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Preface 

For more than one hundred years now, human activities involved a perpetually 
increasing fabrication and usage of synthetic organic chemicals. This has lead to 
extensive environmental contamination with these chemicals all over the planet. Either 
released on purpose, for instance, as pesticides, or accidently, for instance, during 
extraction and consumption of fossil fuels, many organic chemicals cause a variety of 
problems, be it by directly threatening the health of organisms or by disturbing 
important ecosystem processes. 

Recognising the dangerous consequences of this human-made contamination, 
scientists have developed several strategies for environmental remediation, that is, for 
removing contaminants from the environment. Additionally, the recognition of the need 
for sustainable development has lead to growing concern about the environmental 
footprint of remediation strategies. This includes the cleanup performance itself, but 
also the use of energy, water and other resources. Sustainable remediation approaches 
therefore aim at an optimal balance of effects and benefits for environment, economy 
and society. 

One idea for sustainably reducing soil contamination is to take advantage of the 
natural potential of bacteria to degrade organic contaminants. However, this potential is 
often limited by environmental conditions that hinder the dispersal of bacteria and 
prohibit them from reaching the contaminants. A suggested solution is to deliberately 
grow networks of soil fungi that can be used by bacteria for quick dispersal, and thus 
enhance their degradation performance considerably. Indeed, microbiologists have 
shown in experiments that fungal networks are much less sensitive to environmental 
conditions and can drastically accelerate bacterial dispersal. However, before novel 
remediation approaches based on fungal networks can be put into practice, further 
research is needed to find the main factors and processes that govern the spatial and 
temporal interactions of bacteria and fungi, and understand how they affect degradation 
performance. 

In experiments, one can address these research questions to some extent and observe the 
dynamics of microbiological systems under specific conditions. A powerful approach to 
reveal the mechanisms underlying the observed dynamics and to extrapolate to different 
conditions is provided by simulation models. In this doctoral thesis, laboratory 
experiments and simulation modelling are therefore combined to gain knowledge about 
microbiological systems consisting of organic contaminants, degrading bacteria and 
dispersal networks. The goal is to better understand and predict these systems’ complex 
spatiotemporal dynamics under various environmental conditions, in order to advance 
the development of sustainable remediation strategies based on fungal networks. 
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 Chapter 1
1 Introduction 

1.1 Biodegradation in soil 

1.1.1 Soil pollution 
Along with the rising level of industrialisation, the production and use of chemicals by 
humans has increased drastically since the beginning of the 19th century and lead to an 
ever-increasing presence of anthropogenic chemicals in virtually all natural soil 
environments (cf. Schwarzenbach et al. 2002). For instance, oil and fuel are spilled (Fig. 
1.1a), synthetic organic chemicals are released to control unwanted organisms (Fig. 
1.1b) or accompanying the daily use of certain products (e.g. solvents, dyes, varnishes, 
plastics and textiles; cf. Schwarzenbach et al. 2002), domestic wastes are leached (Fig. 
1.1c) or industrial wastes are discharged directly to soils. Additionally, chemicals arrive 
in soils indirectly. For instance, contaminants emitted to the atmosphere diffuse and 
sediment in soils, or contaminated water percolates to subsurface layers. 

Albeit not always visible, this pollution of soils represents a severe threat to both 
humans and the environment. Human health is primarily endangered through 
consumption of groundwater from contaminated soils, but also, for instance, through 
direct contact with contaminated soils or inhalation of vaporised soil contaminants. This 
 

ba c

 

Figure 1.1 Oil mining, pesticide use and landfills are typical exemplary sources of soil 
contamination. a Petroleum wells near Baku, Azerbaijan (source: Stern magazine, 
Gruner + Jahr AG & Co KG). b Pesticide spraying in California, USA (source: United 
States Department of Agriculture) c Illegal landfill near Halle (Saale), Germany (source: 
Dr. Stefan Klotz, Helmholtz Centre for Environmental Research – UFZ). 
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may cause a variety of diseases and even have negative effects on human reproduction 
(Carlsen et al. 1992; Auger et al. 1995). Negative effects on the environment include 
alterations of food chains, potential extinction of species, losses of ecosystem function 
and stability or recreation facilities. 

