination. | Table 4.1 | List of variables usea | for calculations related to Equation 4 | .1 to Equation 4.16. | |-----------|------------------------|--|----------------------| |-----------|------------------------|--|----------------------| | Range | Designation | |-------|--| | [0 1] | Mole fraction of mass 28, 29, and 30 within the N ₂ mixture | | [0 1] | 15 N mole fraction of N ₂ (a), NO ₃ (b), NO ₂ (c), and NH ₄ (d) | | [0 1] | Mole fraction of atmospheric $N_2(A)$, denitrified $N_2(B)$, and anammox $N_2(C)$ | | | [0 1] | ## 4.3.2. Comprehensive approach The comprehensive approach permits a calculation of the fraction of atmosphere (A), denitrification (B), and anammox (C) as contributors to an N₂ mixture based on the ¹⁵N abundance of atmospheric N₂ (a), NO₃ (b), NO₂ (c), and NH₄⁺ (d) as well as the mole fraction of masses 28, 29, and 30 (α_{28} , α_{29} , and α_{30}) within the N₂ mixture. Therefore, the mole fraction of mass 28, 29, and 30 within the N₂ mixture and the ¹⁵N abundance of NO₃, NO₂, and NH₄⁺ need to be measured whereas the ¹⁵N abundance of atmospheric N₂ is assumed to be at natural condition (0.366 at%). The validity of the comprehensive approach is coupled to the following assumptions: (i) atmosphere, denitrification, and anammox are the only sources contributing to the N₂ mixture; (ii) NH₄⁺ and/or NO₂ as well as NO₃ are enriched in ¹⁵N abundance; (iii) ¹⁵N abundance of at least one of the inorganic N species (NH₄⁺, NO₂⁻, or NO₃) must be unequal compared to the others; (iv) anammox N₂ is based on a combination of NH₄⁺ and NO₂ at a stoichiometric ratio of 1:1; and (v) N sources of anammox and denitrification are homogeneously labelled with respect to their spatial distribution throughout the investigated environment. Based on a Gaussian elimination approach Equation 4.1 to Equation 4.3 were solved to the variables A, B, and C and further simplified to Equation 4.6 to Equation 4.to calculate the fraction of atmosphere (A), denitrification (B), and anammox (C) which contribute to the N_2 mixture. Equation 4.6 $$A = \frac{2b(\alpha_{30} - cd) + (c+d)(b^2 - \alpha_{30}) - (b^2 - cd)(\alpha_{29} + 2\alpha_{30})}{(a-b)[2(ab+cd) - (a+b)(c+d)]}$$ Equation 4.7 $$B = \frac{2a(cd - \alpha_{30}) + (c+d)(\alpha_{30} - a^2) + (a^2 - cd)(\alpha_{29} + 2\alpha_{30})}{(a-b)[2(ab+cd) - (a+b)(c+d)]}$$ Equation 4.8 $$C = \frac{2ab - \alpha_{29}(a+b) + 2\alpha_{30}(1-b-a)}{2(ab+cd) - (a+b)(c+d)}$$ ## 4.3.3. Simplified approach The simplified approach calculates the fraction of atmosphere (A), denitrification (B), and anammox (C) contributing to an N₂ mixture based on the same input parameters used for the comprehensive approach except for the ¹⁵N abundance of NH₄⁺ (d). In this case only the mole fraction of mass 28, 29, and 30 within the N₂ mixture (α_{28} , α_{29} , and α_{30}) and the ¹⁵N abundance of NO₃⁻ (b) and NO₂⁻ (c) need to be measured whereas the ¹⁵N abundance of atmospheric N₂ (a) and NH₄⁺ (d) is assumed to be at natural condition (0.366 at%). The mathematical validity of this approach is associated with the following assumptions: (i) atmosphere, denitrification, and anammox are the only sources contributing to the N₂ mixture; (ii) NO₂⁻ and NO₃⁻ are enriched in ¹⁵N; (iii) ¹⁵N abundance of atmospheric N₂ and NH₄⁺ is equal (a = d); (iv) anammox N₂ is based on a combination of NH₄⁺ and NO₂⁻ at a stoichiometric ratio of 1:1; and (v) N sources of anammox and denitrification are homogeneously labelled with respect to their spatial distribution throughout the investigated environment. Considering the assumption a = d, Equation 4.1 and Equation 4.2 can be rewritten as follows: Equation 4.9 $$\alpha_{28} = (1-a)[A(1-a) + C(1-c)] + B(1-b)^2$$ Equation 4.10 $$\alpha_{29} = (1-a)[Aa + Cc] + a[A(1-a) + C(1-c)] + 2Bb(1-b)^2$$ In order to remove variables A and C from both equations the term [A(1-a)+C(1-c)] in Equation 4.9 and Equation 4.10 can be rewritten into [-(Aa+Cc-1+B)] and both equations can be rearranged to Equation 4.11 and Equation 4.12: Equation 4.11 $$[Aa + Cc] = 1 - B - \left[\frac{\alpha_{28} - B(1-b)^2}{(1-a)} \right]$$ Equation 4.12 $$[Aa + Cc] = \left[\frac{\alpha_{29} - a + B(a - 2b(1 - b))}{(1 - 2a)} \right]$$ Equation 4.11 and Equation 4.2 and rearranging to B gives a simple equation for the calculation of the fraction of denitrified N_2 (B) in dependence on the variables a, b, α_{29} , and α_{30} . Equation 4.13 $$B = \frac{a(a - \alpha_{29}) + \alpha_{30}(1 -
2a)}{(a - b)^2}$$ An equation for the calculation of the fraction of anammox N_2 (C) can then subsequently be derived as follows. At first Equation 4.3 is rearranged to A, inserted it into Equation 4.4 and simplified to C resulting in Equation 4.14. Equation 4.14 $$C = \frac{a^2 - \alpha_{30} + B(b^2 - a^2)}{(a^2 - ca)}$$ The variable *B* can then be substituted by inserting Equation 4.13 into Equation 4.14 giving a simple equation for the calculation of the anammox fraction (*C*) based on the variables a, b, α_{29} , and α_{30} . Equation 4.15 $$C = \frac{(b+a)(\alpha_{29} + 2\alpha_{30}) - 2(\alpha_{30} + ab)}{(a-b)(a-c)}$$ The residual fraction of atmospheric N_2 can be easily calculated by rearranging Equation 4.4 to A and either inserting the calculated fractions of denitrification (B) and anammox (C) or by substituting B and C in Equation 4.4 with Equation 4.13 and Equation 4.15, respectively, and resolving it to A: Equation 4.16 $$A = 1 - B - C$$ or $$A = \frac{(a+b)(\alpha_{30} - b^2) - (ac - b^2)(\alpha_{29} + 2\alpha_{30}) - 2b(\alpha_{30} - ac)}{(a-b)^2(a-c)}$$ ## 4.4. Results and discussion ## 4.4.1. General applicability of derived mathematical expressions In contrast to all former methods the present mathematical expressions (comprehensive and simplified approach) face most comprehensively the difficulties associated with investigations of N_2 formation within environments where anammox and denitrification do coexist: (i) all equations are based on analytical expressions and thus allow a precise calculation with respect to the given assumptions; (ii) all three sources contributing to an N₂ mixture (anammox, denitrification, and atmosphere) are adequately considered and exactly calculable as a fraction of the total N₂ mixture; and (iii) the calculation of the fraction of the three sources is based on only one single isotopic analysis of a sampled N₂ mixture and the determination of ¹⁵N abundance of either NO₂⁻ and NO₃⁻ (simplified approach) or NH₄⁺, NO₂⁻, and NO₃⁻ (comprehensive approach). Furthermore, calculations are even processable under conditions where all educts (NH₄⁺, NO₂⁻, and NO₃⁻) are enriched in ¹⁵N. Thus, none of other N transforming processes, e.g. nitrification (Mosier and Schimel, 1992) or DNRA (Trimmer et al., 2003), interfere with the calculation. Moreover, a determination of concentrations of dissolved N compounds is unnecessary. The fractions of N₂ permeated from atmosphere and released by denitrification and anammox (A, B, and C, respectively) can be calculated by means of derived equations as shown above. The total N₂ amount released from each source is then given by the product of the calculated N₂ source fraction and the total N₂ amount of the gas mixture, at which total N₂ of the gas mixture can be quantified by mass spectrometric analysis if a calibration function for N₂ concentration is used (see Chapter 3.3.4 or e.g. (Nielsen, 1992; Thamdrup and Dalsgaard, 2002)). An experimental set-up for the study of N₂ production by anammox and denitrification should be based on a steady state system (open system). Since microbial processes (e.g. DNRA, nitrification etc.) most likely change the ¹⁵N enrichment of involved inorganic N species (i.e. NH₄⁺ etc.) during incubation, a non-steady state system (closed system) would allow an accumulation of N₂ evolved from equal N compounds but with different ¹⁵N enrichments. This, however, contradicts with the assumption that N₂ formed by anammox and denitrification results from homogenously labelled N species. By contrast, within a steady state system currently released N₂ is not accumulated within a headspace and thus will be always based directly on the current ¹⁵N enrichment of NH₄⁺, NO₂⁻, and NO₃⁻. ## 4.4.2. Major critical aspects of application In contrast to denitrification the complete transformation pathway of nitrogen during anammox is still under investigation (Jetten et al., 1999). Thus, certain difficulties need to be considered when a ¹⁵N tracer technique is applied as proposed in chapter 4. The mathematical expressions of anammox as presented here are deeply related to a 1:1 ratio of NH₄⁺ and NO₂⁻ which form the hybrid N₂ molecule. With respect to the consumption rates of both N species in the course of anammox, recent studies (e.g. (Strous et al., 1999b)) revealed an increasing stoichiometric ratio of up to 1:4 in favour of NO₂⁻ with increasing NO₂⁻ concentration. Strous et al. (1999b) postulated an internal microbially generated electron donor differing from NH₄⁺, but also reducing NO₂⁻. As long as this unknown microbial reduction of NO₂⁻ is not coupled to an additional N₂ formation no interferences with regard to the present approach will occur. However, a redox reaction of N₂H₄ (intermediate of the anammox process (van de Graaf et al., 1997)) with NO₂⁻ as the electron acceptor has been reported (Schalk et al., 1998) to form N_2 at a stoichiometric ratio of 3:4. Therefore, additional ^{15}N based studies are necessary to clearly elucidate all crucial transformation pathways coupled to anammox and possibly interfering the basal mathematics presented here. Nevertheless, at least NH_2OH , as most essential intermediate of anammox, has been reported to react with NH_4^+ always at a stoichiometric ratio of 1:1 (van de Graaf et al., 1997). However, up to now it has not been proven whether NH_2OH instead of NO_2^- could be used as a more reliable proxy value for a quantification of N_2 formation by anammox using the given mathematical expressions. A promising method with respect to a readily determination of N_2^- abundance of NH_2OH in aqueous samples (SPINMAS technique) was published recently by Stange et al. (2007). A second critical aspect of application arises only for the simplified approach. This approach is related to the assumption of the equality of the ¹⁵N abundance of atmospheric N₂ and NH₄⁺. In order to estimate the effect of a small discrepancy to that assumption simple error estimations were conducted with respect to the ratio of calculated (subscript c) vs real fraction (subscript r) of denitrification (B_c/B_r) and anammox (C_c/C_r) . In general the following aspects could be deduced. When NH₄⁺ is enriched in ¹⁵N beyond natural condition (> 0.366 at%) the fraction of denitrification (B) is systematically overestimated (Figure 4.2a). By contrast, the fraction of anammox (C) will only be overestimated when 15N abundance of NO2 is lower than 50 at% and maximally half as high as ¹⁵N abundance of NO₃ (Figure 4.2b). Otherwise the calculated anammox fraction will be systematically underestimated. The magnitude of the relative error of B varies depending on ¹⁵N abundance of NO₃, NO₂, and NH₄⁺ (b, c, and d) as well as the ratio of denitrification and anammox. The relative error of C varies in dependence on ¹⁵N abundance of NO₃, NO₂, and NH₄ (b, c, and d), but is independent from the denitrification/anammox ratio. At a constant ¹⁵N enrichment of 1 at% ¹⁵NH₄⁺ (Figure 4.2) the relative error of C will generally increase with decreasing ¹⁵N abundance of NO₃⁻ as long as the 15N abundance of NO₂ is at least 50 at%. However, the relative error of C will in general decrease with decreasing 15N abundance of NO₃ and/or increasing 15N abundance of NO₂ as long as the ¹⁵N abundance of NO₂ is lower than 50 at% and maximally half as high as ¹⁵N abundance of NO₃. Figure 4.2 Error estimation (calculated value (c) vs real value (r)) of the simplified approach at a ^{15}N abundance of NH_4^+ of I at% in dependence on ^{15}N enrichment of NO_2^- and NO_3^- and the denitrification/anammox ratio: (a) calculation of the fraction of denitrification and (b) calculation of the fraction of anammox. (atmospheric fraction (A) has been set to 0.1; note that B_c/B_r and C_c/C_r are generally independent from A). By contrast, the relative error of B will in general increase with an increasing ¹⁵N abundance of NO_2^- and/or a decreasing ¹⁵N abundance of NO_3^- . The fraction of atmospheric N_2 contributing to an N_2 mixture does not influence the magnitude of the B_c/B_r and C_c/C_r ratio. Moreover, under the specific condition of an equal ¹⁵N abundance of NO_2^- and NO_3^- (b = c) the air fraction (A) would always be calculated correctly by Equation 4.16, independent from the ¹⁵N enrichment of NH_4^+ (not illustrated). Under this condition the residual fraction of such an N_2 mixture is at least definable as microbial metabolised N_2 based only on the determination of the isotopic composition of the N₂ mixture and the ¹⁵N abundance of either NO₂⁻ or NO₃⁻. However, with respect to an acceptable estimation of *C* the following conditions need to be fulfilled, when the simplified approach is used under conditions of an ¹⁵N enriched NH₄⁺ pool: (i) ¹⁵N abundance of NH₄⁺ should be 1 at% maximally; (ii) ¹⁵N abundance of NO₂⁻ should be 10 at% at least; and (iii) ¹⁵N abundance of NO₃⁻ does not decrease below a value of 20 at%. With regard to a calculation of *B* (denitrified fraction) the following conditions need to be fulfilled: (i) ¹⁵N abundance of NH₄⁺ should be 1 at% maximally; (ii) ¹⁵N abundance of NO₃⁻ does not decrease below a value of 20 at%; (iii) the ¹⁵N abundance of NO₂⁻ should not exceed that of NO₃⁻; and (iv) at least 25 % of the microbial N₂ production results from denitrification. Within these boundary conditions the relative error of *B* and *C* will be 10 % at the most and thus appears acceptable with respect to studies of biological systems. Otherwise the comprehensive approach is recommended to be used for a calculation. A third critical aspect is the determinability of the ¹⁵N abundance of the basal N compounds needed for the calculation. Already published approaches (e.g. Kelley et al., 1991; Højberg et al., 1994; Stevens and Laughlin, 1994; Kieber et al., 1998) are in general time-consuming and mostly consist of several laborious steps. A precise determination
of the N₂ production by anammox and denitrification is therefore coupled to extensive experimental efforts in consequence of the determination the ¹⁵N abundance of NH₄⁺, NO₂⁻, and NO₃⁻. However, a promising approach (SPINMAS technique) was published recently by Stange et al. (2007) allowing a readily, rapid, and automated determination of the ¹⁵N abundance of NH₄⁺, NO₂⁻, or NO₃⁻ in aqueous samples. ## 4.4.3. Application in case of denitrification and codenitrification within soils It was firstly reported by Shoun et al. (1992) that, additionally to denitrification, codenitrification by soil fungi also produces N_2 . A number of studies (e.g. Shoun et al., 1992; Tanimoto et al., 1992; Kumon et al., 2002) demonstrated that (similar to anammox) during this process N_2 is formed by a combination of two N atoms from two different N species, e.g. NH_4^+ and NO_2^- . Until now only Laughlin and Stevens (2002) could show that codenitrification by soil fungi significantly contributes to a soil N_2 release. The present mathematical expressions appear therefore essential with respect to a reliable calculation of the N_2 production within soils where denitrification and codenitrification occur simultaneously. Otherwise severe calculation errors were generated when common ^{15}N based equations were used. As illustrated in Figure 4.3 former approaches would generally overestimate the fraction of denitrified N_2 (or even give a value exceeding 1) when ^{15}N labelled NO_3^- is simultaneously metabolised to NO_2^- and finally to N_2 in the course of codenitrification. With respect to equations presented by Mulvaney and Boast (1986), Khalil et al. (2004) and Equation 3.4 (see chapter 3.3.4) an overestimation depends on ^{15}N enrichment of NO_3^- , the contamination with atmospheric N_2 , and the ratio between denitrified N_2 and codenitrified N_2 . Figure 4.3 Error estimation [calculated value (c) vs. real value (r)] of the calculated fraction of denitrified N_2 based on a theoretical N_2 mixture evolved from denitrification, codenitrification and atmosphere with respect to values gained by former approaches compared to values gained by Equation 4.13 of the simplified approach. The following conditions were set: denitrification/codenitrification ratio 1:1; atmospheric fraction (A) = 0.2; ^{15}N abundance of NH_4^+ (d) = 0.366 at%; ^{15}N abundance of NO_2^- equals that of NO_3^- (b=c). (Note that all presented approaches are based on equal input variables). If b = c (¹⁵N abundance of NO₃ is equal to that of NO₂), highest calculation errors with respect to denitrified N₂ occur at high ¹⁵N enrichments of NO₃ and large fractions of atmospheric N₂ and codenitrified N₂. Under the same conditions equations published by Russow et al. (1996) and Arah (1992) do overestimate the fraction of denitrified N₂ only in dependence on the ratio between denitrified N₂ and codenitrified N₂. However, in contrast to all former approaches (Mulvaney and Boast, 1986; Arah, 1992; Russow et al., 1996; Khalil et al., 2004) Equation 4.13 of the simplified approach presented here permits an exact calculation of the fraction of denitrified N₂ based on the same input variables (α_{29} , α_{30} , a, and b), but considers a hybrid N₂ formation by codenitrification which also contributes to the N₂ mixture (Figure 4.3). Hence, if only denitrification has to be determined Equation 4.13 of the simplified approach should be preferred, if the ¹⁵N abundance of NO₃ is known and another source forming hybrid N₂ can not be excluded. Equation 4.13 would also be correct if the ¹⁵N abundance of denitrified NO₃ differs from codenitrified NO₂. However, it should be noted that the calculation would be only accurate if NH₄⁺ is at natural ¹⁵N abundance (see Figure 4.2). A comparison of values gained by Equation 4.13 and those from former approaches could help to evaluate the impact of other N₂ sources, which may additionally contribute to an N₂ mixture. Besides a codenitrification, abiotic denitrification (e.g. chemodenitrification) has been also reported to produce N₂ in soils based on an abiotic reaction combining one N atom of NO₂ with one N atom of an organic N compound (Ewing and Bauer, 1966; Thorn and Mikita, 2000; Kappelmeyer et al., 2003). However, even if codenitrification and chemodenitrification would occur simultaneously with denitrification, Equation 4.13 would be still correct as long as chemodenitrification and codenitrification use N compounds with equal ¹⁵N enrichments. This should be mostly the case, if only NO₃⁻ is labelled with ¹⁵N in order to determine N₂ formation due to denitrification. ## 4.5. Conclusions With respect to a 15N tracer technique new analytical expressions were derived allowing a precise calculation of the fractions of three different N2 sources simultaneously contributing to an N2 mixture, and which are based on (i) atmospheric N2; (ii) N2 generated by a process combining two single N atoms gained from one N species (e.g. denitrification of NO₃ Knowles, 1982); and (iii) N2 evolved as a hybrid due to a combination of two single N atoms gained from two different N species (e.g. utilisation of NH₄⁺ and NO₂⁻ by anammox Jetten et al., 1999). The calculation of the fraction of anammox, denitrification, and atmosphere is based on only one single isotopic analysis of a sampled N₂ mixture and the ¹⁵N abundance of NO₂ and NO₃ (simplified approach) or NH₄, NO₂, and NO₃ (comprehensive approach). In contrast to former approaches one essential advantage is an adequate consideration of atmospheric N2 as an omnipresent contaminant. Since it is included in all calculations and furthermore precisely quantifiable as a fraction, the demands on purity during experimental studies are less extensive concerning a contamination by atmospheric N2. Moreover, since the present comprehensive approach is also valid under conditions where all educts (NH₄⁺, NO₂⁻, and NO₃⁻) are enriched in ¹⁵N, other N transforming processes (e.g. nitrification; Mosier and Schimel, 1992) or dissimilatory nitrate reduction to ammonium (Trimmer et al., 2003) do not interfere with