1.1.2 Soil remediation 
In the light of these dangers, various strategies for cleaning up contaminated soils have 
been developed. Many standard methods are applied ex situ and based on 
physicochemical treatments (e.g. soil separation or chemical extraction). They require 
excavation of soils, which may be unfeasible for large sites and, most important, is 
usually related to high costs and energy usage (e.g. Tiehm et al. 2010). The advantage 
of in situ strategies is that they allow for treating contamination directly where it occurs. 
Examples include aeration or heating of soil to induce evaporation, or addition of 
chemicals to induce immobilisation or detoxification of contaminants (e.g. cf. Alvarez 
and Illman 2006). However, these strategies may also be restricted to smaller sites and 
they are often cost and energy-intensive, too. That is why more natural, 
biotechnological approaches have been developed. 

Bioremediation covers spontaneous or managed biological processes in which 
environmental contamination is remedied or eliminated from the environment (cf. 
Alvarez and Illman 2006). It is therefore an example of a service provided by 
ecosystems that contributes to human welfare (cf. Costanza et al. 1997). For instance, 
phytoremediation, the usage of plants to remove or stabilise contaminants, became 
recognised in the past 10-15 years due to its cost-effectiveness and environment-
friendliness (cf. Salt et al. 1998; Pilon-Smits 2005 for reviews). The same advantages 
apply to the utilisation of bacteria or fungi to degrade contaminants (the latter is also 
called mycoremediation; cf. Singh 2006), approaches that have garnered growing 
popularity for more than 30 years already and, in some cases, are the only applicable 
option (Madigan et al. 2008). 

Microorganisms are known to degrade many organic compounds in natural soils 
(e.g. Wackett 2003; Díaz 2004). Therefore, one approach to treat contamination is 
degradation without human intervention, often referred to as natural attenuation. This 
does not require any external energy supply and is applicable for large sites. However, 
degradation rates are often lower than immission rates, which is why the contaminants 
accumulate in the soils. Furthermore, given that natural conditions allow degradation, it 
may require a very long time until bioremediation targets are met, as well as expensive 
and time consuming monitoring efforts (e.g. Alvarez and Illman 2006). Hence, 
particularly when trying to improve the performance of bacterial degradation, the major 
task is to increase the rates at which contaminants are consumed by bacteria. To do this, 
the presence and well-being of contaminant-degrading bacteria should be assured, for 
instance, by additional supply of nutrients, or by modifications of the soil’s pH-value 
and temperature (Harms and Wick 2006). In many soils, however, biodegradation 
performance is predominantly limited by the contact probability of contaminants and 
bacteria (Semple et al. 2007), which can often be very low due to heterogeneous spatial 
distributions of both contaminants and bacteria in the subsurface. Typical causes for 
such heterogeneities include variations in water content (which is paramount for 
bacterial growth and motility, but also for contaminant diffusion; cf. Harshey 2003; 
Schroll et al. 2006; Madigan et al. 2008), air-filled soil pores of various structures, and 
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Figure 1.2 Visualisation of contaminant bioavailability at the microscale (source: 
Semple et al. 2004). Merely a fraction of contaminants is bioavailable to degrading 
organisms in heterogeneous soils. A substantial part is only bioaccessible, denoting that 
it is physically or temporally constrained, but could become bioavailable. Contaminants 
can also be occluded and, thence, are non-bioaccessible (cf. legend). 

discontinuous paths for bacterial dispersal (e.g. Semple et al. 2003; Young and 
Crawford 2004; Boswell et al. 2007). If the contact probability is low, the 
bioavailability of the contaminants to the bacteria, that is, the quantity freely available 
for bacterial uptake within a given time interval (cf. Semple et al. 2004; Fig. 1.2), will 
be low, too. Therefore, many approaches to stimulate successful biodegradation focus 
on increasing the bioavailability of contaminants (Ehlers and Luthy 2003). 