the calculation. Therefore, present mathematical expressions handle most comprehensively the difficulties associated with 15N based investigations of N2 formation within environments where anammox and denitrification coexist. Instead of anammox the present approach could also be applied for soil studies focused on N_2 and N_2O formation by denitrification and simultaneous codenitrification (Shoun et al., 1992; Tanimoto et al., 1992) or by denitrification and chemodenitrification (Kappelmeyer et al., 2003). Furthermore, based on the same input variables as required in former approaches (Mulvaney and Boast, 1986; Arah, 1992; Russow et al., 1996; Khalil et al., 2004) the presented simplified approach (Equation 4.13) permits a precise quantification of denitrified N_2 or N_2O , since it considers a simultaneous production of hybrid N_2 or N_2O (e.g. by codenitrification). Nevertheless, it needs to be proven yet how far the present mathematical equations will help to elucidate these processes with respect to future experimental studies. # 5. Formation of hybrid N_2O in a suspended soil due to codenitrification of NH_2OH ## 5.1. Abstract A few studies have shown that amine compounds (e.g. hydroxylamine) can be cometabolically introduced into the reaction pathway of denitrification. During this microbial process the nitrogen atom of the amine species is bound to a nitrogen atom of nitrite. In case of hydroxylamine this concomitant reaction ultimately results in the formation of hybrid N₂O. Due to its co-metabolic character the process has been termed codenitrification. Hybrid N2O production during codenitrification has been proven to occur in prokaryotic (e.g. Pseudomonas sp.) as well as eukaryotic (e.g. Fusarium sp.) species. Many of them are already well known as common denitrifiers. However, until now no clear evidence has been provided to show that N2O production by codenitrification really takes place in a soil. In the present study a formation of hybrid N2O was revealed by an adapted 15N tracer model, when both hydroxylamine and [15N]-nitrate were applied (mol ratio 10:1) to an anaerobically incubated soil suspension (Haplic Chernozem). The presence of hybrid N2O was also indicated by a novel characteristic factor (Rbinom) developed for a hybrid N-N gas detection. By contrast, no hybrid N₂O was found when either an autoclaved soil suspension, only nitrate or only hydroxylamine was used. Thus it appears that hybrid N₂O formation occurred due to codenitrification of hydroxylamine. Hence, this is the first study which demonstrates hybrid N₂O production by codenitrification beyond a microbial species level. The ¹⁵N tracer model revealed that under the given experimental conditions N₂O production by codenitrification prevailed against N2O from denitrification and abiotic hydroxylamine decomposition. In addition, a formation of hybrid N2 was also calculated by the model. However, the experimental results lead to the conclusion that it was most likely caused by a reduction of hybrid N₂O due to conventional denitrification. # 5.2. Introduction During the last decades many studies have revealed that microbial nitrous oxide (N_2O) production in terrestrial environments appears to be more complex than commonly thought. Biotic N_2O production includes a broader variety of microbial species, reaction pathways, and nitrogen (N) substrates (Hayatsu et al., 2008; Jetten, 2008). Jetten (2008) recently pointed out that even today the microbial world still hides an enormous biodiversity and metabolic capability. The unique and less known process of co-metabolic denitrification (i.e. codenitrification) appears to perfectly demonstrate this. Codenitrification was shown to produce N_2O in an intriguing reaction pathway, which permits a variety of N
compounds (atypical for denitrification) to be co-metabolized during denitrification (Tanimoto et al., 1992; Immoos et al., 2004; Su et al., 2004). Nonetheless, it has remained almost unregarded since its first description in 1992 (Tanimoto et al., 1992) and still today belongs to those "microbial worlds" aloof from scientific perception. According to Tanimoto et al. (1992) the phenomenon of codenitrification refers to a microbially mediated process (described for *Fusarium oxysporum* MT-811) which utilizes inorganic (e.g. ammonium – NH_4^+) and organic N compounds (e.g. salicylhydroxamic acid – $C_7H_7NO_3$) totally different to the known denitrification pathway (i.e. $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$) to form N_2O under conditions favorable for denitrification. Codenitrification is only induced by the major electron acceptors of denitrification (NO_2^- and NO_3^-), while the cometabolically utilized N species are incapable of inducing this cooperative respiration process alone. By means of a ^{15}N tracer technique Tanimoto et al. (1992) revealed that N_2O gas production due to codenitrification forms a hybrid N gas species. The N-N bond originates from a combination of an N atom from NO_2^- and an N atom from the co-metabolized compound (e.g. NH_4^+ or organic N). Concomitantly, also non-hybrid N_2O is formed by conventional denitrification. However, microbial N₂O production in the sense of codenitrification, as later on defined by Tanimoto et al. (1992), has been already reported early (Iwasaki and Mori, 1958; Matsubara, 1970; Renner and Becker, 1970; Garber and Hollocher, 1982; Kim and Hollocher, 1984; Aerssens et al., 1986; Weeg-Aerssens et al., 1987/1988; Hulse et al., 1989; Ye et al., 1991). Some of these earlier studies (e.g. Garber and Hollocher, 1982) postulated that an N-nitrosation reaction during denitrification might be responsible for the observed cometabolism. In this type of reaction an N atom of an enzyme-bound electrophilic mononitrogen intermediate of the denitrification pathway can bond to an N atom of a nucleophilic compound (e.g. amine compound; R-NH₂). The resulting hybrid N-N linkage can finally be found in the N₂O gas released by this reaction. So far, hybrid N₂O formation due to codenitrification has only been revealed by cell suspension experiments or purified enzymes of denitrifying species (e.g. Ye et al., 1991; Immoos et al., 2004; Su et al., 2004). Until now codenitrification in a soil has only been proven by one single study (Laughlin and Stevens, 2002). They reported that soil N₂ formation in a Typic Dystrochrept (acidic brown earth) was clearly dominated by fungi species which largely produced hybrid N₂ (up to 92 %) due to codenitrification. By contrast, soil N₂O release was found to only be related to denitrification. To our best knowledge N₂O formation by codenitrification has never been proven to really occur in a soil. Nonetheless, it has at least been reported for prokaryotic (e.g. *Pseudomonas sp.*) and eukaryotic (e.g. *Fusarium sp.*) species, which are well-known in soil N cycling (Kim and Hollocher, 1984; Tanimoto et al., 1992). Hence, it is reasonable to assume that N₂O formation by codenitrification also occurs in a soil. Production of N₂O via codenitrification has generally been reported with hydroxylamine (NH₂OH) as the co-metabolized N species (Iwasaki and Mori, 1958; Renner and Becker, 1970; Matsubara, 1970; Garber and Hollocher, 1982; Kim and Hollocher, 1984; Aerssens et al., 1986; Hulse et al., 1989). NH₂OH appears particularly interesting as it represents a well-known key compound of terrestrial N cycling. As already shown by others (Lees, 1952; Verstraete and Alexander, 1972) NH₂OH is an essential intermediate during the nitrification process. In addition, it has also been proven to be directly involved in soil N₂O production via nitrification (Khalil et al., 2004) as well as via abiotic NH₂OH decomposition (Bremner et al., 1980; Nelson, 1985). Analogue to former microbial studies (Iwasaki and Mori, 1958; Renner and Becker, 1970; Matsubara, 1970; Garber and Hollocher, 1982; Kim and Hollocher, 1984; Aerssens et al., 1986) the present study focuses on hybrid N_2O production by codenitrification of NH_2OH in an anaerobically incubated soil suspension. An adapted ¹⁵N tracer model is applied to evaluate simultaneous N_2O production by codenitrification and denitrification. In addition, the novel characteristic factor R_{binom} (see chapter 5.7.1) is introduced to improve the identification of hybrid N-N gas formation. #### 5.3. Materials and Methods #### 5.3.1. Soil treatment and incubation Soil suspension experiments were conducted with a Haplic Chernozem (A-horizon). The soil was sampled from an agricultural research site (Bad Lauchstädt, Germany) described in detail by Körschens et al. (1981). Sampled soil was stored at a constant temperature of 4 °C, and only subsamples have been used for a series of five individual 15N tracer experiments. For each ¹⁵N tracer experiment (described in the next paragraph) a subsample of 150 g of stored soil has been prepared for incubation as follows. The subsample was mixed with 300 ml distilled H2O and stirred manually with a spoon for one minute. Afterwards, gained soil suspension (pH-value 7.8 ±0.1; n = 5) was divided into two equal replicates of 150 ml (approx. 25 g of dry soil) each placed in a glass vessel (230 ml volume). In addition, a magnetic stir bar was added to both vessels. Each glass vessel was then placed in a metal core (8 cm in diameter, 6 cm height) of an incubation unit. Afterwards incubation units were sealed, placed on a magnetic stirrer and maintained at ≈25 °C (for all five 15N tracer experiments 26.2 ±1.1 °C in average; n = 479; measured hourly by a digital online thermometer). Each incubation unit was then connected to a separate carrier gas stream (He 5.0, Linde AG, Pullach, Germany) which constantly flowed through the headspace above the soil suspension (flow rate of 27 ml min⁻¹). After the carrier gas had been connected for 10 minutes 5 ml of glucose solution (≈55 μM) was added to each replicate via the gas outlet of its incubation unit (using a sterile syringe and needle). Subsequently replicates were preincubated for 72 hours. In addition, soil dry weight was determined for each experiment by drying two subsamples (each approx. 20 g) of stored soil at 105 °C for 24 h. Prior to any experiments being conducted under autoclaved conditions the soil suspension, incubation units, glass vessels, and magnetic stir bars were autoclaved (for 15 min at 121 °C and 2.1 bar; Laboklav, SHP Steriltechnik AG, Germany). The following five individual ¹⁵N tracer experiments were conducted: (I) adding only ¹⁵NO₃. (II) adding only ¹⁵NH₂OH, (III) adding only ¹⁵NH₂OH with autoclaved soil suspension. (IV) adding ¹⁵NO₃⁻ + NH₂OH, and (V) adding ¹⁵NO₃⁻ + NH₂OH with autoclaved soil suspension. The ¹⁵N abundance of added ¹⁵NO₃ was 30 at% (applied as K¹⁵NO₃). Added ¹⁵NO₃ solution (5 ml; 1.5 g ¹⁵NO₃ L⁻¹) was adjusted to gain an initial NO₃ concentration in the soil suspension of 50 mg NO₃⁻ L⁻¹ (≈800 µM). To prevent a complete depletion of respirable carbon during incubation glucose (≈55 µM) was also contained in NO₃ solution. NH₂OH solution (5 ml) was adjusted to gain an initial concentration 10 times of that of NO₃ on a molar basis (≈8 mM). For that purpose NH2OH·HCL salt was dissolved in distilled H2O and immediately adjusted to neutral conditions (pH 7) by adding NaOH solution (32 %). In case of isotopically enriched NH2OH a 15N abundance of 30 at% was used. In experiment IV and V NH₂OH was applied 1 to 2 h after the addition of the ¹⁵NO₃/glucose solution. A time lag was applied for the following two reasons: (i) since codenitrification only occurs in the presence of denitrification, we wanted to assure that ¹⁵NO₃ reduction to N₂O/N₂ really occurs before NH₂OH is applied; (ii) as we had to consider that sterilization might have been unsuccessful, we had to assure that after autoclaving no 15NO₃ was reduced to N₂O/N₂. Correspondingly, in experiment II and III a blank solution containing only glucose (≈55 µM) was added prior to 15NH2OH application. All added solutions were always freshly prepared for each experiment. Moreover, all solutions were flushed with helium via a submerged needle for at least 30 min before application. Solutions added to autoclaved soil suspension were applied via a sterilized 0.2 μm filter (Minisart RC 25, Sartorius Stedim Biotech GmbH, Germany). During incubation N_2O and N_2 gas release was determined at an interval of 1 to 2 h (except the night period) as described in the following section. In addition, soil suspension samples (\approx 5 ml) were taken from each replicate at an interval of 2 to 5 h (except the night period) via the gas outlet of the incubation unit by a sterilized syringe and needle. Solution samples were filtered by a 0.2 μ m filter with a Luer Lock coupling. Then they were immediately stored under constant cooling at 4 °C. 1 to 7 days after sampling filtered solution samples was analyzed for $^{15}NO_3$ and $^{15}NO_2$ by the SPINMAS technique (Stange et al., 2007). The former species was measured in two parallel aliquots (each 2 ml), while the latter was measured in only one aliquot (0.5 ml). # 5.3.2. 15N2O and 15N2 determination N_2O/N_2 release was measured based on an artificial atmosphere gas flow incubation system, which is coupled online to a gas chromatograph (GC 5890 Series II; HP – Agilent, USA) and a continuous-flow isotope ratio mass spectrometer (ConFlow IRMS - delta S; Thermo-Finnigan MAT, Bremen, Germany) (see chapter 3). N_2O and N_2 can be sampled by a direct capturing from a carrier gas using pre-concentration traps. During this study N_2O and N_2 was pre-concentrated for 5 to 32 min and 1 min, respectively. In addition, the system was modified to also allow N₂O/N₂
sampling via a sample loop. The carrier gas was then routed via the loop (0.5, 1, 2 or 4 ml) and switched into the GC-IRMS. This type of gas sampling was applied when the N₂O/N₂ release was too high to be determined by direct capturing. To assure comparable peak shapes for both sampling methods N₂O/N₂ sampled via the loop was pre-concentrated by using the N₂O/N₂ pre-concentration traps within the GC-IRMS circuit. Gas samples were analyzed for ¹⁴N/¹⁵N distribution within N₂O and N₂, respectively. N₂O was reduced to N₂ (copper oven; 750 °C) before measuring. Hence, for each gas species only ²⁸N₂, ²⁹N₂, and ³⁰N₂ was determined. The total amount of sampled N₂O/N₂ (mole) was calculated using a calibration function gained from standard gas calibration (see chapter 3.3.4). The current N₂O and N₂ release rate can then be calculated by either (i) the amount of gas captured from the carrier gas per time (mole/time) or (ii) the flow rate of the carrier gas (volume/time) and the amount of N gas in the sample loop (mole/volume). The flow rate was determined at the outlet of the sample loop using a Flowmeter (ADM1000, Agilent, USA). # 5.3.3. 15N calculations Non-hybrid N₂O/N₂ formation in the presence of one uniformly labeled N source (Experiment I, II, III, and V as well as first two measurements of N2O determination and first three measurements of N₂ determination in Experiment IV) was determined by the approach given in chapter 3.3.4. First, the ¹⁵N abundance of the labeled N source (e.g. NO₃⁻) is calculated by the determined ¹⁴N/¹⁵N distribution of produced N-N gas species (Equation 3.1). Second, the calculated 15N abundance is used to calculate the contribution of this source on the total gas release of the respective N-N gas species (Equation 3.2). However, it was demonstrated in chapter 4.4.3 that this former approach fails when also hybrid N gas formation occurs. Since a hybrid N2O formation was expected in experiment IV (non-autoclaved, presence of NH2OH + ¹⁵NO₃) we developed an adapted ¹⁵N tracer model. The model considers two different N sources (e.g. NH2OH and NO2), where each source generates non-hybrid N2O (e.g. by NH₂OH decomposition and denitrification of NO₂ and simultaneously both N sources can be combined to form hybrid N2O (e.g. by codenitrification). The adapted 15N tracer model is related to the following assumptions: (i) one of two considered N sources is constantly at natural ¹⁵N abundance (0.366 at%), while the other is enriched in ¹⁵N; (ii) the ¹⁵N abundance of the enriched N sources is homogeneously distributed within the studied environment (i.e. unaffected by spatial heterogeneity); and (iii) no other differently labeled N source is converted to N2O. Assuming an N2O production based on a labeled and unlabeled N source, both simultaneously utilized by the three different pathways described above, the resulting mole fractions of the species 44N2O, 45N2O, and 46N2O in the N2O mixture can be calculated as follows (Equation 5.1 to 5.3). Equation 5.1 $$\alpha_{44} = A(1-a)^2 + B(1-b)^2 + C(1-a)(1-b)$$ Equation 5.2 $$\alpha_{45} = 2A(1-a)a + 2B(1-b)b + C[(1-a)b + (1-b)a]$$ Equation 5.3 $$\alpha_{46} = Aa^2 + Bb^2 + Cab$$ where α_{44} , α_{45} , and α_{46} ($\alpha_{44} + \alpha_{45} + \alpha_{46} = 1$) represent the mole fraction of ⁴⁴N₂O, ⁴⁵N₂O, and ⁴⁶N₂O, respectively, and the variables a and b represent the ¹⁵N mole fraction (¹⁵N/[¹⁴N+¹⁵N] = relative ¹⁵N abundance) of the two considered N sources. The variables A and B represent the respective fractions of non-hybrid N₂O, while C represents the fraction of hybrid N₂O (A + B + C = 1). Applying a Gaussian elimination approach to Equation 5.1 to 5.3 results in Equation 5.4 to 5.6, which permit the calculation of the relative contribution of each considered N₂O forming process. Equation 5.4 $$A = \frac{b^2 + b(-2\alpha_{46} - \alpha_{45}) + \alpha_{46}}{(a-b)^2}$$ Equation 5.5 $$B = \frac{a^2 + a(-2\alpha_{46} - \alpha_{45}) + \alpha_{46}}{(a - b)^2}$$ Equation 5.6 $$C = \frac{a(2\alpha_{46} + \alpha_{45} - 2b) + b(2\alpha_{46} + \alpha_{45}) - 2\alpha_{46}}{(a-b)^2}$$ where A represents the fraction of non-hybrid N_2O based on the unlabeled source (a), B represents the fraction of non-hybrid N2O formed by the labeled source (b), and C represents the fraction of hybrid N₂O formed by a 1:1 linkage of both sources (a and b). The contribution of each pathway on the total N₂O formation can then be calculated based on the determination of the mass distribution within released N_2O (i.e. α_{44} , α_{45} , and α_{46}) and the current ¹⁵N mole fraction of the labeled N source (i.e. b). As reported by others (e.g. Kim and Hollocher, 1984; Weeg-Aerssens et al., 1988) NO2 rather than NO3 can be assumed as the direct precursor of denitrified and codenitrified N₂O. Therefore, in experiment IV (15NO₃ + NH₂OH, nonautoclaved) the ¹⁵N mole fraction of NO₂ (measured and interpolated values; see chapter 5.3.2) was used as variable b. Variable a was assumed to be represented by unlabeled NH₂OH. In experiment IV the adapted ¹⁵N tracer model was also applied for released N₂ using the determined mole fractions of ²⁸N₂, ²⁹N₂, and ³⁰N₂ as well as the current ¹⁵N mole fraction of NO2. However, it has to be considered that an N2 formation based on the unlabeled source (i.e. NH2OH) cannot be calculated exactly, because it is indistinguishable from atmospheric N2 contamination. In addition it should be noted here that if the mass distribution of N2O is determined via the species 44N2O, 45N2O, and 46N2O a mass correction concerning the natural occurrence of ${}^{17}O$ (${}^{14}N_2{}^{17}O = 45$; ${}^{14/15}N_2{}^{17}O = 46$) and ${}^{18}O$ (${}^{14}N_2{}^{18}O =$ 46) should be conducted. In spite of the developed ¹⁵N tracer model described above (Equations 5.4 to 5.6) the verification of hybrid N-N gas production in a soil still remains a heavy challenge. This is mainly related to the fact that the ¹⁵N abundance of the labelled N source (e.g. NO₂) might be in some cases difficult to determine, in particular with respect to non-suspended soils incubated under low oxygen or anaerobic conditions. Therefore, we developed the novel characteristic factor R_{binom} (ranging from 0 to 2), which indicates hybrid N gas formation only by using the mass distribution of an analysed N-N gas (e.g. α_{44} , α_{45} , and α_{46}). As shown in chapter 5.7.1 an R_{binom} value of >1 can be only achieved by an occurrence of a hybrid N-N gas species (e.g. N₂O formation by codenitrification). #### 5.4. Results # 5.4.1. 15NO₃ treatment (Experiment I) Prior to the tracer application no native NO₃ was detected in the soil suspension. This indicates a complete depletion during pre-incubation and explains the absence of N2O formation before ¹⁵NO₃ was applied. After tracer application ¹⁵N₂O as well as ¹⁵N₂ was produced immediately. The measured ¹⁵N abundance of NO₃ in the soil suspension was ≈30 at% (both replicates). This perfectly corresponds with the calculated 15N abundance of the N source of N_2 (30.1 ± 0.5 at%; n = 12, both replicates) and N_2O (30.2 ± 0.4 at%; n = 10, both replicates) and hence, clearly indicate that both gases were solely produced by 15NO₃ utilization. As expectable under these conditions the R_{binom} value (see chapter 5.7.1) of released N_2O was always constant at 1.00 (1.002 ± 0.004 ; n = 10, both replicates). The N_2O release reached maximum rates of only 0.08 μmol h⁻¹, while N₂ exceeded N₂O by two orders of magnitude (up to 15 µmol h⁻¹) (Figure 5.1). Furthermore, N₂O release showed rather constant rates, while N2 release constantly increased. 6 to 7 h after 15NO3 application N gas release decreased dramatically and fell below the determination limit. Since NO₃ was already undetectable at the second solution sampling (6 h after tracer application) it can be assumed that this occurred due to a complete depletion of the N substrate. Thus it appears that N2O and N₂ formation was directly related to NO₃ conversion by denitrification. Figure 5.1 N_2 and N_2O release by denitrification in the ¹⁵NO₃ treatment (experiment I) (black and white symbols refer to replicate 1 and 2, respectively; time = 0 represents ¹⁵NO₃ application). # 5.4.2. 15NH2OH treatments (Experiment II and III) Non-autoclaved soil suspension (Experiment II) - Before the application of ¹⁵NH₂OH no N₂O release occurred and also no native NO₃ or NO₂ was detected in the soil suspension. This indicates that all denitrifiable N sources were completely depleted during pre-incubation. After ¹⁵NH₂OH application a tremendous, peak-like release of ¹⁵N₂O occurred, which afterwards remained constantly low with a slight decrease towards the end of incubation (Figure 5.2a). The ¹⁵N abundance of released N₂O was always constant at around 30 at% $(30.3 \pm 0.3 \text{ at}\%; \text{ n} = 26, \text{ both replicates})$. Correspondingly, the calculated ¹⁵N abundance of the N_2O source compound was also 30 at% (30.1 \pm 0.1 at%; n = 26, both replicates) (Figure 5.3d). Hence, N2O formation occurred solely due to 15NH2OH conversion. This observation was also confirmed by a constant R_{binom} value of 1.00 (1.002 ±0.004; n = 26, both replicates) during the whole incubation (Figure 5.3c). The calculated N₂O release rates ranged between 27 μmol h⁻¹ after tracer application and 1.2 μmol h-1 at the end of incubation. Concerning N₂ a similar 15N abundance for the N source compound was calculated (30.0 \pm 0.1 at; n = 26, both replicates) (Figure 5.3d). It thus follows that also N₂ was formed based on ¹⁵NH₂OH conversion. The calculated N2 release rates revealed a very similar pattern in comparison to N2O. However, observed rates (0.6 to 6 μmol h⁻¹) always remained below that of N₂O (Figure 5.2a). Directly after ¹⁵NH₂OH application N₂O accounted for around 80 % of total N-N gas release. Subsequently the composition of released N-N gas
rapidly changed in favor of N2 resulting in a rather constant emission ratio of $^2/_3$ N₂O and $^1/_3$ N₂ (Figure 5.2a). NO₃ and NO₂ were detectable after 15 NH₂OH application, but occurred at very low concentrations (not shown) near to the determination limit (20 μ M and 1μ M for NO₃ and NO₂, respectively) of the SPINMAS system (Stange et al., 2007). Nonetheless, both compounds showed an increased 15 N abundance of up to 30 at% which indicates 15 NH₂OH as the precursor. Figure 5.2 N_2 and N_2O production based on ¹⁵NH₂OH conversion and relative fraction of N_2O on total N-N gas production using non-autoclaved (left; experiment II) and autoclaved (right; experiment III) soil suspension (black and white symbols refer to replicate 1 and 2, respectively; time = 0 represents NH₂OH application). Autoclaved soil suspension (Experiment III) - No N₂O release occurred before the application of 15NH2OH, even if native NO3 and NO2 were still detectable in the soil suspension (not shown). Thus it appears that microbial N2O production by denitrification was completely prevented by autoclaving. After ¹⁵NH₂OH application a tremendous, peak-like ¹⁵N₂O release occurred, which afterwards remained constantly low (Figure 5.2b). The 15N abundance of released N_2O was constant at 30 at% (30.3 ± 0.1 at%; n = 22, both replicates). Correspondingly, also the calculated ¹⁵N abundance of the N₂O source compound was found to be constant at 30 at% (30.1 \pm 0.1 at%; n = 22, both replicates) (Figure 5.3d). Both results clearly identify 15NH2OH as the source of N2O formation. This is also confirmed by a constant R_{binom} value of 1.00 (1.003 ±0.002; n = 22, both replicates) during the whole incubation (Figure 5.3c). During the first 10 h N₂O release due to ¹⁵NH₂OH conversion ranged between 2 and 60 umol h⁻¹ and then remained constantly low at around 1.3 µmol h⁻¹. Concerning N₂ a similar ¹⁵N abundance of the N source compound was calculated (30.1 ±0.3 at%; n = 22, both replicates) (Figure 5.3d), which indicates that also N₂ was formed based on ¹⁵NH₂OH utilization. The calculated N₂ release (0.2 to 21 μmol h⁻¹) always remained below that of N₂O, but happened very similarly compared to the pattern of N₂O (Figure 5.2b). Directly after ¹⁵NH₂OH application N₂O release accounted for around 75 % of total N-N gas release. Afterwards it slightly changed in favor of N_2O and resulted in an emission ratio of $^9/_{10}$ N_2O and $^1/_{10}$ N_2 (Figure 5.2b). NO_3^- and NO_2^- analyses revealed that they were also affected by $^{15}NH_2OH$ conversion. Both compounds showed an increase in the ^{15}N abundance of up to 8 and 1 at%, respectively. This indicates that also under autoclaved conditions some $^{15}NH_2OH$ was converted to NO_3^- and NO_2^- . However, while NO_2^- showed a constantly low concentration ($\approx 16~\mu M$), NO_3^- concentration was 2 orders of magnitude higher and slightly decreased from 2100 to 1600 μM . # 5.4.3. ¹⁵NO₃ + NH₂OH treatments (Experiment IV and V) Non-autoclaved soil suspension (Experiment IV) – Prior to a NH₂OH application N₂ and N₂O release via 15 NO₃⁻ utilization was found to be very similar compared to experiment I. N₂ release increased to up to \approx 1.6 µmol h⁻¹, while N₂O release (0.06 µmol h⁻¹ in maximum) was two orders of magnitude below N₂ (Figure 5.4a and 5.5a). The 15 N abundance of released N₂O was similar to the 15 N abundance of added 15 NO₃⁻ (\approx 31 at%) (Figure 5.4b). Correspondingly, the calculated 15 N abundance of the N source of N₂O was also at around 30 at%. A similar result was also found for N₂ (Figure 5.3b). Hence, before NH₂OH application the observed N-N gas release occurred solely due to denitrification of added 15 NO₃⁻. After NH₂OH application the ¹⁵N abundance of NO₃ and NO₂ showed a rather constant decrease to around 14 and 20 at%, respectively (Figure 5.4b). Hence, NH2OH acted as an N source for NO₃ and NO₂ formation. In addition, a constant decrease in NO₃ (≈800 to ≈100 μ M) and NO₂ concentration (\approx 100 to \approx 20 μ M) was observed (not shown). A considerable effect of NH₂OH application was also found concerning the ¹⁵N abundance of released N₂O and N₂. Both gases first showed a rapid decrease, which was then followed by a short increase and a second weak decrease (Figure 5.4b). The pattern was similar for both gases, but strongly pronounced only concerning N₂O. The measured ¹⁵N abundance of N₂O and N₂ was always below that of NO₃ and NO₂, respectively (Figure 5.4b). The calculated ¹⁵N abundance of the N2O and N2 source compound also showed a rapid decrease down to values <5 at%. However, these values neither coincided with NO₃ nor NO₂ (Figure 5.3b and 5.4b) (please note that unlabeled N-N gas gained from NH2OH is taken into account during this calculation; see chapter 3.3.4). This is in clear contrast to experiment I, II, and III where N2O and N2 formation was solely related to the added N tracer (15NO₃ or 15NH₂OH) and always in agreement with the ¹⁵N tracer model described in chapter 3. In contrast to experiment II, III, and V the calculated R_{binom} values of N₂O rapidly began to exceed 1.00 after NH₂OH was applied. After 4 to 5 h they remained fairly constant at around 1.06 (1.061 \pm 0.005; n = 24, both replicates) until the end of incubation. This indicates a considerable release of hybrid N₂O (see chapter 5.7.1). Correspondingly, the present ¹⁵N tracer model also calculated a hybrid N₂O formation (NH₂OH + ¹⁵NO₂; Equation 5.6). Furthermore, the model calculated a simultaneous non-hybrid N2O formation based on NH2OH (Equation 5.4) and 15NO2 (Equation 5.5), respectively. The revealed pattern of non-hybrid N₂O release due to NH₂OH conversion appeared very similar to the pattern found in experiment II, III, and V (see Figure 5.2 and 5.4c). Nonetheless, the initial N₂O release rates due to NH₂OH conversion were distinctively lower (maximum release rates of up to 7 μmol h⁻¹, Figure 5.4a). Concerning non-hybrid N₂O formation due to ¹⁵NO₂⁻¹ utilization (i.e. denitrification) a significant increase by one order of magnitude was caclulated by the model. The modeled N₂O release rates ranged between 0.3 and 0.8 μmol h⁻¹ (Figure 5.4a). A maximum N₂O release occurred 1 to 2 h after NH₂OH was applied. Concerning hybrid N₂O formation a similar pattern compared to denitrification was calculated. However, release rates of hybrid N₂O were one order of magnitude higher (1.0 and 2.3 μmol h⁻¹) than found for denitrified N₂O (Figure 5.4a). The maximum hybrid N₂O release occurred 3 to 4 h after NH₂OH application. Figure 5.3 R_{binom} values (see chapter 5.7.1) of released N_2O and predicted ^{15}N abundance of the N_2 and N_2O source in the $^{15}NO_3^- + NH_2OH$ treatment (left; experiment IV and V) and in the $^{15}NH_2OH$ treatment (right; experiment II and III) (black and white symbols refer to replicate 1 and 2, respectively; time = 0 represents NH_2OH application; in Fig. 5.3a and 5.3b NO_3^- was added 2–3 h prior to NH_2OH application). The application of the present ^{15}N tracer model on released N_2 revealed a non-hybrid N_2 formation based on $^{15}NO_2$ (i.e. denitrification) as well as a hybrid N_2 formation based on a combination of NH_2OH -N and $^{15}NO_2$ -N. After NH_2OH application the calculated non-hybrid N_2 formation due to denitrification decreased by two orders of magnitude (rates of <0.2 μ mol h^{-1}) (Figure 5.5a). By contrast, the quantified hybrid N_2 formation increased to a maximum (0.3 μ mol h^{-1}) 3 to 5 h after NH_2OH application and then dropped to around 0.1 μ mol h^{-1} (Figure 5.5a). Figure 5.4 N_2O release (please note the discontinuity of the y-axis) and ^{15}N abundance of all determined nitrogen compounds in the $^{15}NO_3^- + NH_2OH$ treatment using non-autoclaved (left; experiment IV; after t=0 total N_2O release was partitioned according to Equation 5.4 to Equation 5.6) and autoclaved (right; experiment V) soil suspension (black and white symbols refer to replicate 1 and 2, respectively; time = 0 represents NH_2OH application, while NO_3^- was added 2-3 h prior to NH_2OH application). Hence, the modeled pattern of hybrid N_2 formation occurred very similar compared to the pattern found for hybrid N_2O formation. A comparison of N_2O and N_2 concerning the contribution of denitrification and simultaneous hybrid N-N gas formation revealed a very similar composition. In general hybrid N-N gas prevailed and accounted for 75 to 95 % (Figure 5.5b). A clear difference between N_2O and N_2 occurred only during the first 3 h after NH_2OH application, where the fraction of hybrid N_2 was clearly lower compared to the fraction of hybrid N_2O . A direct NH_2OH conversion to non-hybrid N_2 could not be exactly quantified, because of its natural ^{15}N abundance which is indistinguishable from atmospheric N_2 contamination. Figure 5.5 Microbial N_2 release (a) and composition of biogenic N_2 and N_2O (b) in the $^{15}NO_3^- + NH_2OH$ treatment using non-autoclaved soil suspension (experiment IV; N-N gas release was partitioned according to Equation 5.5 and Equation 5.6) (black and white symbols refer to replicate 1 and 2, respectively; time = 0 represents NH_2OH application, while NO_3^- was added 2–3 h prior to NH_2OH application). Autoclaved soil suspension (Experiment V) - After the application of 15NO3 no N2O or N2 release was observed, which indicates that denitrification did not occur after autoclaving. In contrast, the subsequent application of NH2OH resulted in a tremendous, peak-like N2O release with maximum rates of 45 μmol h⁻¹ (Figure 5.4c). After 5 h N₂O release remained constantly low at 0.7 µmol h⁻¹. Released N₂O showed absolutely no ¹⁵N enrichment and hence neither 15NO₃ nor 15NO₂ was involved in N₂O production (Figure 5.4d). In contrast to experiment IV
(non-autoclaved) the calculated R_{binom} value of N₂O was always 1.0 (0.99 ±0.01; n = 28, both replicates) without considerable changes during the incubation (Figure 5.3a). Thus, NH2OH can be assumed as the only source of the observed N2O release. With respect to N2 a similar release pattern was observed (not shown). However, the contribution of NH2OH to total N2 release cannot be exactly calculated due to the equality of the 15N abundance of NH₂OH and ambient atmospheric N₂. The measured ¹⁵N abundance of NO₃⁻ (10 at%) was distinctively below the 15N abundance of the applied tracer (30 at%), which indicates the presence of native NO₃ unutilized due to autoclaving (Figure 5.4d). Determined NO₃ concentrations ranged from 1600 to 1800 μM. Both ¹⁵N abundance and concentration of NO3 remained constant during incubation. Hence, under autoclaved conditions no relevant production of NO₃ based in NH₂OH conversion took place. In contrast to NO₃, determined NO_2^- showed extremely low concentrations (<10 μ M) with a slight increase of the ^{15}N abundance (up to 6 at%) (Figure 5.4d). #### 5.5. Discussion ## 5.5.1. Hybrid N2O due to codenitrification of NH2OH It was confirmed by experiment I (only ¹⁵NO₃) that under the given incubation conditions only denitrified N2O is formed when only NO3 is delivered. This perfectly corresponds with the current knowledge of denitrification (Knowles, 1982; Zumft, 1997). However, when NH2OH was additionally applied during an active denitrification of NO3 (experiment IV) a considerable change in the N₂O release pattern was observed (Figure 5.4a). While in experiment I N₂O release was only related to added ¹⁵NO₃, in experiment IV the N₂O release revealed a clear incorporation of an unlabeled N source (i.e. NH2OH). It was already reported by others (Bremner et al., 1980; Nelson, 1985; Bremner, 1997) that NH2OH can be rapidly converted to N₂O due to an abiotic redox reaction with oxidized metal species (e.g. Mn). A similar N2O formation was found in experiment III (only 15NH2OH; autoclaved) and V (15NO₃ + NH₂OH; autoclaved). When NH₂OH was applied to an autoclaved soil suspension a rapid and peak-like N2O formation occurred (Figure 5.2b and 5.4c). Moreover, even in the presence of ¹⁵NO₃^{-/15}NO₂⁻ (experiment V) no ¹⁵N labeling was found in released N₂O (Figure 5.4d), which proves that abiotic N2O was solely produced by NH2OH. These results correspond well with data from Bremner et al. (1980). They reported that, independently from the presence of NO₂, NH₂OH was rapidly converted to N₂O (most of it within the first hours after NH₂OH application) when applied to a sterilized soil. Thus, we can conclude that in the presence of NO₃ and NH₂OH under non-autoclaved conditions (experiment IV) the former species was denitrified to N2O, while simultaneously the latter species was chemically converted to N2O. The ¹⁵N abundance of a labeled N₂O source (e.g. ¹⁵NO₂⁻) can be calculated by the ¹⁴N/¹⁵N distribution within released N₂O (i.e. α₄₄, α₄₅, and α₄₆) (Equation 3.1), as long as only an unlabeled N source (e.g. NH₂OH) simultaneously contributes to the total soil N₂O release. Hence, in experiment IV a reliable calculation of the ¹⁵N abundance of the labeled N₂O source (i.e. ¹⁵NO₃⁻/¹⁵NO₂⁻) can be expected, if only denitrification and abiotic NH₂OH conversion would have taken place. However, the calculated ¹⁵N abundance of the labeled N₂O source was always distinctively below the measured ¹⁵N abundance of ¹⁵NO₃⁻ and ¹⁵NO₂⁻ (Figure 5.3b and 5.4b). If denitrified N₂O would have been produced directly by ¹⁵NO₃⁻ or ¹⁵NO₂⁻, then the calculated ¹⁵N abundance of the labeled N₂O source should be equal to either ¹⁵NO₃ or ¹⁵NO₂⁻. If we assume a denitrification directly based on ¹⁵NO₃⁻ and ¹⁵NO₂⁻, then the calculated ¹⁵N abundance of the labeled N₂O source should stay in between. Since both scenarios do not match our calculations, the observed N₂O formation in experiment IV can not be explained by considering only denitrification and simultaneous abiotic NH₂OH conversion. However, if hybrid N2O formation due to a co-metabolic NH2OH utilization during denitrification (i.e. codenitrification) is taken into account (as reported by e.g. Garber and Hollocher, 1982; Kim and Hollocher, 1984; Aerssens et al., 1986; Hulse et al., 1989), the calculated 15N abundance of the labeled N2O source should be systematically underestimated. In fact this was found in experiment IV (Figure 5.3b and 5.4b). A similar systematic underestimation was reported by Laughlin and Stevens (2002) associated with hybrid N2 formation by codenitrification. Thus it appears well-founded that the observed underestimation was caused by a hybrid N₂O formation due to codenitrification of NH₂OH. As shown in chapter 5.7.1 the novel characteristic factor R_{binom} was derived to improve the identification of such a hybrid N-N gas production. If only one N source forms the N2O the R_{binam} value will be 1.00. This was clearly found in experiment I, II, III, and V where only NO3 or NH2OH acted as the substrate of N2O formation. By contrast, only in the presence of ¹⁵NO₃ and NH₂OH under non-autoclaved conditions (experiment IV) the R_{binom} values of N_2O were clearly different to 1.00. While R_{binom} remained at 1.00 as long as only $^{15}NO_3$ was present, it rapidly increased to a rather constant value of 1.06 immediately after NH2OH was additionally applied (Figure 5.3a). First, this clearly contradicts the assumption of a single N₂O source (see chapter 5.7.1). And second, it also contradicts the assumption of only nonhybrid N₂O formation by abiotic NH₂OH conversion and simultaneous denitrification, since in this case R_{binom} would be <1.00 (see chapter 5.7.1). An R_{binom} value of >1.00, as only observed in the presence of ¹⁵NO₃ and NH₂OH under non-autoclaved conditions, can only be achieved by a considerable release of hybrid N2O (see chapter 5.7.1). Hence, it can be concluded that the addition of NH2OH in fact resulted in a formation of hybrid N2O. The rather small deviation from 1.00 is mainly caused by the low ¹⁵N abundance of the labeled N sources (Figure 5.4b). Even if we assume only hybrid N₂O formation by ¹⁵NO₂⁻ and NH₂OH the maximum R_{binom} value would range from 1.16 at the beginning to 1.09 at the end of incubation. As no labeled N₂O was formed, when ¹⁵NO₃ and NH₂OH were added to an autoclaved soil suspension (experiment V; Figure 5.4d), it appears evident that the hybrid N₂O formation observed under non-autoclaved conditions was mediated by a microbial process. An abiotic production of hybrid N₂O based on a reaction of NH₂OH and nitrous acid (HNO₂) appears therefore extremely unlikely. Such acid catalyzed reactions were reported (Mirvish, 1975; Kim and Hollocher, 1984; Calmels et al., 1985) to occur at an optimum pH between 2 and 3, which is, however, in a clear contrast to the slightly alkaline conditions found in the soil suspension (7.8 ±0.1; n = 5). In addition, hybrid N₂O was formed not at all when only NH₂OH was applied under non-autoclaved conditions (experiment II; Figure 5.3c and 5.3d). However, hybrid N₂O formation was observed under non-autoclaved conditions, when NO₃ and NH₂OH were applied (experiment IV). In addition, it was shown that NO₃ was actively utilized for N₂O and N₂ formation by denitrification immediately prior to NH₂OH application. Thus it appears that hybrid N₂O formation, as detected only in experiment IV (NH₂OH + ¹⁵NO₃⁻, non-autoclaved), was dependent on a microbial process which utilized NH₂OH only in the presence of active denitrification, i.e. a microbial process which appears to perfectly coincide with the definition of codenitrification as given by Tanimoto et al. (1992). Furthermore, it also goes hand in hand with results of microbial studies on N₂O formation due to co-metabolic utilization of NH₂OH during denitrification (Iwasaki and Mori, 1958; Renner and Becker, 1970; Matsubara, 1970; Garber and Hollocher, 1982; Kim and Hollocher, 1984; Aerssens et al., 1986; Hulse et al., 1989). Therefore, it can be concluded that hybrid N₂O formation, as indicated by *R*_{binom} and calculated by the present ¹⁵N tracer model (Figure 5.3a and 5.4a), did in fact occur due to codenitrification. # 5.5.2. Considerations on NH₂OH utilization as quantified by the ¹⁵N tracer model The present ¹⁵N tracer model (Equations 5.4 to 5.6) was applied to the data set of experiment IV to take into account the formation of hybrid N₂O as indicated by the characteristic factor R_{binom} . The model revealed that three different pathways contributed simultaneously to the total N₂O release. Two different phases of N₂O formation were found: (i) a short but intensive N₂O production phase largely caused by NH₂OH conversion and (ii) a subsequent phase mainly dominated by hybrid N₂O formation (Figure 5.4a). The calculated N₂O release due to NH₂OH conversion (Figure 5.4a) tended to correspond very well with the abiotic N₂O formation by NH₂OH conversion observed under autoclaved conditions (experiment III and V; Figure 5.2b and 5.4c). Hence, it can be assumed that NH₂OH conversion to N₂O, as calculated by the model, occurred due to an abiotic process. Bremner et al. (1980) reported that up to 83 % of NH₂OH added to a sterilized soil was abiotically converted to N2O within 2 h by a redox reaction with oxidized metal species (e.g. Mn). Therefore, the modeled N₂O formation due to abiotic NH₂OH conversion may be explained by a rapid and strong reaction of NH₂OH at an initial incubation state, followed by a gradual decline due to a depletion of oxidized metal species. However, the initial N₂O peak was clearly lower than the initial N₂O peaks measured under autoclaved conditions (Figure 5.2b and 5.4c). As reported by others (e.g. McNamara et al., 2003; Berns et al., 2008) a sterilization of soils, in particular concerning autoclaving, can alter the availability and composition of soil N and C compounds. Hence, the found
differences might be explained to some extent by the impact of autoclaving. Moreover, it has to be considered that abiotic N₂O formation by NH₂OH conversion was impeded by the simultaneous utilization of NH₂OH for hybrid N₂O formation (Figure 5.4a). Furthermore, abiotic N₂O formation was apparently also hindered by simultaneous nitrification. As shown in Figure 5.4b the ¹⁵N abundance of NO₃ and NO₂ continuously decreased after NH₂OH was applied, which indicates that the latter compound was contributing to the NO₃ and NO₂ pool. A similar ¹⁵N dilution was not observed under autoclaved conditions (Figure 5.4d) and hence, lends support to the assumption of a biogenic origin. As reported elsewhere (e.g. Arp and Stein, 2003) some nitrifying species can oxidize ammonia (NH₃) to NO₂ via NH₂OH also under anaerobic conditions by using for example nitrogen dioxide (NO_2) as the electron acceptor instead of O_2 . However, in experiment IV the observed ¹⁵N abundance of ¹⁵NO₂ always followed the decrease observed for ¹⁵NO₃ (Figure 5.4b), implying that the latter species was the precursor of the former compound (i.e. reductive pathway). Even if the detailed mechanism of the observed microbial NH_2OH oxidation remains unclear yet, it appears that only NO_3 was produced without NO_2 as a "free" intermediate. The rapid abiotic conversion of NH₂OH indicates that under oxygen limited conditions NH₂OH released during nitrification may rather be abiotically converted to N₂O than cometabolically utilized in the denitrification process (i.e. codenitrified). Moreover, this also supports the idea that soil N₂O production during nitrification (e.g. Bollmannn and Conrad, 1998; Khalil et al., 2004) may be caused by an abiotic NH₂OH conversion than by a microbially mediated NH₂OH conversion. An abiotic N₂O formation by NH₂OH gained from the nitrification of NH₃ was already suggested by some authors (Stüven et al., 1992; Moir et al., 1996; Bremner, 1997; Otte et al., 1999; Arp and Stein, 2003) and even demonstrated by Schmidt et al. (2004b). The latter authors found that during NH₃ oxidation by mutant strains of *Nitrosomonas europaea* high quantities of NH₂OH are released into the medium and then chemically converted to N₂O. Since the dynamic of N₂O formation due to NH₂OH conversion, as revealed by the present ¹⁵N tracer model, corresponds to the abiotic N₂O formation found in experiment III and V (Figure 5.2b, 5.4a, and 5.4c), it appears unlikely that NH₂OH was microbially converted to N₂O. From this it can be concluded that a considerable N₂O production by nitrification did not occur. Concerning microbial N2O formation the present 15N tracer model revealed a significant change in the N2O release after NH2OH was applied additionally to NO3. While only negligible amounts of N2O were released by denitrification before an application (Figure 5.4a), a clear increase of denitrified N2O (1 order of magnitude) after NH2OH application was calculated by the model. In addition, a simultaneous release of hybrid N2O due to codenitrification of NH2OH was also calculated. The modeled contribution of codenitrified N₂O always exceeded the modeled release of denitrified N₂O (up to 95 % of total biogenic N₂O release; Figure 5.5b). Similar results were also reported by Garber and Hollocher (1982) who incubated anaerobically single denitrifying species in the presence of 15NO2 and NH₂OH. It was shown that hybrid N₂O accounted for 47 to 98 % depending on the incubated denitrifier. The revealed dynamic of both biogenic pathways (Figure 5.4a) is also consistent with the assumed interrelation of denitrification and N-nitrosation (i.e. codenitrification) as proposed by e.g. Weeg-Aerssens et al. (1988). They reported that during the denitrification of NO2 different nucleophiles (e.g. NO2 and N3) compete for an enzyme-bound mono-nitrogen intermediate, which occurs after NO2 in the denitrification pathway. Thus one can assume that the predominance of hybrid N2O was largely caused by the high concentration of NH2OH compared to NO2. In addition, Garber and Hollocher (1982) reported that hybrid N2O formation by N-nitrosation behaves kinetically similarly to denitrification. This would also reasonably explain the similarity of the dynamic of codenitrified and denitrified N₂O formation as calculated by the present ¹⁵N tracer model. Besides hybrid N2O the present 15N tracer model also revealed a release of hybrid N2 after NH₂OH was additionally applied to ¹⁵NO₃ (experiment IV) (Figure 5.5a). To our best knowledge a hybrid N₂ formation by codenitrification of NH₂OH has never been reported so far. However, as shown in Figure 5.3b the calculated ¹⁵N abundance of the labeled N₂ source compound (Equation 3.1; see chapter 3.3.4) was similarly underestimated as already found for N2O. The underestimation clearly supports the modeled release of hybrid N2 inasmuch as it contradicts with the assumption of only abiotic NH2OH conversion and simultaneous denitrification (as discussed in the previous section). However, since this underestimation is almost equal to the underestimation of the labeled N2O source (Figure 5.3b), it appears most likely that hybrid N₂ was formed just by a reduction of hybrid N₂O due to conventional denitrification. If we consider N2O as the direct precursor of N2 this assumption appears even more reasonable, since then N₂ simply reproduces the ¹⁵N distribution of N₂O (please note that the underestimation is only dependent on the ¹⁵N abundance of the labeled N source and the denitrification/codenitrification ratio). Furthermore, the calculated denitrified and codenitrified N₂ appear to only reproduce the composition of biogenic N₂O (Figure 5.5b). Thus it follows that the observed formation of hybrid N₂ was apparently caused by a reduction of hybrid N₂O rather than a result of codenitrification of NH₂OH. It was recently underlined by Chapuis-Lardy et al. (2007) that soils have to be considered as an important N2O sink due to their widespread ability of a microbial N₂O reduction to N₂. ### 5.6. Conclusions The present ¹⁵N tracer model was shown to allow the quantification of non-hybrid and hybrid N₂O formation in the course of microbial N transformation. Moreover, the implementation of the novel characteristic factor R_{binom} permitted a simple verification of hybrid N₂O formation. Both approaches revealed that soil N₂O formation involves a considerable complexity of different reaction pathways interacting with each other and that in fact codenitrification of NH₂OH has to be taken into account. Even if high quantities of NH₂OH were used to provoke a significant formation of hybrid N₂O, it can be concluded that the Haplic Chernozem soil in general exhibits microbial species which are capable to perform codenitrification. Hence, the present ¹⁵N tracer approaches could be applied as a general screening tool for studies on the capability of soils to perform codenitrification. The observed utilization of NH₂OH allows us to draw the conclusion that (i) chemical N₂O formation, (ii) biogenic N₂O formation due to codenitrification, and (iii) nitrification has to be in principle considered as competing pathways for NH₂OH utilization in soils. The present ¹⁵N tracer approaches should be therefore also used for studies on N₂O production by nitrification, denitrification, and codenitrification. For that purpose NH₄⁺ could be applied along with ¹⁵NO₃⁻. This appears particularly expedient inasmuch as NH₄⁺ was also shown to be involved in hybrid N_2O formation by codenitrification (Tanimoto et al., 1992; Immoos et al., 2004; Su et al., 2004). Moreover, a soil N_2O production due to nitrification and simultaneous denitrification was already reported by plenty of studies (e.g. Bollmann and Conrad, 1998; Stange et al., 2009). Even if hybrid N-N gas formation due to codenitrification is already known since several decades (Garber and Hollocher, 1982; Kim and Hollocher, 1984; Tanimoto et al., 1992), a tremendous gap of knowledge concerning its impact on N cycling exists. It was recently pointed out by Jungkunst et al. (2006) that the observed heterogeneity of soil N2O production at the field scale is largely related to different microbial communities which react differently to similar soil conditions. They underlined that new additional model concepts and process studies are urgently required to deepen knowledge of microbial N2O production in soils. As demonstrated here the application of a ¹⁵N tracer technique which considers the total ¹⁴N/¹⁵N mass distribution within N₂O (i.e. ⁴⁴N₂O, ⁴⁵N₂O, and ⁴⁶N₂O) appears to be a promising way. Nonetheless, an application of the present approach on unsuspended soil samples or under insitu conditions has to be evaluated yet. Its main restrictions are directly related to soil heterogeneity, which hinders a homogenous ¹⁵N labeling and also impedes the required ¹⁵N analysis of soil N species (i.e. NO2-). However, it was reported elsewhere (Garber and Hollocher, 1982) that in the presence of codenitrification NO production by denitrification is increased as a kind of abortive reaction. Hence, the question rises to what extend a 15NO gas analysis might be suitable to replace the more difficult ¹⁵NO₂ analysis and thus simplifies the experimental application of the present ¹⁵N tracer model. ## 5.7. Appendix # 5.7.1. Introducing R_{binom} as characteristic factor of hybrid N-N gas formation The R_{binom} factor permits an identification of hybrid N-N gas formation solely based on the mass distribution of an N-N gas species (e.g. α_{44} , α_{45} , and α_{46}). In order to improve the understandability of this section the application of R_{binom} is described based on $N_2^{16}O$ (nonetheless, all of the following explanations are also valid for N_2). The combinability of ¹⁴N and ¹⁵N atoms within N₂O allows the formation of three different masses according to the following combinations: [¹⁴N¹⁴N], [¹⁴N¹⁵N],
and [¹⁵N¹⁵N]. If we consider these masses as relative fractions of the total amount of N₂O the mass distribution within N₂O can be expressed by their respective mole fractions termed here as α_{44} , α_{45} , and α_{46} ($\alpha_{44} + \alpha_{45} + \alpha_{46} = 1$). The ¹⁵N mole fraction of an N₂O gas species (¹⁵N/[¹⁴N+¹⁵N] = relative ¹⁵N abundance; here referred to as *c*) can then be generally expressed using the mole fractions of the N₂O masses according to Equation 5.7, Equation 5.7 $$c = \frac{\alpha_{45}}{2} + \alpha_{46}$$ The mass distribution within N₂O derived from one N source with the ¹⁵N mole fraction a (e.g. non-hybrid N₂O from abiotic NH₂OH decomposition) will follow a random mass distribution (Hauck et al., 1958; Hauck and Bouldin, 1961). The random distribution within this non-hybrid N₂O species can be simply described by a binomial function which only requires the ¹⁵N mole fraction of the related N₂O source: (i) $\alpha_{44} = (1-a)^2$; (ii) $\alpha_{45} = 2(1-a)a$; (iii) $\alpha_{46} = a^2$; and (iv) $(1-a)^2 + 2(1-a)a + a^2 = 1$. Since the ¹⁵N mole fraction of formed N₂O will be equal to the ¹⁵N mole fraction of the related N source (i.e. c = a), the mole fractions α_{44} , α_{45} , and α_{46} of a binomial distributed N₂O species can be equally expressed by its ¹⁵N mole fraction c. Russow et al. (1996) have shown that the ^{15}N mole fraction of an N_2O species with a binomial mass distribution can also be expressed by only using the ratio of α_{45} to α_{44} as follows, Equation 5.8 $$c_{binom} = \frac{\frac{\alpha_{45}}{\alpha_{44}}}{(2 + \frac{\alpha_{45}}{\alpha_{44}})}$$ where c_{binom} represents the ¹⁵N mole fraction of an N₂O species which is assumed to exhibit a binomial mass distribution. Hence, the ratio of Equation 5.8 to Equation 5.7 (= R_{binom}) would be 1, if the mass distribution within N₂O is binomial. Thus it appears that non-hybrid N₂O generated by one N source with the ¹⁵N mole fraction a exhibits an R_{binom} value of 1. This can be easily proven if the ratio of Equation 5.8 to Equation 5.7 is further simplified to Equation 5.9. Equation 5.9 $$R_{binom} = \frac{c_{binom}}{c} = \frac{\alpha_{45}}{2c(1-c)}$$ It follows that R_{binom} can be expressed as the measured α_{45} divided by the expected α_{45} when a binomial mass distribution within N₂O is assumed (= 2c[1-c]). Since here the measured mole fraction of α_{45} will correspond to the expression 2c(1-c), the resulting R_{binom} value will be 1. However, if non-hybrid N₂O is generated simultaneously by two different N sources (e.g. N₂O formation by NH₂OH conversion and simultaneous denitrification of NO₂) with the ¹⁵N mole fraction a and b ($a \neq b$), respectively, the resulting mass distribution within the mixture of both N₂O species will be non-binomial (non-random) (Hauck et al., 1958; Hauck and Bouldin, 1961). Hence, if Equation 5.9 is applied to this N₂O gas mixture the R_{binom} value will be different to 1. To estimate the impact of mixing both N₂O species on the R_{binom} value Equation 5.9 was rearranged as the difference of the numerator and the denominator. Equation 5.10 $$\alpha_{45} - 2c(1-c)$$ $\begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$ Thus it appears that R_{binom} will be (i) >1, if Equation 5.10 is >0, (ii) <1, if Equation 5.10 is <0, and (iii) =1, if Equation 5.10 is 0 (i.e. indicates binomial mass distribution). Since prior to mixing both non-hybrid N₂O species are generated based on a binomial mass distribution (as described above) the required α_{45} and c of the N₂O gas mixture can be expressed as follows. Equation 5.11 $$\alpha_{45} = 2x(1-a)a + 2(1-x)(1-b)b$$ Equation 5.12 $$c = x[(1-a)a + a^2] + (1-x)[(1-b)b + b^2]$$ The term x and 1-x represent the fraction (0 to 1) of the two non-hybrid N_2O species on the total N_2O gas mixture and a and b represent the ¹⁵N mole fraction of the two different N sources. If α_{45} and c of the N_2O gas mixture (Equation 5.11 and 5.12) are introduced into Equation 5.10 the resulting Equation 5.13 Equation 5.13 $$2x(b-a)^2(x-1) \le 0$$ proves that the difference of the measured α_{45} and the expected binomial α_{45} (= 2c[1-c]) will be always <0 if two non-hybrid N₂O species simultaneously arise (i.e. 0 < x < 1) from two differently labeled N sources (i.e. $a \ne b$). Hence, the R_{binom} value of such a non-hybrid N₂O gas mixture will be always <1. Otherwise, R_{binom} will be 1 (i.e. indicates binomial mass distribution), if only one N source contributes (x = 1 or x = 0) or the ¹⁵N mole fraction of both N sources are equal (a = b). If a hybrid N₂O species is generated by two different N sources (e.g. NH₂OH + NO₂) with the ¹⁵N mole fraction a and b ($a \neq b$), respectively, α_{44} , α_{45} , and α_{46} can be expressed as follows: (i) $\alpha_{44} = (1-a)(1-b)$; (ii) , $\alpha_{45} = (1-a)b + (1-b)a$; (iii) $\alpha_{46} = ab$; and (iv) (1-a)(1-b) + (1-a)b + (1-b)a + ab = 1 (Clough et al., 2001). Thus it appears that a hybrid N₂O species will generally exhibit a non-binomial (non-random) mass distribution as long as the ¹⁵N mole fraction of the related N sources are different (i.e. $a \neq b$). Hence, if Equation 5.9 is applied the resulting R_{binom} value will be also different to 1. Based on the analytical expressions given by Clough et al. (2001) α_{45} and c of a hybrid N₂O gas species can be expressed as follows. Equation 5.14 $$\alpha_{45} = (1-a)b + (1-b)a$$ Equation 5.15 $$c = \frac{(1-a)b + (1-b)a}{2} + ab$$ Introducing both equations into Equation 5.10 results in Equation 5.16, Equation 5.16 $$\frac{1}{2}(a-b)^2 \ge 0$$ which proves that in a hybrid N_2O species the difference of the measured α_{45} and the expected binomial α_{45} (= 2c[1-c]) will always be >0 as long as the ¹⁵N mole fraction of the related N sources are different (i.e. $a \neq b$). Hence, the R_{binom} value will always be >1, if hybrid N_2O is generated by two differently labeled N sources (maximally 1.99, assuming a = 0.00366 and b = 0.99). If hybrid N₂O, originating from two N sources with the ¹⁵N mole fraction a and b ($a \neq b$), is simultaneously released with non-hybrid N₂O, originating from the N source with the ¹⁵N mole fraction b (e.g. codenitrified N₂O from NH₂OH and ¹⁵NO₂ and denitrified N₂O from ¹⁵NO₂), then α_{45} and c of the resulting N₂O gas mixture can be expressed as follows, Equation 5.17 $$\alpha_{45} = x[(1-a)b + (1-b)a] + 2(1-x)(1-b)b$$ Equation 5.18 $$c = x \left[\frac{(1-a)b + (1-b)a}{2} + ab \right] + (1-x) \left[(1-b)b + b^2 \right]$$ where x and 1-x represent the fraction (0 to 1) of hybrid and non-hybrid N_2O on the total N_2O gas mixture and a and b represent the ^{15}N mole fraction of the two related N sources. Introducing both equations into Equation 5.10 results in Equation 5.19. Equation 5.19 $$\frac{1}{2}x^2(b-a)^2 \ge 0$$ which proves that the difference of the measured α_{45} and the expected binomial α_{45} (= 2c[1-c]) will always be >0 as long as the ¹⁵N mole fractions of both related N sources are different and x (fraction of hybrid N₂O) is >0. Hence, R_{binom} will always be >1 if a non-hybrid N₂O species is mixed with a hybrid N₂O species (if $a \neq b$). Recapitulatory, it can be concluded that non-hybrid N_2O generated by one N source will always exhibit a R_{binom} value of 1 and that a mix of non-hybrid N_2O gas simultaneously generated by two differently labeled N sources will always exhibit an R_{binom} value of <1. On the other hand, the R_{binom} value of a hybrid N_2O species generated by two differently labeled N sources will always be >1, even if a non-hybrid N_2O species simultaneously generated by one of these N sources is mixed in. From this it follows that the R_{binom} value of an N_2O gas mixture, which arises from two differently labeled N sources (e.g. NH_2OH and N_2O by non-hybrid N_2O formation and simultaneous hybrid N_2O formation (e.g. non-hybrid N_2O formation by NH_2OH conversion, non-hybrid N_2O formation by denitrification of NH_2OH and N_2O formation by codenitrification of NH_2OH and N_2O formation by codenitrification of NH_2OH and N_2O formation by shift towards <1 when both non-hybrid N_2O species prevail or (ii) tend to shift towards >1 when the hybrid N_2O gas species dominates or one of the non-hybrid N_2O species is marginal. From this it follows that an R_{binom} value of >1 clearly proves a contribution of a hybrid N_2O species, while a value of <1 does not exclude a hybrid N_2O species. Figure 5.6 Composition of an N_2O gas mixture with an a R_{binom} value of 1 that consists of one hybrid N_2O species and two non-hybrid N_2O species formed by two nitrogen sources with the ¹⁵N mole fraction a and b. However, this also implies that under particular conditions a mixture of two non-hybrid N_2O species and one hybrid N_2O species (as described) can also exhibit an R_{binom} value of 1 (i.e. their mass distribution is binomial). In this case the R_{binom} value of the gas mixture would simulate a non-hybrid N_2O species formed by only one N source. Empirically it was found that the mass distribution within such a N_2O gas mixture follows a binomial function ($R_{binom} = 1$), if the relation of the absolute gas amounts delivered by each of the three pathways is according to Equation 5.20, Equation 5.20 $$R_{binom} = 1$$; if $XY = \frac{1}{4}Z^2$ where X and Y, respectively, represent the amount of the two non-hybrid N_2O species and Z represents the amount of hybrid N_2O (total gas amount of the N_2O gas mixture = X + Y + Z). Setting Y to a fixed value of 1 and using a theoretical amount for Z allows the calculation of X and hence, the determination of the individual
contribution of each pathway on the total N_2O gas mixture required to retain a binomial mass distribution (i.e. $R_{binom} = 1$). In order to visualize this interrelation a wide range of Z values $(10^{-2} \text{ to } 10^{+3})$ was applied. Plotting the calculated contribution of hybrid N_2O versus the ratio of X/Y reveals a log normal relation (Figure 5.6). The curve describes the composition of an N_2O gas mixture which exhibits a binomial mass distribution ($R_{binom} = 1$), but actually consists of two non-hybrid and one hybrid N_2O gas species generated by two differently labeled N sources ($a \neq b$) as described above. The R_{binom} value will always be >1, if the contribution of hybrid N_2O gas stays above the curve. Otherwise, R_{binom} will always be <1, if the contribution of hybrid N_2O gas remains below the curve. Thus it appears that a hybrid N_2O formation can always be proven, if its current contribution to the total N_2O gas mixture accounts for >50 %. In addition, it can be concluded that hybrid N_2O production can also be proven at a contribution ≤ 50 %, if the ratio of non-hybrid N_2O formed by the two differently labeled N sources ($a \neq b$) differs from 1. # 6. Concluding discussion The process of codenitrification appears to be one of the most interesting processes of microbial nitrogen transformation inasmuch as it permits a variety of organic (e.g. amines) and inorganic (e.g. NH₄⁺) nitrogen species to be co-metabolised to N₂O and N₂ in the course conventional denitrification. The thorough literature review given in chapter 2 revealed that codenitrification has to be considered as a ubiquitous pathway of microbial nitrogen transformation. It was found that codenitrification is not only significant for fungal denitrification, as originally assumed by Tanimoto et al. (1992), but is performed by a variety of denitrifying species of all three domains: archaea, bacteria, and eukarya (kingdom fungi). Hence, one would expect that codenitrification plays a significant role for microbial nitrogen cycling in the biosphere. However, in spite of the fact that codenitrification was already described two decades ago (Shoun et al., 1992; Tanimoto et al., 1992) it remained almost unconsidered by the scientific community. Even today a tremendous gap of knowledge exists and thus, profound research is required to further elucidate its impact on microbial nitrogen cycling in the biosphere. The author hopes that the present doctoral thesis gives new perspectives for future research on codenitrification and may help to deepen our knowledge of this intriguing microbial process. # 6.1. 15N-aided analysis of hybrid N2O/N2 formation by codenitrification Investigations on microbial N_2O and N_2 production due to denitrification and concomitant codenitrification are in general restricted by two major constraints: (i) a quantification of N_2 formation related to microbial nitrogen transformation and (ii) a differentiation of denitrified non-hybrid N-N gas and simultaneously codenitrified hybrid N-N gas. It was recently pointed out by Groffman et al. (2006) that (in contrast to N₂O) the microbial production of N2 is extremely difficult to quantify. While N2O occurs only in trace amounts within the earth's atmosphere, the latter species represents its major component (78.08 vol.% N₂). Thus, a determination of microbial N₂ formation is still today one of the main methodological challenges concerning a comprehensive investigation of nitrogen cycling in the biosphere. Direct measurements of microbial N2 formation can only be carried out in an artificial atmosphere "free of" atmospheric N2. This type of N2 determination was realised by a few studies, which applied a gas flow soil core technique (steady state condition) with an artificial atmosphere for sample incubation (Swerts et al., 1995; Scholefield et al., 1997a; Butterbach-Bahl et al., 2002; Cardenas et al., 2003; Mander et al., 2003). However, in order to differentiate denitrified non-hybrid N-N gas from simultaneously codenitrified hybrid N-N gas an additional application of a 15N tracer technique is required. Therefore, in the present doctoral thesis a gas flow soil core technique was coupled online to a GC-MS system (GC 5890 Series II; HP - Agilent, USA / ConFlow IRMS - delta S; Thermo-Finnigan MAT, Bremen, Germany) to allow an isotopic analysis of released N-N gases (see chapter 3). To permit a simultaneous gas sampling for N₂O and N₂ a cryoenrichment technique was used for both gases. While N2O was sampled by freezing out with liquid dinitrogen as already described elsewhere (e.g. Speir et al., 1995; Sich and Russow, 1998), N2 was sampled by a new approach using the dinitrogen selective molecular sieve Köstrolith SX6® cooled with liquid dinitrogen. The novel incubation system exhibits a number of advantages which are important for detailed studies on microbial N2O and N2 production. First, the isotopic analysis of N₂O and N₂ allows an application of the ¹⁵N tracer technique and thus a process-related study of nitrogen gas production (e.g. by denitrification and concomitant codenitrification) by using ¹⁵N tracer models. Second, the current detection limits concerning N₂ flux determination are significantly decreased due to the 15N aided differentiation from atmospheric N2 contamination. In contrast to a ¹⁵N assisted offline steady state approach as e.g. published by Ruser et al. (2006), an online determination of soil N2 release allows a distinctively higher sampling frequency. In contrast to non-steady state approaches (e.g. Malone et al., 1998; Bergsma et al., 2001; Stevens and Laughlin, 2001a) the system also allows a continuous determination of soil N₂ and N₂O release for long incubation periods without disturbing the gas headspace of incubated samples. The cryoenrichment sampling of N₂O and N₂ permits a very precise determination of the gas release rates based on a single gas analysis (sampled N amount per time of capturing). However, due to the fact that the developed gas flow soil core technique (including 15N isotope analysis) is rather complex and difficult to automate it suffers from a high work load. Nonetheless, it can be clearly concluded from chapter 3 that the developed incubation system represents an adequate laboratory method for comprehensive studies on N2O and N2 formation in the course of different but simultaneously occurring microbial nitrogen transformation processes (e.g. denitrification and concomitant codenitrification). The 15N tracer technique has been used since decades in order to elucidate the pathways of nitrogen transformation in different environments (e.g. Faust et al., 1981; Faust, 1993), in particular concerning the formation of gaseous nitrogen species such as N₂O and N₂ (e.g. Siegel et al., 1982; Russow et al., 2008). Based on the principles of random and non-random isotope distribution within a dinitrogen gas species (Hauck et al., 1958; Hauck and Bouldin, 1961) a variety of ¹⁵N approaches has been developed for a process related determination of N2O and N2 formation in the course of common denitrification (e.g. Mulvaney and Boast, 1986; Arah, 1992; Russow et al., 1996; Khalil et al., 2004). However, until now a concomitant release of hybrid N2O or hybrid N2 in the course of denitrification was never considered by these former ¹⁵N tracer models. It is demonstrated in chapter 4 (see Figure 4.3) that these former approaches will in fact fail when hybrid N₂O/N₂ is formed simultaneously with non-hybrid N₂O/N₂. As shown in chapter 2 a simultaneous release of non-hybrid and hybrid N-N gas due denitrification and concomitant codenitrification was already reported for a variety of denitrifying species. Thus a hybrid N-N gas formation should be always taken into account when a nitrogen gas release under denitrifying conditions has to be studied. Moreover, it appears obvious that the tremendous gap of knowledge concerning hybrid N₂O and hybrid N2 formation is mainly due to a lack of applicable methods which would in general allow the study of codenitrification. Thus, a novel type of 15N tracer model was urgently required and was therefore developed within this doctoral thesis (see chapter 4). This type of analytical ¹⁵N tracer model was originally designed for an investigation of hybrid N₂ formation in course of anaerobic ammonium oxidation (van de Graaf et al., 1990), which was also shown to occur simultaneously with non-hybrid denitrified N2 (Thamdrup and Dalsgaard, 2002; Dalsgaard et al., 2003; Kuypers et al., 2003; Rysgaard et al., 2004; Dalsgaard et al., 2005). However, as demonstrated in chapter 4 this ¹⁵N tracer model can also be used for an investigation of hybrid N-N gas formation in the course of codenitrification. For that purpose the model was adapted (chapter 5) to consider two different nitrogen sources (e.g. NH₂OH and NO₂), where each source separately generates non-hybrid N-N gas (e.g. by NH₂OH decomposition and denitrification) and simultaneously both sources are combined to hybrid N-N gas species (e.g. by codenitrification). Based on the developed soil incubation system (chapter 3) and the adapted ¹⁵N tracer model (chapter 4 and 5) an experimental study was conducted to evaluate the applicability of both approaches concerning studies on hybrid N-N gas production due to codenitrification. A suspended soil (Haplic Chernozem, Agricultural Research Site Bad Luchstädt) was incubated under conditions favourable for denitrification and tested for a hybrid N₂O production by codenitrification of NH₂OH (chapter 5). Until now, a hybrid N₂O production by codenitrification of NH₂OH was reported by only a few studies, which have been conducted on a microbial species level or by using purified enzymes (Iwasaki and Mori, 1958; Renner and Becker, 1970; Matsubara, 1970; Garber and Hollocher, 1982b; Kim and Hollocher, 1984; Aerssens et al., 1986). It was found within the present
doctoral thesis that hybrid N2O formation due to codenitrification of NH2OH can be in fact occur in a (suspended) soil. The hybrid N2O production was predicted by the adapted analytical 15N tracer model. However, even if codenitrification is considered by the novel type of analytical ¹⁵N tracer model, a verification of hybrid N-N gas production still remains a tremendous challenge. This occurs mainly due to the fact that the ¹⁵N abundance of the labelled nitrogen source utilised during e.g. denitrification and simultaneous codenitrification (e.g. NO_2) are difficult to determine. This appears particularly important concerning non-suspended soils considering (i) soil heterogeneity, (ii) sampling procedures, and (iii) a lack of knowledge concerning the effective ¹⁵N abundance of microbially available nitrogen compounds. Therefore, the novel characteristic factor R_{binom} was additionally developed within this thesis (see chapter 5.7.1.). The R_{binom} factor permits an identification of hybrid N-N gas formation solely based on the mass distribution of an N-N gas species (e.g. α_{44} , α_{45} , and α_{46}). Hence, based on the same experimental ¹⁵N data of a released N-N gas species the R_{binom} value allows an easy identification of hybrid N-N gas production without the need of delivering additional data concerning the ¹⁵N abundance of related nitrogen sources (e.g. NH_2OH and NO_2). As shown in chapter 5 the R_{binom} value was successfully applied to identify hybrid N_2O production and hence, it can be easily used to pre-evaluate the results of a ¹⁵N tracer experiment concerning an occurrence of hybrid N-N gas production during soil incubation. Even if codenitrification was provoked by artificially high NH₂OH concentrations it can be clearly concluded that the used Haplic Chernozem soil exhibits the capability to perform codenitrification, i.e. inhabits microbial species which allow a hybrid N₂O formation due to codenitrification. Therefore, it is proposed here that the approach presented in chapter 5 could be applied as a general screening tool for evaluating the capability of a soil to perform codenitrification. Recapitulatory, it can be concluded that all developed experimental and mathematical methods (chapter 3 to 5) represent promising tools for future studies on hybrid N_2O and hybrid N_2 formation due to codenitrification. ## 6.2. Considerations on codenitrification in the biosphere #### 6.2.1. Terrestrial environments The literature review (see chapter 2) reveals that the process of codenitrification should be considered as a ubiquitous pathway of microbial N transformation in terrestrial environments. However, until now only two studies effectively demonstrated N-N gas production due to codenitrification beyond a microbial species level. Laughlin and Stevens (2002) reported that soil N₂ formation in a Typic Dystrochrept (acidic brown earth) was clearly dominated by fungi species, which largely produced hybrid N2 due to codenitrification. In addition, it was shown in this doctoral thesis (see chapter 5) that codenitrified hybrid N₂O is produced in a soil (suspension of a Haplic Chernozem) when high quantities of NH₂OH are simultaneously supplied with NO₃ under conditions favourable for denitrification. Besides this, a few studies reported N transformation phenomena, which have been discussed by the authors as caused by codenitrification. Kammann et al. (2008) reported a higher soil N₂O release in a permanent grassland soil when treated with an artificially elevated atmospheric CO2 concentration. It was assumed that the increased CO₂ level enhanced the formation of labile organic N compounds and resulted in a shift towards a more organic N based N transformation. They concluded that the increased N₂O formation was due to enhanced codenitrification activity caused by a continuously growing fungal biomass. Roobroeck et al. (2010) recently reported "excess" N-N gas production in a peat soil (highly productive sedge monolith fen ecosystem) after nitrate addition, which was interpreted by them as apparently caused by codenitrification. Beyond that studies have revealed that the intramolecular distribution of ^{15}N in soil N_2O (i.e. $^{1}\delta^{15}N$ -²δ¹⁵N–O) can exhibit considerable differences (Yamulki et al., 2001; Perez et al., 2001; Bol et al., 2003) and thus may provide evidences that the N-N linkage within N₂O originates from two different N compounds (i.e. formation of hybrid N₂O gas). Wilson et al. (2006) observed considerable differences in the intramolecular isotopic signature of N₂O released from a field of maize irrigated by piggery waste. They concluded that the most likely mechanism was a bacterial/fungal codenitrification in the presence of both NO₃ and NH₃ under anaerobic, nutrient rich conditions. Meijide et al. (2010) reported isotopomer anomalies within N_2O released from an arable soil (Chromic Luvisol), which was also considered to be related to codenitrification activity. However, as recently pointed out by Well and Flessa (2009) the intramolecular distribution of ^{15}N in soil N_2O is affected by a variety of N transformation processes and therefore, the interpretation of these data has to be done with caution. In order to gets an estimate concerning the relevance of codenitrification in terrestrial ecosystem, natural availability of suitable nucleophiles (e.g. NH₂OH, primary amines) and reaction kinetics of denitrification/codenitrification can be used. According to the sequential reaction scheme of denitrification (see chapter 2.1.3) N-N gas production by denitrification and simultaneous codenitrification can be considered as a competing reaction on the enzymatic nitrosyl intermediate between NO/NO₂ on the one side and codenitrification related nucleophiles (e.g. primary amines) on the other side (e.g. Weeg-Aerssens et al. 1987/1988). As reported elsewhere (e.g. Kim and Hollocher, 1984; Conrad, 1996; Zumft, 1997; Su et al. 2004) K_m values of NO₂ and NO reduction are largely in the nM to μM range, while microbial nitrosation of codenitrification related nucleophiles exhibit K_m values in the mM range (see chapter 2.3.4). Significant codenitrification rates should be therefore only occur if the concentration of natural nucleophiles is at least one or more orders of magnitude higher as compared to their competitors NO₂ and NO, respectively. In fact, in most studies summarised in Table 2.1 co-metabolisable nucleophiles have been supplied at very high concentrations (100 to 103 mM). However, since NO2 and NO generally occur at very low concentrations in soils (nM to µM range) (Van Cleemput and Samater 1996; Ludwig, et al., 2001; Rammon and Peirce, 2002), hybrid N-N gas production via codenitrification can be considered as of ecological relevance if suitable nucleophiles occur in µM to mM range. The nucleophile NH₂OH appears to be particularly interesting inasmuch as it represents an already well known intermediate compound of aerobic ammonia oxidation (i.e. nitrification) (e.g. Lees, 1952; Verstraete and Alexander, 1972). In addition, NH₂OH has also been proven to be directly involved in soil N₂O formation via nitrification (Khalil et al., 2004) as well as via abiotic NH2OH decomposition (Bremner et al., 1980; Nelson, 1982). Regarding studies where NH₂OH has been artificially added to microorganisms (e.g. Garber and Hollocher, 1982b; Kim and Hollocher, 1984; Weeg-Aerssens et al. 1987/88; Goretski and Hollocher 1991) or soil (see chapter 5) codenitrification contributed with up to 98 % to the total microbial N2O gas release. Considering NH2OH as a naturally occurring nucleophile, however, a hybrid N₂O production by codenitrification in terrestrial environments appears to be rather unlikely for obvious reasons. NH₂OH is a highly reactive species and assumed to occur naturally at only very low concentrations (≤nM range) in soils. To the best of our knowledge no study dealing with soil NH₂OH content is currently available. Our own analytical efforts to determine the natural NH2OH content in a Haplic Chernozem soil have been unsuccessful (unpublished). It is known that NH₂OH remains stable only in the cationic form (i.e. at pH < 5), while in soils at around neutral pH (optimal for microbial N-nitrosation) it decomposes rapidly (von Breymann et al., 1982; Seike et al., 2004). However, as shown by Weeg-Aerssens et al. (1988) at a decreasing availability of organic substrates (required as electron donors for heterotrophic denitrification) the codenitrification/denitrification ratio increases significantly. Since NH₂OH has been demonstrated to act as electron and N donor during microbial N-nitrosation (Iwasaki and Mori, 1958; Matsubara, 1970; Garber and Hollocher, 1982b, Weeg-Aerssens et al., 1988; Su et al., 2004) hybrid N₂O production in soils by codenitrification of NH₂OH might be therefore of higher relevance in C-limited environments. Besides NH₂OH, primary amine compounds (e.g. amino acids) appear to be a far more relevant source of hybrid N-N gas production in soils. According to Stevenson (1982) amino acids represent one of the major pools of soil organic N. Thorn and Mikita (2000) proved that at least abiotic nitrosation is directly related to the quality of soil organic matter. While Nnitrosation occurred in a peat humic acid with a considerable elemental N content (≈4%), in humic or fulvic acids with a significantly lower N content (<1%) N-nitrosation did not occur at all. Jones et al. (2002) reported that across 6 different soil types in Ireland (e.g. Placic podzol, Dystric histosol) free amino acids accounted for 10-40% of the total soluble N in the soil solution. The average soluble N concentrations of amino acids were $24 \pm 8 \mu M$. Senwo and Tabatabai (1998) found that the N content of amino acids extracted from different cultivated soils (e.g. Typic hapludalf, USDS Soil Taxonomy) ranged from 32% to 50% of total
organic N, whereby total amino acid N accounted for up to 300 mg kg⁻¹ soil. Similar results have been published by McLain and Martens (2005) who reported high contents of primary amines (amino acids and amino sugars) in a semiarid soil (Typic Torrifluvents, USDS Soil Taxonomy). Considering the average content of e.g. NO₂ in soils (0.1 mg NO₂-N kg-1 soil; Van Cleemput and Samater, 1996) a formation of hybrid N₂ by codenitrification is therefore very likely from a kinetic point of view. Hence, it appears less surprising that hybrid N-N gas production in a soil without adding co-metabolisable nucleophiles, as only shown by Laughlin and Stevens (2002), revealed hybrid N₂ formation (92 % of total soil N₂ release), while simultaneously released N₂O resulted from denitrification only. Besides primary amines also NH₃ is already known to undergo microbial N-nitrosation resulting in hybrid N₂ formation (Kim and Hollocher, 1984). Inasmuch as NH3 is already well known to act as the key substrate of the nitrification process (e.g. Arp and Stein, 2003), it has to be equally considered as a suitable nucleophile for hybrid N2 gas production in soils. However, based on its equilibrium reaction with its hydrogenated form NH₄⁺ (Da Silva et al., 2007) it occurs at only small concentrations in soils with neutral pH conditions. Even if NH₄⁺ is known to occur at considerable concentrations in soils (µM range e.g. Jones et al., 2002) significant hybrid N₂ production via NH₃ will be hampered by its low equilibrium concentration. A few studies demonstrated that also NH₄⁺ is apparently utilised during codenitrification resulting in hybrid N₂O formation (Tanimoto et al., 1992; Immoos et al., 2004; Su et al., 2004). Although the biochemical origin of hybrid N₂O/N₂ gas production via NH₄⁺/NH₃ still needs to be clarified, it appears that NH₄⁺ might represent a more relevant N compound for hybrid N-N gas production in soils than NH₃. Even if a few studies imply that codenitrification could be a significant process of microbial N turnover, the effective contribution of codenitrification on N-N gas release from terrestrial environments still remains hidden. Müller et al. (2006) suggested that codenitrification might be important in ecosystems characterised by established community structures of fungi and bacteria and a closed N cycle, as for instance occurring in permanent grassland or undisturbed forest soils. ## 6.2.2 Aquatic environments To the best of our knowledge codenitrification has never conclusively been proven to occur in aquatic environments. However, inasmuch as denitrification is already known to be widely distributed within marine, lacustrine, and fluvial ecosystems (e.g. Pina-Ochoa and Alvarez-Cobelas, 2006), one could assume that codenitrification occurs equally in aquatic environments. For example Bol et al. (2004) revealed that the intramolecular isotopic distribution of ¹⁵N in N₂O (i.e. ¹δ¹⁵N-²δ¹⁵N-O) released from estuarine soil under flooded conditions significantly differed from non-flooded conditions. While the ²δ¹⁵N value revealed almost no distinct differences between flooded (-11.6 to 16.0⁰/₀₀) and non-flooded conditions $(-14.6 \text{ to } 9.6^{-0})_{00}$, the $^{1}\delta^{15}N$ value ranged from -52.4 to -7.3 0 /₀₀ under flooded and -16.7 to -6.1% under non-flooded conditions, respectively. This was interpreted by them as an unidentified pathway of N2O production, possibly related to nitrification or nitrifierdenitrification. However, considering the hybrid character of codenitrified N2O the observed intramolecular differences could equally reflect the isotopic abundance of two different N sources (e.g. NO₂ and NH₂OH). More recently, Erler et al. (2008) reported unusually high production of 14,15N2O relative to 15,15N2O when an intact sediment core (surface flow constructed wetland) was labelled with ¹⁵NO₃. They concluded that nitrifier-denitrification (see Poth and Focht, 1985) was responsible for the observed anomaly. However, another possible explanation might be N₂O production via biotic N-nitrosation, where e.g. ¹⁵NO₂ (from denitrification of ¹⁵NO₃⁻) reacts with ¹⁴NH₂OH gained from ¹⁴NH₃ oxidation (i.e. nitrification). It was in fact already demonstrated by Schmidt et al. (2004b) that during the oxidation of NH3 by a mutant of Nitrosomonas europaea high quantities of NH2OH are released. Moreover, the present doctoral thesis demonstrated hybrid N₂O production by codenitrification in a soil suspension, when high quantities of NH2OH are added during active denitrification (see chapter 5). Even if these reports do not prove codenitrification in aquatic ecosystems, they at least provide some hints that it may occur also here. As already discussed in the former section most promising nucleophiles for hybrid N-N gas formation under natural conditions are NH₂OH, NH₄⁺/NH₃, and primary amines (e.g. amino acids naturally occurring in organic matter). Considerable NH₂OH concentrations (up to 50 μg N L⁻¹; μM range) have been at least reported for aquatic environments such as reed beds (Seike et al., 2004). In general, concentrations of NH₂OH in aquatic ecosystems occur at the nM range (e.g. Pittwell, 1975, Schweiger et al., 2007) and hence, NH₂OH might be less significant for hybrid N2O formation in most aquatic environments. Considering amino compounds, however, a variety of aquatic ecosystems (largely marine) have been shown to exhibit suitable concentrations (µM range) for microbial N-nitrosation reactions via codenitrification (e.g. Henrichs and Farrington, 1979; Lee, 1988; Suttle et al. 1991; Munster, 1993). Most of it originates from organic matter which is formed within the surface water and then deposits on the sediment. Lee (1988) pointed out that amino acids represent one quarter of the particulate organic carbon and half of the particulate organic nitrogen in marine surface waters. According to Henrichs and Farrington (1979) within marine sediment pore water the amino acid concentration can rise to 1 mg L⁻¹. Therefore, in aquatic environments naturally occurring primary amines appear to be of high significance as potential substrates for a hybrid N₂ production via codenitrification. Similarly, also NH₄⁺/NH₃ have to be considered as biorelevant nucleophiles for hybrid N-N gas formation via codenitrification. Instead of codenitrification, however, the process of anaerobic ammonium oxidation (anammox) was shown to be a major NH₄⁺ utilising process within aquatic ecosystems (Jetten et al., 2005; Op den Camp et al., 2006). During the anammox process a NH₄⁺-N and a NO₂⁻-N are microbially linked and finally converted to hybrid N₂ gas (van de Graaf et al., 1995). The principle reaction scheme was already postulated in 1977 by Broda and proceeds in the sense of an N comproportionation (see chapter 2.1.1). From this it follows that N2 gas production by the anammox process appears to be similar to the codenitrification process. In contrast to codenitrification, however, the anammox process was shown to be only performed by particular non-denitrifying species of the phylum Planctomycetes (Kuenen, 2008). Nonetheless, Strous et al. (2006) recently reported that anammox bacteria (e.g. Kuenenia stuttgartiensis) exhibit an enzyme type of cytochrome cd1 NIR, which is in fact already known to perform biotic N-nitrosation in the course of denitrification (Averill, 1996; Kim and Hollocher, 1984; Weeg-Aerssens et al., 1988). Based on the denitrifying enzyme a novel reaction pathway for the anammox process has been postulated by Strous et al. (2006) (Figure 6.1). First, NO_2^- is reduced to NO by the cd_1 NIR and then a hydrazine synthase is assumed to catalyse the hybrid N-N linkage between NO and NH₄⁺ resulting in the production of N₂H₄. Second, N₂H₄ is oxidised to N₂ gas by a hydrazine dehydrogenase (Karlsson et al., 2009; Strous et al., 2006). If we assume that the N-N linkage during anammox occurs due to biotic N-nitrosation of NH₄⁺ by NO, the reaction should actually occur via an enzymatic metal-NOcomplex formed by the hydrazine synthase (Figure 6.1). Figure 6.1 Postulated reaction scheme of anaerobic oxidation of NH_4^+ with NO_2^- to N_2 (after Fuchs and Schlegel, 2007; modified). However, according to former reports on biotic N-nitrosation via denitrification (Averill, 1996; Kim and Hollocher, 1984; Weeg-Aerssens et al., 1988) a cd_1 NIR can equally act as a nitrosating agent by either using NO_2^- or NO as the nitrosyl donor. Moreover, hybrid N_2 formation by a cytochrome cd_1 NIR (purified from *Pseudomonas aeruginosa*) due to an N-nitrosation of NH_3 with NO_2^- was in fact already demonstrated by Kim and Hollocher (1984). By contrast, however, an N-nitrosation of its protonated form (i.e. NH_4^+) during codenitrification was reported to result in hybrid N_2O production (Tanimoto et al., 1992; Immoos et al. 2004; Su et al., 2004). Even if the anammox pathway is already thoroughly studied (Francis et al., 2007; Strous et al., 2006; van der Star et al., 2008), it appears promising to further elucidate to what extent anammox and codenitrification can be viewed as analogue processes of microbial N transformation. ## 6.2.3. Nitrogen immobilisation due to biotic nitrosation As pointed out by Williams (2004) abiotic nitrosation reactions via NO₂ are in general rather complex, but always result in either N gas liberation or N immobilisation. Thorn and Mikita (2000) demonstrated that abiotic nitrosation of soil humic substances (e.g. secondary aliphates, aromates, and amides) by NO₂ can occur on aromatic C, methylene C, or an N atom. Depending on the reacting nucleophile and its specific binding site, NO₂-N is either released in the form of N gas or immobilised by fixation onto soil organic compounds. Also Van Cleemput and Samater (1996) reported the build up of soil organic N species (e.g. nitroand nitroso compounds) due to abiotic nitrosation of phenolic soil compounds via NO₂. Similar results have
also been published earlier by Bremner and Fuhr (1966) and Smith and Chalk (1980). As suggested by Garber and Hollocher (1982b) biotic metal-nitrosyl species (e.g. denitrifying enzymes; see chapter 2.1.2 and 2.1.3), which catalyse the codenitrification process, can also act as nitrosyl donors to a variety of N-, O-, S-, and C-nucleophiles. Hence, one could expect that during microbial nitrosation also N immobilisation might occur (e.g. by C-nitrosation of phenols). In fact, a variety of microbial species have already been proven to perform nitrosation reactions without N gas formation, but with different nitrosamine species as the reaction products (Mills and Alexander, 1976; Calmels et al., 1985; Leach et al., 1987; Stamler et al., 1992). It was shown (e.g. Leach et al., 1987; Calmels et al., 1996) that biotic nitrosation of heterocyclic amines (e.g. morpholine) by Echerichia coli and Pseudomonas aeruginosa resulted in immobilisation of NO₂-N in the form of nitroso compounds. Mills and Alexander (1976) reported a formation of dimethylnitrosamine upon biotically mediated nitrosation of dimethylamine by P. stutzeri and E. coli, respectively. Kunisaki and Hayashi (1979) proved an enzymatically initiated N immobilisation due to a nitrosation of secondary amines (e.g. piperidine) by E. coli. Thus it appears that during N cycling in the biosphere biotic nitrosation reactions mediated by denitrifying species might even contribute to N immobilisation. Davidson et al. (2003) already underlined that our understanding of the mechanism by which inorganic N in form of NO₃ and NO₂ is immobilised in soils still appears to be insufficient. They pointed out that at least under acidic conditions (e.g. forest soils) abiotic nitrosation might significantly contribute to N immobilisation in soils. Since biotic nitrosation was shown to occur optimally around neutral pH conditions (see chapter 2.3.2), it appears likely that codenitrification may act as an important pathway of N immobilisation within many ecosystems. Nitrogen immobilisation due to biotic nitrosation was also observed under aerobic conditions in the course of conventional nitrification (e.g. Azhar et al., 1986; Verhaegen et al., 1988; Azhar et al., 1989a; Azhar et al., 1989b). Despite the fact that until now no conclusive evidence of hybrid N-N gas formation via nitrification was delivered, observed N immobilisation seems to indicate the existents of a co-metabolic nitrification process (i.e. conitrification) as an aerobic analogue to codenitrification. Azhar et al. (1986) reported that during nitrification N bonding onto soil organic matter occurred due to a nitrosation reaction via the nitrification intermediate NO₂⁻ with phenolic compounds (e.g. 1-naphtol). Up to 55% of applied NH₄⁺ was bound on organic matter (within 60 days of incubation) resulting in the build up of plenty of organic species such as amine-, nitroso-, nitro-, azido-, and oxime compounds. By contrast, however, no N immobilisation onto soil organic matter occurred when a nitrification inhibitor (nitrapyrin) was applied or NH₄⁺ was replaced with NO₃⁻. Azhar et al. (1989a) pointed out that in the nitrification mediated nitrosation process NO₂⁻ forming microorganisms are obviously of predominant importance. They even suggested that this microbial process might be an essential pathway for the formation of humic materials in soils due to a coupling of phenols and aromatic amines. Thus, we could draw the conclusion that soil N immobilisation by biotic nitrosation might also occur among nitrifying species which are capable of mediating nitrosation reactions. Nonetheless, there is an urgent need to clarify the impact of codenitrification and even "co-nitrification" on N immobilisation during biospheric N cycling. ## 7. References - Aerssens, E., Tiedje, J.M., Averill, B.A., 1986. Isotope Labeling Studies on the Mechanism of N-N Bond Formation in Denitrification. *The Journal of Biological Chemistry* 261, 9652-9656. - Allen, M.B., van Niel, C.B., 1952. Experiments on Bacterial Denitrification. *Journal of Bacteriology* 64, 397-412. - Anderson,I.C., Poth,M., Homstead,J., Burdige,D., 1993. A Comparison of NO and N₂O Production by the Autotrophic Nitrifier *Nitrosomonas-Europaea* and the Heterotrophic Nitrifier *Alcaligenes-Faecalis*. *Applied and Environmental Microbiology* 59, 3525-3533. - Arah, J.R.M., 1992. New Formulas for Mass-Spectrometric Analysis of Nitrous-Oxide and Dinitrogen Emissions. *Soil Science Society of America Journal* 56, 795-800. - Arp,D.J., Stein,L.Y., 2003. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Critical Reviews in Biochemistry and Molecular Biology 38, 471-495. - Averill, B.A., Tiedje, J.M., 1982. The Chemical Mechanism of Microbial Denitrification. *FEBS Letters* 138, 8-12. - Averill, B.A., 1996. Dissimilatory nitrite and nitric oxide reductases. *Chemical Reviews* 96, 2951-2964. - Azhar, E.S., Verhe, R., Proot, M., Sandra, P., Verstraete, W., 1986. Binding of Nitrite-N on Polyphenols During Nitrification. *Plant and Soil* 94, 369-382. - Azhar, E.S., Van Cleemput, O., Verstraete, W., 1989a. The effect of sodium chlorate and nitrapyrin on the nitrification mediated nitrosation process in soils. *Plant and Soil* 116, 133-139. - Azhar, E.S., Verhe, R., Proot, M., Sandra, P., Verstraete, W., 1989b. Fixation of nitrite nitrogen during the humification of alpha-naphthol in soil suspensions. *Journal of Agricultural and Food Chemistry* 37, 262-266. - Baggs, E.M., 2008. A review of stable isotope techniques for N₂O source partitioning in soils: recent progress, remaining challenges and future considerations. *Rapid Communications in Mass Spectrometry* 22, 1664-1672. - Baggs, E.M., Philippot, L., 2010. Microbial terrestrial pathways to nitrous oxide. In: *Nitrous oxide and climate change*. (ed K. Smith), Earthscan, pp. 256. - Bennett, M.R., Brown, G.M., Maya, L., Posey, F.A., 1982. Oxidation of Hydroxylamine by Nitrous and Nitric-Acids. *Inorganic Chemistry* 21, 2461-2468. - Bergsma, T.T., Ostrom, N.E., Emmons, M., Robertson, G.P., 2001. Measuring Simultaneous Fluxes from Soil of N₂O and N₂ in the Field Using the ¹⁵N-Gas "Nonequilibrium" Technique. *Environmental Science and Technology* 35, 4307-4312. - Berns, A.E., Philipp, H., Narres, H.D., Burauel, P., Vereecken, H., Tappe, W., 2008. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. European Journal of Soil Science 59, 540-550. - Biddle,P., Miles,J.H., 1968. Rate of Reaction of Nitrous Acid with Hydrazine and with Sulphamic Acid Its Application to Nitrous Acid Control in 2-Phase Industrial Systems. *Journal of Inorganic and Nuclear Chemistry* 30, 1291-1297. - Bock, E., Schmidt, I., Stuven, R., Zart, D., 1995. Nitrogen Loss Caused by Denitrifying Nitrosomonas Cells Using Ammonium Or Hydrogen As Electron-Donors and Nitrite As Electron-Acceptor. Archives of Microbiology 163, 16-20. - Bol,R., Toyoda,S., Yamulki,S., Hawkins,J.M.B., Cardenas,L.M., Yoshida,N., 2003. Dual isotope and isotopomer ratios of N₂O emitted from a temperate grassland soil after fertiliser application. *Rapid Communications in Mass Spectrometry* 17, 2550-2556. - Bol,R., Rockmann,T., Blackwell,M., Yamulki,S., 2004. Influence of flooding on delta N-15, delta O-18, (1)delta N-15 and (2)delta N-15 signatures of N₂O released from estuarine soils a laboratory experiment using tidal flooding chambers. Rapid Communications in Mass Spectrometry 18, 1561-1568. - Bollag, J.M., Tung, G., 1972. Nitrous oxide release by soil fungi. *Soil Biology and Biochemistry* 4, 271-276. - Bollmann, A., Conrad, R., 1997. Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide. Soil Biology and Biochemistry 29, 1067-1077. - Bollmannn, A., Conrad, R., 1998. Influence of O₂ availability on NO and N₂O release by nitrification and denitrification in soils. *Global Change Biology* 4, 387-396. - Bosch, E., Kochi, J.K., 1994. Direct nitrosation of aromatic hydrocarbons and ethers with the electrophilic nitrosonium cation. *Journal of Organic Chemistry* 59, 5573-5586. - Bothner-By, A., Friedman, L., 1952. The Reaction of Nitrous Acid with Hydroxylamine. *Journal of Chemical Physics* 20, 459-462. - Bottomley, F., Brooks, W.V.F., Clarkson, S.G., Tong, S.B., 1973. Electrophilic Behavior of Coordinated Nitrosyl Cation. *Journal of the Chemical Society Chemical Communications* 919-920. - Bottomley, F., Clarkson, S.G., Tong, S.B., 1974. Electrophilic behavior of coordinated nitrosyl cation Reactions of pentahalogenonitrosyliridate(1-). *Journal of the Chemical Society Dalton Transactions* 21, 2344-2346. - Brand, J., Huhn, T., Groth, U., Jochims, J.C., 2006. Nitrosation of sugar oximes: Preparation of 2-glycosyl-1-hydroxydiazene-2-oxides. *Chemistry a European Journal* 12, 499-509. - Bremner, J.M., Fuhr, F., 1966. Tracer studies of the reaction of soil organic matter with nitrite. In: *The Use of Isotopes in Soil Organic Matter Study*. Pergamon Press, New York, N.4. - Bremner, J.M., Blackmer, A.M., 1978. Nitrous-Oxide Emission from Soils During Nitrification of Fertilizer Nitrogen. *Science* 199, 295-296. - Bremner, J.M., Blackmer, A.M., Waring, S.A., 1980. Formation of Nitrous-Oxide and Dinitrogen by Chemical Decomposition of Hydroxylamine in Soils. *Soil Biology and Biochemistry* 12, 263-269. - Bremner, J.M., 1997. Sources of nitrous oxide in soils. *Nutrient Cycling in Agroecosystems* 49, 7-16. - Broda, E., 1977. 2 Kinds of lithotrophs missing in nature. Zeitschrift für Allgemeine Mikrobiologie 17, 491-493. - Burford, J.R., Bremner, J.M., 1975. Relationships between the denitrification capacities of soils and total, water-soluble and readily decombosable soil organic-matter. *Soil Biology and Biochemistry* 7, 389-394. - Butterbach-Bahl, K., Willibald, G., Papen, H., 2002. Soil core method for direct
simultaneous measurement of N₂ and N₂O emissions from forest soils. *Plant and Soil* 240, 105-116. - Calmels, S., Ohshima, H., Vincent, P., Gounot, A.M., Bartsch, H., 1985. Screening of microorganisms for nitrosation catalysis at pH-7 and kinetic-studies on nitrosamine formation from secondary-amines by *Escherichia coli* strains. *Carcinogenesis* 6, 911-915. - Calmels,S., Ohshima,H., Henry,Y., Bartsch,H., 1996. Characterization of bacterial cytochrome *cd*₁ nitrite reductase as one enzyme responsible for catalysis of nitrosation of secondary amines. *Carcinogenesis* 17, 533-536. - Cardenas, L.M., Hawkins, J.M.B., Chadwick, D., Scholefield, D., 2003. Biogenic gas emissions from soils measured using a new automated laboratory incubation system. *Soil Biology and Biochemistry* 35, 867-870. - Castignetti, D., Hollocher, T.C., 1981. Vigorous denitrification by a heterotrophic nitrifier of the genus *Alcaligenes*. *Current Microbiology* 6, 229-231. - Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.L., Bernoux, M., 2007. Soils, a sink for N₂O? A review. *Global Change Biology* 13, 1-17. - Clough, T.J., Stevens, R.J., Laughlin, R.J., Sherlock, R.R., Cameron, K.C., 2001. Transformations of inorganic-N in soil leachate under differing storage conditions. Soil Biology and Biochemistry 33, 1473-1480. - Collins-Thompson, D.L., Sen, N.P., Aris, B., Schwinghomer, L., 1972. Non-enzymic in-vitro formation of nitrosamines by bacteria isolated from meat products. *Canadian Journal of Microbiology* 18, 1968-1971. - Conelly, N.G., 1972. Recent developments in transition metal nitrosyl chemistry. *Inorganica Chimica Acta Reviews* 6, 47-89. - Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases. *Microbiological Reviews* 60, 609-640. - Corsaro, A., Chiacchio, U., Pistara, V., 2001. Regeneration of carbonyl compounds from the corresponding oximes. *Synthesis*, 1903-1931. - Da Silva, G., Dlugogorski, B.Z., Kennedy, E.M., 2007. Elementary reaction step model of the N-nitrosation of ammonia. *International Journal of Chemical Kinetics* 39, 645-656. - Daiber, A., Nauser, T., Takaya, N., Kudo, T., Weber, P., Hultschig, C., Shoun, H., Ullrich, V., 2002. Isotope effects and intermediates in the reduction of NO by P450(NOR). *Journal of Inorganic Biochemistry* 88, 343-352. - Dalsgaard, T., Canfield, D.E., Petersen, J., Thamdrup, B., Acuna-Gonzalez, J., 2003. N-2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. *Nature* 422, 606-608. - Dalsgaard, T., Thamdrup, B., Canfield, D.E., 2005. Anaerobic ammonium oxidation (anammox) in the marine environment. *Research in Microbiology* 156, 457-464. - Davidson, E.A., Chorover, J., Dail, D.B., 2003. A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. *Global Change Biology* 9, 228-236. - Davidson, E.A., Seitzinger, S., 2006. The enigma of progress in denitrification research. *Ecological Applications* 16, 2057-2063. - deCatanzaro, J.B., Beauchamp, E.G., 1985. The effect of some carbon substrates on denitrification rates and carbon utilization in soil. *Biology and Fertility of Soils* 1, 183-187. - Delaune, R.D., Lindau, C.W., Sulaeman, E., Jugsujinda, A., 1998. Nitrification and denitrification estimates in a Louisiana swamp forest soil as assessed by ¹⁵N isotope dilution and direct gaseous measurements. *Water Air and Soil Polution* 106, 149-161. - Erler, D.V., Eyre, B.D., Davison, L., 2008. The Contribution of Anammox and Denitrification to Sediment N-2 Production in a Surface Flow Constructed Wetland. *Environmental Science and Technology* 42, 9144-9150. - Ewing, G.J., Bauer, N., 1966. An Evaluation of Nitrogen Losses from Soil Due to Reaction of Ammonium Ions with Nitrous Acid. *Soil Science* 102, 64-69. - Faust, H., Bornhak, H., Hirschberg, K., Jung, K., Junghans, P., Krumbiegel, P., 1981. ¹⁵N-Anwendung in der Biochemie, Landwirtschaft und Medizin Eine Einführung. isocommerz Schriftenreihe Anwendung von Isotopen und Kernstrahlungen in Wissenschaft und Technik, 93 p. - Faust, H., 1993. Advances in N-15 Use for Environmental-Studies in the Soil-Plant System. *Isotopenpraxis* 29, 289-326. - Francis, C.A., Beman, J.M., Kuypers, M.M.M., 2007. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. *The International Society for Microbial Ecology Journal* 1, 19-27. - Freeman, J.P., 1973. Less familiar reactions of oximes. Chemical Reviews 73, 283-292. - Fuchs, G.S., Schlegel, H.G., 2007. Allgemeine Mikrobiologie. 8. ed. Georg Thieme Verlag, Stuttgart. - Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R., Vorosmarty, C.J., 2004. Nitrogen cycles: past, present, and future. *Biogeochemistry* 70, 153-226. - Garber, E.A.E., Hollocher, T.C., 1981. N-15 Tracer Studies on the Role of NO in Denitrification. *The Journal of Biological Chemistry* 256, 5459-5465. - Garber, E.A.E., Hollocher, T.C., 1982a. Positional isotopic equivalence of nitrogen in N₂O produced by the denitrifying bacterium *Pseudomonas stutzeri*. The Journal of Biological Chemistry 257, 4705-4708. - Garber, E.A.E., Hollocher, T.C., 1982b. N-15, O-18 tracer studies on the activation of nitrite by denitrifying bacteria - Nitrite water-oxygen exchange and nitrosation reactions as indicators of electrophilic catalysis. *The Journal of Biological Chemistry* 257, 8091-8097. - Grimbert, L., 1899. Action du Bacillus coli et du Bacillus d'Eberth sur les nitrates. *Annales de L'Institut Pasteur* 13, 67-76. - Grimbert, L., 1900. Action of Bacillus coli and Bacillus D'Eberth on nitrates. *Journal of the Chemical Society Abstracts* 78, 97-98. - Goretski, J., Hollocher, T.C., 1991. Catalysis of nitrosyl transfer by denitrifying bacteria is facilitated by nitrix-oxide. *Biochemical and Biophysical Research Communications* 175, 901-905. - Groffman, P.M., Altabet, M.A., Böhlke, J.K., Butterbach-Bahl, K., David, M.B., Firestone, M.K., Giblin, A.E., Kana, T.M., Nielsen, L.P., Voytek, M.A., 2006. Methods for measuring denitrification: Diverse approaches to a difficult problem. *Ecological Applications* 16, 2091-2122. - Gutierrez, M.M., Alluisetti, G.B., Olabe, J.A., Amorebieta, V.T., 2008. Nitrosation of N-methylhydroxylamine by nitroprusside. A kinetic and mechanistic study. *Dalton Transactions*, 5025-5030. - Hart, H., 1989. Organische Chemie. VHC Verlagsgesellschaft mbH, Weinheim. 458 p. - Hauck, R.D., Melstedt, S.W., Yankwich, P.E., 1958. Use of N-isotope distribution in nitrogen gas in the study of denitrification. *Soil Science* 86, 287-291. - Hauck, R.D., Bouldin, D.R., 1961. Distribution of isotopic nitrogen in nitrogen gas during denitrification. *Nature* 191, 871-872. - Hayatsu, M., Tago, K., Saito, M., 2008. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. *Soil Science and Plant Nutrition* 54, 33-45. - Hayton, T.W., Legzdins, P., Sharp, W.B., 2002. Coordination and organometallic chemistry of metal-NO complexes. *Chemical Reviews* 102, 935-991. - Henrichs, S.M., Farrington, J.W., 1979. Amino-acids in interstitial waters of marine sediments. *Nature* 279, 319-322. - Højberg,O., Johansen,H.S., Sorensen,J., 1994. Determination of N-15 Abundance in Nanogram Pools of NO₃⁻ and NO₂⁻ by Denitrification Bioassay and Mass-Spectrometry. *Applied and Environmental Microbiology* 60, 2467-2472. - Hollocher, T.C., 1982. The Pathway of Nitrogen and Reductive Enzymes of Denitrification. Antonie *Van Leeuwenhoek Journal of Microbiology* 48, 531-544. - Hora, T.S., Iyengar, M.R.S., 1960. Nitrification by Soil Fungi. *Archiv fur Mikrobiologie* 35, 252-257. - Hulse, C.L., Averill, B.A., Tiedje, J.M., 1989. Evidence for a copper nitrosyl intermediate in denitrification by the copper-containing nitrite reductase of *Achromobacter cycloclastes*. *Journal of the American Chemical Society* 111, 2322-2323. - Immoos, C.E., Chou, J., Bayachou, M., Blair, E., Greaves, J., Farmer, P.J., 2004. Electrocatalytic reductions of nitrite, nitric oxide, and nitrous oxide by thermophilic cytochrome P450CYP119 in film-modified electrodes and an analytical comparison of its catalytic activities with myoglobin. *Journal of the American Chemical Society* 126, 4934-4942. - Iwasaki,H., Matsubayashi,R., Mori,T., 1956. Studies on denitrification. 2. Production of nitric oxide and its utilization in the N-N-linkage formation by denitrifying bacteria. *Journal of Biochemistry* 43, 295-305. - Iwasaki, H., Mori, T., 1958. Studies on denitrification. 3. Enzymatic gas production by the reaction of nitrite with hydroxylamine. *Journal of Biochemistry* 45, 133-140. - Jackson, M.A., Tiedje, J.M., Averill, B.A., 1991. Evidence for an NO-Rebound Mechanism for Production of N₂O from Nitrite by the Copper-Containing Nitrite Reductase from Achromobacter-Cycloclastes. FEBS Letters 291, 41-44. - Jetten, M.S.M., Logemann, S., Muyzer, G., Robertson, L.A., deVries, S., van Loosdrecht, M.C.M., Kuenen, J.G., 1997. Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 71, 75-93. - Jetten, M.S.M., Strous, M., van de Pas-Schoonen, K., Schalk, J., van Dongen, U.G.J.M., van de Graaf, A.A., Logemann, S., Muyzer, G., van Loosdrecht, M.C.M., Kuenen, J.G., 1999. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews 22, 421-437. - Jetten, M.S.M., Cirpus, I., Kartal, B., van Niftrik, L., van de Pas-Schoonen, K., Sliekers, O., Haaijer, S., van der Star, W., Schmid, M., van de Vossenberg, J., Schmidt, I., Harhangi, H., van Loosdrecht, M., Kuenen, J.G., den Camp, H.O., Strous, M., 2005. 1994-2004: 10 years of research on the anaerobic oxidation of ammonium. *Biochemical Society Transactions* 33, 119-123. - Jetten,
M.S.M., 2008. The microbial nitrogen cycle. Environmental Microbiology 10, 2903-2909. - Jones, D.L., Owen, A.G., Farrar, J.F., 2002. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biology and Biochemistry 34, 1893-1902. - Jordan, T.E., Weller, D.E., Correll, D.L., 1998. Denitrification in surface soils of a riparian forest: Effects of water, nitrate and sucrose additions. Soil Biology and Biochemistry 30, 833-843. - Jungkunst, H.F., Freibauer, A., Neufeldt, H., Bareth, G., 2006. Nitrous oxide emissions from agricultural land use in Germany - a synthesis of available annual field data. *Journal of Plant Nutrition and Soil Science* 169, 341-351. - Kainz,G., Huber,H., 1959. Zur Kenntnis der Reaktionen, die bei der Aminostickstoffbestimmung anomale Resultate verursachen. Die Anomalie der Isonitrosoverbindungen. Microchimica Acta 47, 337-345. - Kammann, C., Müller, C., Grunhage, L., Jager, H.J., 2008. Elevated CO2 stimulates N2O emissions in permanent grassland. *Soil Biology and Biochemistry* 40, 2194-2205. - Kappelmeyer, U., Kuschk, P., Stottmeister, U., 2003. Model Experiments on the Influence of Artificial Humic Compounds on Chemodenitrification. Water, Air, and Soil Pollution 147, 317-330. - Karlsson, R., Karlsson, A., Backman, O., Johansson, B.R., Hulth, S., 2009. Identification of key proteins involved in the anammox reaction. FEMS Microbiology Letters 297, 87-94. - Kartal,B., Kuypers,M.M.M., Lavik,G., Schalk,J., den Camp,H.J.M.O., Jetten,M.S.M., Strous,M., 2007. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. *Environmental Microbiology* 9, 635-642. - Kelley, K.R., Ditsch, D.C., Alley, M.M., 1991. Diffusion and automated N-15 analysis of low-mass ammonium samples. Soil Science Society of America Journal 55, 1016-1020. - Khalil,K., Mary,B., Renault,P., 2004. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O₂ concentration. *Soil Biology and Biochemistry* 36, 687-699. - Kieber, R.J., Bullard, L., Seaton, P.J., 1998. Determination of N-15 nitrate and nitrite in spiked natural waters. *Analytical Chemistry* 70, 3969-3973. - Kim, C.H., Hollocher, T.C., 1984. Catalysis of nitrosyl transfer-reactions by a dissimilatory nitrite reductase (Cytochrome-*cd*₁). *The Journal of Biological Chemistry* 259, 2092-2099. - Klemedtsson, L., Svensson, B.H., Rosswall, T., 1988. Relationships Between Soil-Moisture Content and Nitrous-Oxide Production During Nitrification and Denitrification. *Biology and Fertility of Soils* 6, 106-111. - Kluyver, A.J., Verhoeven, W., 1954. Studies on true dissimilatory nitrate reduction II. The mechanism of denitrification. *Antonie van Leeuwenhoek* 20, 241-262. - Knowles, R., 1982. Denitrification. Microbiological Reviews 46, 43-70. - Kobayashi, M., Shoun, H., 1995. The Copper-containing Dissimilatory Nitrite Reductase Involved in the Denitrifying System of the Fungus Fusarium oxysporum. The Journal of Biological Chemistry 270, 4146-4151. - Körschens, M., Eich, D., Weber, C., 1981. The static experiment of Lauchstadt Extension of the question of the experiment and 1St results. *Archives of Agronomy and Soil Science* 25, 559-566. - Kuenen, J.G., 2008. Anammox bacteria: from discovery to application. *Nature Reviews Microbiology* 6, 320-326. - Kumon, Y., Sasaki, Y., Kato, I., Takaya, N., Shoun, H., Beppu, T., 2002. Codenitrification and denitrification are dual metabolic pathways through which dinitrogen evolves from nitrate in *Streptomyces antibioticus*. *Journal of Bacteriology* 184, 2963-2968. - Kunisaki, N., Hayashi, M., 1979. Formation of N-Nitrosamines from Secondary-Amines and Nitrite by Resting Cells of *Escherichia-Coli-B. Applied and Environmental Microbiology* 37, 279-282. - Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., Damste, J.S.S., Strous, M., Jetten, M.S.M., 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. *Nature* 422, 608-611. Laughlin, R.J., Stevens, R.J., 2002. Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Science Society of America Journal 66, 1540-1548. - Leach, S.A., Thompson, M., Hill, M., 1987. Bacterially Catalyzed N-Nitrozation Reactions and Their Relative Importance in the Human Stomach. *Carcinogenesis* 8, 1907-1912. - Lee,C. 1988. Amino acid and amine biogeochemistry in marine particulate material and sediments. In: *Nitrogen Cycling in Coastal Marine Environments*. eds T. H. Blackburn & J. Sorensen, John Wiley & Sons Ltd, Chichester. - Lees, H., 1952. Hydroxylamine as an intermediate in nitrification. Nature 169, 156-157. - Lehnert,N., Praneeth,V.K.K., Paulat,F., 2006. Electronic structure of iron(II)-porphyrin nitroxyl complexes: Molecular mechanism of fungal nitric oxide reductase (P450nor). Journal of Computational Chemistry 27, 1338-1351. - Lloyd,D., Boddy,L., Davies,K.J.P., 1987. Persistance of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception. FEMS Microbiology Ecology 45, 185-190. - Ludwig,J., Meixner,F.X., Vogel,B., Forstner,J., 2001. Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling studies. *Biogeochemistry* 52, 225-257. - Malone, J.P., Stevens, R.J., Laughlin, R.J., 1998. Combining the ¹⁵N and acetylene inhibition techniques to examine the effect of acetylene on denitrification. *Soil Biology and Biochemistry* 30, 31-37. - Mander, U., Kuusemets, V., Lohmus, K., Mauring, T., Teiter, S., Augustin, J., 2003. Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland. Water Science and Technology 48, 135-142. - Matsubara, T., 1970. Studies on dentirification. 12. Gas production from amines and nitrite. *Journal of Biochemistry* 67, 229-235. - McNamara, N.P., Black, H.I.J., Beresford, N.A., Parekh, N.R., 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. *Applied Soil Ecology* 24, 117-132. - McLain, J.E.T., Martens, D.A., 2005. Nitrous oxide flux from soil amino acid mineralization. Soil Biology and Biochemistry 37, 289-299. - Meijide, A., Cardenas, L.M., Bol, R., Bergstermann, A., Goulding, K., Well, R., Vallejo, A., Scholefield, D., 2010. Dual isotope and isotopomer measurements for the understanding of N₂O production and consumption during denitrification in an arable soil. *European Journal of Soil Science* 61, 364-374. - Mills, A.L., Alexander, M., 1976. N-Nitrosamine Formation by Cultures of Several Microorganisms. *Applied and Environmental Microbiology* 31, 892-895. - Mirvish, S.S., 1975. Formation of N-nitroso compounds: Chemistry, kinetics and in vivo occurence. *Toxicology and Applied Pharmacology* 31, 325-351. - Moir, J.W.B., Wehrfritz, J.M., Spiro, S., Richardson, D.J., 1996. The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from *Paracoccus denitrificans* GB17. *Biochemical Journal* 319, 823-827. - Mosier, A.R., Schimel, D.S., 1992. Nitrification and Denitrification. In: Knowles, R., Blackburn, T.H. (Eds.), *Nitrogen Isotope Techniques*. San Diego, pp. 181-208. - Mulder, A., van de Graaf, A.A., Robertson, L.A., Kuenen, J.G., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology 16, 177-184. - Munster, U., 1993. Concentration and fluxes of organic-carbon substrates in the aquatic environment. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 63, 243-274. - Müller, C., Stevens, R.J., Laughlin, R.J., 2006. Sources of nitrite in a permanent grassland soil. *European Journal of Soil Science* 57, 337-343. - Mulvaney, R.L., 1984. Determination of N-15-Labeled Dinitrogen and Nitrous-Oxide with Triple-Collector Mass Spectrometers. Soil Science Society of America Journal 48, 690-692. - Mulvaney, R.L., Boast, C.W., 1986. Equations for Determination of N-15 Labeled Dinitrogen and Nitrous-Oxide by Mass-Spectrometry. *Soil Science Society of America Journal* 50, 360-363. - Nakahara, K., Tanimoto, T., Hatano, K., Usuda, K., Shoun, H., 1993. Cytochrome-P-450-55A1 (P-450Dnir) acts as nitric oxide reductase employing NADH as the direct electron donor. *The Journal of Biological Chemistry* 268, 8350-8355. - Nelson, D.W., Bremner, J.M., 1970. Gaseous products of nitrite decomposition in soils. *Soil Biology and Biochemistry* 2, 203-215. - Nelson, D.W., 1982. Gaseous losses of nitrogen other than through denitrification. In: Stevenson, F.J. (Ed.), Nitrogen in agricultural soils. American Society of Agronomy, Madison, pp. 327-362. - Nielsen, L.P., 1992. Denitrification in Sediment Determined from Nitrogen Isotope Pairing. *FEMS Microbiology Ecology* 86, 357-362. - Nommik, H., 1956. Investigations on denitrification in soil. *Acta Agriculturae Scandinavica* 6, 195-228. - Okada, N., Nomura, N., Nakajima-Kambe, T., Uchiyama, H., 2005. Characterization of the Aerobic Denitrification in *Mesorhizobium sp.* Strain NH-14 in Comparison with that in Related *Rhizobia*. *Microbes and Environments* 20, 208-215. - Op den Camp, H.J.M., Kartal, B., Guven, D., van Niftrik, L.A.M.P., Haaijer, S.C.M., van der Star, W.R.L., Pas-Schoonen, K., van de Cabezas, A., Ying, Z., Schmid.M.C., Kuypers, M.M.M., van de Vossenberg, J., Harhangi, H.R., Picioreanu, C., van Loosdrecht, M.C.M., Kuenen, J.G., Strous, M., Jetten, M.S.M., 2006. Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochemical Society Transactions 34, 174-178. - Oshima,R., Fushinobu,S., Su,F., Zhang,L., Takaya,N., Shoun,H., 2004. Crystallographic analysis of complex structures of fungal denitrifying enzyme P450nor. *Photon Factory Activity Report* 22 B, 239-239. - Otte,S., Schalk,J., Kuenen,J.G., Jetten,M.S.M., 1999. Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic
ammonia oxidizer Alcaligenes faecalis. *Applied Microbiology and Biotechnology* 51, 255-261. - Paredes, D., Kuschk, P., Mbwette, T.S.A., Stange, F., Müller, R.A., Köser, H., 2007. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment A Review. *Engineering in Life Sciences* 7, 13-25. - Parkin, T.B., Kaspar, H.F., Sexstone, A.J., Tiedje, J.M., 1984. A gas-flow soil core method to measure field denitrification rates. *Soil Biology and Biochemistry* 16, 323-330. - Perez,T., Trumbore,S.E., Tyler,S.C., Matson,P.A., Ortiz-Monasterio,I., Rahn,T., Griffith,D.W.T., 2001. Identifying the agricultural imprint on the global N₂O budget using stable isotopes. *Journal of Geophysical Research Atmospheres* 106, 9869-9878. - Perrott, J.R., Stedman, G., Uysal, N., 1976. Kinetic and Product Study of Reaction Between Nitrous-Acid and Hydrazine. Journal of the Chemical Society - Dalton Transactions, 2058-2064. - Pichinot,F., Bigliard,J., Rimassa,D.R., 1969. Bacterial denitrification. 1. Utilization of aromatic amines as electron donors in nitrite reduction. Archiv für Mikrobiologie 69, 314-329. - Pina-Ochoa, E., Alvarez-Cobelas, M., 2006. Denitrification in aquatic environments: A cross-system analysis. *Biogeochemistry* 81, 111-130. - Pittwell, L.R., 1975. The determination of hydroxylamine in Ethiopian rivers and lakes. Mikrochimica Acta [Wien] 1975 II, 425--429 - Poth,M., Focht,D.D., 1985. 15-N kinetic anlalysis of N₂O production by *Nitrosomonas* europea: an examination of nitrifier dentrification. *Applied and Environmental Microbiology* 49, 1134-1141. - Quastel, J.H., Scholefield, P.G., 1951. Biochemistry of Nitrification in Soil. *Bacteriological Reviews* 15, 1-53. - Radoul, M., Centola, F., Rinaldo, S., Cutruzzola, F., Pecht, I., Goldfarb, D., 2009. Heme d_1 Nitrosyl Complex of cd_1 Nitrite Reductase Studied by High-Field-Pulse Electron Paramagnetic Resonance Spectroscopy. *Inorganic Chemistry* 48, 3913-3915. - Ralt, D., Wishnok, J.S., Fitts, R., Tannenbaum, S.R., 1988. Bacterial catalysis of nitrosation Involvement of the Nar operon of *Escherichia coli. Journal of Bacteriology* 170, 359-364. - Rammon, D.A., Peirce, J.J., 2002. Consumption of biogenic nitric oxide in hydrated soil. Environmental Pollution 117, 347-355. - Reddy, K.R., Patrick, W.H., Lindau, C.W., 1989. Nitrification-Denitrification at the Plant Root-Sediment Interface in Wetlands. *Limnology and Oceanography* 34, 1004-1013. - Renault, P., Stengel, P., 1994. Modelling oxygen diffusion in aggregated soils. I. Anaerobiosis inside the aggregates. *Soil Science Society of America Journal* 58, 1017-1023. - Renner, E.D., Becker, G.E., 1970. Production of nitric oxide and nitrous oxide during denitrification by *Corynebacterium nephridii*. *Journal of Bacteriology* 101, 821-826. - Risgaard-Petersen, N., Nielsen, L.P., Rysgaard, S., Dalsgaard, T., Meyer, R.L., 2003. Application of the isotope pairing technique in sediments where anammox and denitrification co-exist. *Limnology and Oceanography Methods* 1, 63-73. - Risgaard-Petersen, N., Meyer, R.L., Schmid, M., Jetten, M.S.M., Enrich-Prast, A., Rysgaard, S., Revsbech, N.P., 2004. Anaerobic ammonium oxidation in an estuarine sediment. *Aquatic Microbial Ecology* 36, 293-304. - Roobroeck, D., Butterbach-Bahl, K., Brueggemann, N., Boeckx, P., 2010. Dinitrogen and nitrous oxide exchanges from an undrained monolith fen: short-term responses following nitrate addition. *European Journal of Soil Science* 61, 662-670. - Römpp, H., 1999. Römpp-Chemie Lexikon. Thieme-Verlag, Stuttgart. - Rudaz,A.O., Walti,E., Kyburz,G., Lehmann,P., Fuhrer,J., 1999. Temporal variation in N₂O and N₂ fluxes from a permanent pasture in Switzerland in relation to management, soil water content and soil temperature. *Agriculture Ecosystems and Environment* 73, 83-91. - Ruser,R., Flessa,H., Russow,R., Schmidt,G., Buegger,F., Munch,J.C., 2006. Emission of N₂O, N₂ and CO₂ from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting. *Soil Biology and Biochemistry* 38, 263-274. - Russow, R., Sich, I., Förstel, H., 1995. A GC-QMS aided incubation system for trace gas studies in soils using stable isotopes. *Proceedings Series International Atomic Energy Agency*, Vienna, 63-73. - Russow,R., Stevens,R.J., Laughlin,R.J., 1996. Accuracy and precision for measurements of the mass ratio 30/28 in dinitrogen from air samples and its application to the investigation of N losses from soil by denitrification. *Isotopes in Environmental and Health Studies* 32, 289-297. - Russow,R., Götz,A., 1998. Automatic simultaneous determination of total carbon and ¹³C as well as total nitrogen and ¹⁵N in isotopically enriched samples of soil and plant material using a quadrupole mass spectrometer coupled to an elemental analyser. *Archives of Agronomy and Soil Science* 42, 349-359. - Russow,R., Sich,I., Neue,H.-U., 2000. The formation of trace gases NO and N₂O in soils by the coupled processes of nitrification and denitrification: results of kinetic ¹⁵N tracer investigations. *Chemosphere Global Change Science* 2, 359-366. - Russow,R., Spott,O., Stange,C.F., 2008. Evaluation of nitrate and ammonium as sources of NO and N₂O emissions from black earth soils (Haplic Chernozem) based on ¹⁵N field experiments. *Soil Biology and Biochemistry* 40, 380-391. - Rysgaard,S., Glud,R.N., Risgaard-Petersen,N., Dalsgaard,T., 2004. Denitrification and anammox activity in Arctic marine sediments. *Limnology and Oceanography* 49, 1493-1502. - Sameshima-Saito, R., Chiba, K., Minamisawa, K., 2004. New method of denitrification analysis of *Bradyrhizobium* field isolates by gas chromatographic determination of N-15-labeled N-2. Applied and Environmental Microbiology 70, 2886-2891. - Schalk, J., Oustad, H., Kuenen, J.G., Jetten, M.S.M., 1998. The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. *FEMS Microbiology Letters* 158, 61-67. - Schmidt,G., Segschneider,H.-J., Russow,R., 1997. Bestimmung der ¹⁵N Häufigkeit bei nichtstatistischer ¹⁵N-Verteilung in N₂ sowie bei N₂O in Bodenluftproben mittels GC-R-IRMS-Kopllung in einem Probenlauf. *Isotopes in Environmental and Health Studies* 33, 235-243. - Schmidt,H.L., Werner,R.A., Yoshida,N., Well,R., 2004a. Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. *Rapid Communications in Mass Spectrometry* 18, 2036-2040. - Schmidt,I., Sliekers,O., Schmid,M., Bock,E., Fuerst,J., Kuenen,J.G., Jetten,M.S.M., Strous,M., 2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. *FEMS Microbiology Reviews* 27, 481-492. - Schmidt,I., van Spanning,R.J.M., Jetten,M.S.M., 2004b. Denitrification and ammonia oxidation by *Nitrosomonas europaea* wild-type, and NirK- and NorB-deficient mutants. *Microbiology - SGM* 150, 4107-4114. - Scholefield, D., Hawkins, J.M.B., Jackson, S.M., 1997a. Development of a helium atmosphere soil incubation technique for direct measurement of nitrous oxide and dinitrogen fluxes during denitrification. *Soil Biology and Biochemistry* 29, 1345-1352. - Scholefield,D., Hawkins,J.M.B., Jackson,S.M., 1997b. Use of a flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil. *Soil Biology and Biochemistry* 29, 1337-1344. - Schweiger, B., Hansen, H.P., Bange, H.W., 2007. A time series of hydroxylamine (NH₂OH) in the southwestern Baltic Sea. *Geophysical Research Letters* 34, L24608. - Seike, Y., Fukomori, R., Senga, Y., Oka, H., Fujinaga, K., Okumura, M., 2004. A simple and sensitive method for the determination of hydroxylamine in fresh-water samples using hypochlorite followed by gas chromatography. *Analytical Sciences* 20, 139-142 - Senwo, Z.N., Tabatabai, M.A., 1998. Amino acid composition of soil organic matter. *Biology* and Fertility of Soils 26, 235-242. - Shao,M.F., Zhang,T., Fang,H.H.P., 2010. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. *Applied Microbiology and Biotechnology* 88, 1027-1042. - Shimizu,H., Obayashi,E., Gomi,Y., Arakawa,H., Park,S.Y., Nakamura,H., Adachi,S., Shoun,H., Shiro,Y., 2000. Proton delivery in NO reduction by fungal nitric-oxide reductase - Cryogenic crystallography, spectroscopy, and kinetics of ferric-NO complexes of wild-type and mutant enzymes. *The Journal of Biological Chemistry* 275, 4816-4826. - Shoun, H., Kim, D.H., Uchiyama, H., Sugiyama, J., 1992. Denitrification by fungi. *FEMS Microbiology Letters* 94, 277-281. - Shoun,H., 2004. Novel dissimilatory nitrogen metabolisms by microorganisms. *Nippon Nogeikagaku Kaishi-Journal of the Japan Society for Bioscience Biotechnology and Agrochemistry* 78, 724-729. - Shoun,H. 2005. Basic studies on fungal unique P450s for industrial applications. 112-114. Report of the Noda Institute for Scientific Research 48, 112-114. - Sich,I., Russow,R., 1998. Cryotrap enrichment of nitric oxide and nitrous oxide in their natural air concentration for ¹⁵N analysis by GC-QMS. *Isotopes in Environmental and Health Studies* 34, 279-283. - Siegel,R.S., Hauck,R.D., Kurtz,L.T., 1982. Determination of (N2)-N-30 and Application to Measurement of N-2 Evolution During Denitrification. Soil Science Society of America Journal 46, 68-74. - Smith, K.A., 1980. A Model of the Extent of Anaerobic Zones in Aggregated Soils, and Its Potential Application to Estimates of Denitrification. *Journal of Soil Science* 31, 263-277. - Smith, C.J., Chalk, P.M., 1980. Fixation and loss of nitrogen during transformations of nitrite in soils. Soil Science Society of America Journal 44, 288-291. - Smith, N.A., Smith, P., 1992. Nitrate reduction and N-nitrosation by Obesumbacterium proteus. Letters in Applied Microbiology 14, 61-64. - Speir, T.W., Kettles, H.A., More, R.D., 1995. Aerobic Emissions of
N₂O and N₂ from Soil Cores Measurement Procedures Using ¹³N Labeled NO₃ and NH₄. Soil Biology and Biochemistry 27, 1289-1298. - Stamler, J.S., Singel, D.J., Loscalzo, J., 1992. Biochemistry of Nitric-Oxide and Its Redox-Activated Forms. *Science* 258, 1898-1902. - Stange, C.F., Spott, O., Apelt, B., Russow, R., 2007. Automated and rapid online determination of ¹⁵N abundance and concentration of ammonium, nitrite or nitrate in aqueous samples by means of SPINMAS. *Isotopes in Environmental and Health Studies* 43, 227-236. - Stange, C.F., Spott, O., Müller, C., 2009. An inverse abundance approach to separate soil nitrogen pools and gaseous nitrogen fluxes into fractions related to ammonium, nitrate, and soil organic nitrogen. *European Journal of Soil Science* 60, 907-915. - Stevens, R.J., Laughlin, R.J., 1994. Determining N-15 in nitrite or nitrate by producing nitrous-oxide. *Soil Science Society of America Journal* 58, 1108-1116. - Stevens, R.J., Laughlin, R.J., Burns, C., Arah, J.R.M., Hood, R.C., 1997. Measuring the contribution of nitrification and denitrification to the flux of nitrous oxide from soil. *Soil Biology and Biochemistry* 29, 139-151. - Stevens, R.J., Laughlin, R.J., 2001a. Effect of liquid manure on the mole fraction of nitrous oxide evolved from soil containing nitrate. *Chemosphere* 42, 105-111. - Stevens, R.J., Laughlin, R.J., 2001b. Lowering the detection limit for dinitrogen using the enrichment of nitrous oxide. *Soil Biology and Biochemistry* 33, 1287-1289. - Stevenson, F.J., Swaby, R.J., 1964. Nitrosation of soil organic matter: I. Nature of gases evolved during nitrous acid treatment of lignins and humic substances. Soil Science Society of America Journal 28, 773-778. - Stevenson, F.J., 1982. Organic forms of soil nitrogen. In: Stevenson, F.J. (Ed.), *Nitrogen in agricultural soils*. American Society of Agronomy, Madison, 327-362. - Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K., Webb, R., Kuenen, J.G., Jetten, M.S.M., 1999a. Missing lithotroph identified as new planetomycete. Nature 400, 446-449. - Strous, M., Kuenen, J.G., Jetten, M.S.M., 1999b. Key physiology of anaerobic ammonium oxidation. *Applied and Environmental Microbiology* 65, 3248-3250. - Strous,M., Pelletier,E., Mangenot,S., Rattei,T., Lehner,A., Taylor,M.W., Horn,M., Daims,H., Bartol-Mavel,D., Wincker,P., Barbe,V., Fonknechten,N., Vallenet,D., Segurens,B., Schenowitz-Truong,C., Medigue,C., Collingro,A., Snel,B., Dutilh,B.E., Op den Camp,H.J.M., van der Drift,C., Cirpus,I., van de Pas-Schoonen,K.T., Harhangi,H.R., van Niftrik,L., Schmid,M., Keltjens,J., van de Vossenberg,J., Kartal,B., Meier,H., Frishman,D., Huynen,M.A., Mewes,H.W., Weissenbach,J., Jetten,M.S.M., Wagner,M., Le Paslier,D., 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. *Nature* 440, 790-794. - Stüven, R., Vollmer, M., Bock, E., 1992. The Impact of Organic-Matter on Nitric-Oxide Formation by Nitrosomonas europaea. *Archives of Microbiology* 158, 439-443. - Su,F., Takaya,N., Shoun,H., 2004. Nitrous oxide forming codenitrification catalyzed by cytochrome P450nor. *Bioscience, Biotechnology and Biochemistry* 68, 473-475. - Suttle, C.A., Chan, A.M., Fuhrman, J.A., 1991. Dissolved free amino-acids in the Sargasso Sea Uptake and respiration rates, turnover times, and concentrations. *Marine Ecology-Progress Series* 70, 189-199. - Suzuki,S., Yoshimura,T., Kohzuma,T., Shidara,S., Masuko,M., Sakurai,T., Iwasaki,H., 1989. Spectroscopic evidence for a copper-nitrosyl intermediate in nitrite reduction by blue copper-containing nitrite reductase. *Biochemical and Biophysical Research Communications* 164, 1366-1372. - Swerts, M., Uytterhoeven, G., Merckx, R., Vlassak, K., 1995. Semicontinuous Measurement of Soil Atmosphere Gases with Gas-Flow Soil Core Method. Soil Science Society of America Journal 59, 1336-1342. - Takaya, N., 2002. Dissimilatory nitrate reduction metabolisms and their control in fungi. Journal of Bioscience and Bioengineering 94, 506-510. - Takaya,N., Catalan-Sakairi,M.A.B., Sakaguchi,Y., Kato,I., Zhou,Z.M., Shoun,H., 2003a. Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Applied and Environmental Microbiology 69, 3152-3157. - Takaya, N., Kuwazaki, S., Adachi, Y., Suzuki, S., Kikuchi, T., Nakamura, H., Shiro, Y., Shoun, H., 2003b. Hybrid respiration in the denitrifying mitochondria of Fusarium oxysporum. *Journal of Biochemistry* 133, 461-465. - Tanimoto, T., Hatano, K., Kim, D.H., Uchiyama, H., Shoun, H., 1992. Co-denitrification by the denitrifying system of the fungus Fusarium oxysporum. FEMS Microbiology Letters 93, 177-180. - Thamdrup,B., Dalsgaard,T., 2002. Production of N-2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology 68, 1312-1318. - Thamdrup,B., Dalsgaard,T., Jensen,M.M., Ulloa,O., Farias,L., Escribano,R., 2006. Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. *Limnology and Oceanography* 51, 2145-2156. - Thorn,K.A., Mikita,M.A., 2000. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification. *Soil Science Society of America Journal* 64, 568-582. Tocheva, E.I., Rosell, F.I., Mauk, A.G., Murphy, M.E.P., 2004. Side-on copper-nitrosyl coordination by nitrite reductase. *Science* 304, 867-870. - Tocheva, E.I., Rosell, F.I., Mauk, A.G., Murphy, M.E.P., 2007. Stable copper-nitrosyl formation by nitrite reductase in either oxidation state. *Biochemistry* 46, 12366-12374. - Tolman, W.B., 1995. Synthetic modeling of the interactions of nitrogen oxides with copper proteins - Copper nitrosyl complexes relevant to putative denitrification intermediates. In: Thorp, H.H., Pecoraro, V.L. (Eds.), *Mechanistic Bioinorganic Chemistry - Advances in chemistry*, 195-217. - Trimmer, M., Nicholls, J.C., Deflandre, B., 2003. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. *Applied and Environmental Microbiology* 69, 6447-6454. - Trimmer, M., Risgaard-Petersen, N., Nicholls, J.C., Engstrom, P., 2006. Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. *Marine Ecology - Progress Series* 326, 37-47. - Usuda, K., Toritsuka, N., Matsuo, Y., Kim, D.H., Shoun, H., 1995. Denitrification by the Fungus Cylindrocarpon-Tonkinense - Anaerobic Cell-Growth and 2 Isozyme Forms of Cytochrome P-450Nor. Applied and Environmental Microbiology 61, 883-889. - Van Cleemput,O., Samater,A.H., 1996. Nitrite in soils: Accumulation and role in the formation of gaseous N compounds. Fertilizer Research 45, 81-89. - Van Cleemput,O., 1998. Subsoils: chemo- and biological denitrification, N₂O and N₂ emissions. *Nutrient Cycling in Agroecosystems* 52, 187-194. - van de Graaf, A.A., Mulder, A., Slijkhuis, H., Robertson, L.A., Kuenen, J.G., 1990. Anoxic ammonium oxidation. In: Christiansen, C., Munck, L., Villadsen, J. (Eds.), 5th European Congress on Biotechnology. Munksgaard, Copenhagen, pp. 388-391. - van de Graaf, A.A., de Bruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G., 1997. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor. *Microbiology UK* 143, 2415-2421. - van der Star, W.R.L., van de Graaf, M.J., Kartal, B., Picioreanu, C., Jetten, M.S.M., van Loosdrecht, M.C.M., 2008. Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine. *Applied and Environmental Microbiology* 74, 4417-4426. - van Niel,E.W.J., Arts,P.A.M., Wesselink,B.J., Robertson,L.A., Kuenen,J.G., 1993. Competition Between Heterotrophic and Autotrophic Nitrifiers for Ammonia in Chemostat Cultures. FEMS Microbiology Ecology 102, 109-118. - Verhaegen, K., Van Cleemput, O., Verstraete, W., 1988. Nitrification Mediated Nitrosation of Organics and Effects on Soil Microbial Biomass. *Biological Wastes* 26, 235-245. - Verstraete, W., Alexander, M., 1972. Heterotrophic nitrification in samples from natural environments. *Naturwissenschaften* 52, 79-80. - von Breymann,M.T., Deangells,M.A., Gordon,L.I., 1982. Gas-Chromatography with electroncapture detection for determination of hydroxylamine in sea-water. *Analytical Chemistry* 54, 1209-1210. - Wang, Y.N., Averill, B.A., 1996. Direct observation by FTIR spectroscopy of the ferrous heme-NO⁺ intermediate in reduction of nitrite by a dissimilatory heme *cd*₁ nitrite reductase. *Journal of the American Chemical Society* 118, 3972-3973. - Wasser, I.M., de Vries, S., Moenne-Loccoz, P., Schroder, I., Karlin, K.D., 2002. Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NOx redox chemistry. *Chemical Reviews* 102, 1201-1234. - Weeg-Aerssens, E., Tiedje, J.M., Averill, B.A., 1987. The mechanism of microbial denitrification. *Journal of the American Chemical Society* 109, 7214-7215. - Weeg-Aerssens, E., Tiedje, J.M., Averill, B.A., 1988. Evidence from isotope labeling studies for a sequential mechanism for dissimilatory nitrite reduction. *Journal of the American Chemical Society* 110, 6851-6856. - Weier, K.L., Doran, J.W., Power, J.F., Walters, D.T., 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon and nitrate. Soil Science Society of America Journal 57, 66-72. - Well,R., Flessa,H., 2009. Isotopologue signatures of N₂O produced by denitrification in soils. Journal of Geophysical Research - Biogeosciences 114, G02020. - Williams, D.L.H., 2004. Nitrosation reactions and the chemistry of nitric oxide. Elsevier BV, Amsterdam, 268 p. - Wilson, S.R., Griffith, D.W., Parkes, S.D., 2006. Isotopic evidence of nitrous oxide synthesis from two distinct nitrogen sources. *American Geophysical Union Fall Meeting* 2006. - Wolf,I., Russow,R., 2000. Different pathways of formation of N₂O, N₂ and NO in black earth soil. *Soil Biology and
Biochemistry* 32, 229-239. - Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O., 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 33, 1723-1732. - Wrage, N., Velthof, G.L., Laanbroek, H.J., Oenema, O., 2004. Nitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrification. Soil Biology and Biochemistry 36, 229-236. - Xu,N., Powell,D.R., Cheng,L., Richter-Addo,G.B., 2006. The first structurally characterized nitrosyl heme thiolate model complex. *Chemical Communications*, 2030-2032. - Yamulki,S., Toyoda,S., Yoshida,N., Veldkamp,E., Grant,B., Bol,R., 2001. Diurnal fluxes and the isotopomer ratios of N₂O in a temperate grassland following urine amendment. *Rapid Communications in Mass Spectrometry* 15, 1263-1269. - Ye,R.W., Torosuarez,I., Tiedje,J.M., Averill,B.A., 1991. (H₂O)-O-18 isotope exchange studies on the mechanism of reduction of nitric-oxide and nitrite to nitrous oxide by denitrifying bacteria - Evidence for an electrophilic nitrosyl during reduction of nitric oxide. The Journal of Biological Chemistry 266, 12848-12851. - Ye,R.W., Averill,B.A., Tiedje,J.M., 1994. Denitrification: Production and consumption of nitric oxide. Applied and Environmental Microbiology 60, 1053-1058. - Yoshinari, T., Knowles, R., 1976. Acetylene Inhibition of Nitrous-Oxide Reduction by Denitrifying Bacteria. Biochemical and Biophysical Research Communications 69, 705-710. - Yoshimura, T., Shidara, S., Ozaki, T., Kamada, H., 1993. 5 coordinated nitrosylhemoprotein in the whole cells of denitrifying bacterium, *Achromobacter xylosoxidans* Ncib-11015. *Archives of Microbiology* 160, 498-500. 119 Zhao, X.J., Sampath, V., Caughey, W.S., 1995. Cytochrome-C-Oxidase Catalysis of the Reduction of Nitric Oxide to Nitrous Oxide. *Biochemical and Biophysical Research Communications* 212, 1054-1060. - Zhou, Z., Takaya, N., Sakairi, M.A.C., Shoun, H., 2001. Oxygen requirement for denitrification by the fungus *Fusarium oxysporum*. *Archives of Microbiology* 175, 19-25. - Zhou, Z.M., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., Shoun, H., 2002. Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. *Journal of Biological Chemistry* 277, 1892-1896. - Zollinger, H., 1988. Diazotizations in Highly Concentrated Mineral Acids the Nitrosation Mechanism of Anilinium and Hydroxylammonium Ions Through Proton Loss from the Ammonio Group. *Helvetica Chimica Acta* 71, 1661-1664. - Zollinger, H., 1994. Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. 1. ed. VCH Verlagsgesellschaft mbH, Weinheim. - Zollinger, H., 1995. Diazo Chemistry II: Aliphatic, Inorganic and Organometallic Compounds. 1. ed. VCH Verlagsgesellschaft mbH, Weinheim. - Zumft, W.G., 1997. Cell biology and molecular basis of denitrification. *Microbiology and Molecular Biology Reviews* 61, 533-616.