Various strategies have been suggested to improve the bioavailability of 
contaminants to degrading bacteria in soils. Several of them aim at actively 
homogenising the whole soil by excavation and mechanical treatment and have the 
same disadvantages as other ex situ methods (cf. above). Given this unsatisfying 
situation, new approaches to improve the bioavailability of contaminants in situ by 
stimulating the dispersal of bacteria (and partly also contaminants) have been 
investigated recently. Such enhanced natural attenuation approaches include the 
application of weak electric fields to migrate bacteria in electro-bioremediation (e.g. 
Wick et al. 2007b; Lohner and Tiehm 2009; Kim et al. 2010), the stimulation of 
chemotactic bacteria that are able to move actively towards higher contaminant 
concentrations (cf. Harms and Wick 2006 for a review of target contaminants and 
chemotactic strains applied), and the use of soil animals (e.g. cf. Sizmur and Hodson 
2009 for a review of earthworm impacts on metal bioavailability), plant roots (e.g. 
Kuiper et al. 2001) or fungi (cf. Sec. 1.1.3) as dispersal vectors for bacteria and/or 
contaminants (cf. Harms and Wick 2006 for an overview of eukaryotes as bacterial 
dispersal vectors). All these strategies do not require excavation and physical or 
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chemical treatment of soil. Given the growing recognition of the importance of 
sustainable remediation (e.g. Wackett and Bruce 2000; Dellens 2007; Bardos et al. 
2011), they are promising for the design and future application of economically, 
environmentally and socially sound bioremediation technologies. 

1.1.3 Mobilisation of bacteria by fungi 
Unfavourable conditions and environmental heterogeneities in the subsurface often limit 
the motility of bacteria (cf. Sec. 1.1.2). Therefore, one of the enhanced natural 
attenuation approaches to remedy contaminated soil sites is the specific stimulation of 
the establishment of filamentous fungi that can mobilise bacteria and, thus, increase the 
bioavailability of contaminants. Fungi are often much less sensitive to soil 
heterogeneities than bacteria (e.g. Boswell et al. 2003; 2007). For instance, they may be 
able to grow in air-filled pores or to breach air-water interfaces (Wösten et al. 1999; 
Singh 2006). Furthermore, hydrophilic fungi induce the formation of continuous liquid 
films around their hyphae (Wösten and Willey 2000). It was hypothesised and shown in 
experiments that bacteria can use the fungal networks formed by these liquid films (cf. 
Fig. 1.3) as paths for accelerated dispersal and, thus, spread efficiently in soil 
(Kohlmeier et al. 2005; Wick et al. 2007a; Furuno et al. 2010). Hence, improving the 
biodegradation performance in situ via stimulating the active growth of fungal hyphae 
seems a promising strategy for sustainable bioremediation in the future (Wick et al. 
2010). However, there is still a high demand for a better understanding of the factors 
that influence biodegradation performance in relation to fungal networks, for instance, 
concerning the impact of environmental conditions, the network architecture, or the 
suitable combinations of soil fungi and contaminant degrading bacteria. 

1.1.4 An ecological perspective 
The microbiological context of bacterial colony growth, fungal networks and 
biodegradation relates to several prominent topics of ecological research, such as 
consumer-resource dynamics (e.g. Ernest et al. 2000; Johst and Schöps 2003; Murdoch 
et al. 2003), dispersal behaviour (e.g. Clobert et al. 2001), dispersal in heterogeneous 
environments (e.g. Hanski and Ovaskainen 2000; Dewhirst and Lutscher 2009) and 
resource allocation (e.g. Piceno and Lovell 2000; Brown et al. 2004). Furthermore, 
bacterial dispersal networks may be compared to dispersal corridors in animal 
ecological systems (e.g. Hill 1995; Tischendorf and Wissel 1997). Other ecology-
related research questions concern the impact of environmental conditions on 
population dynamics (e.g. Pena et al. 2005; Berryman and Lima 2006) and subsequent 
bacterial degradation performance. Regarding various spatiotemporal distributions and 
patterns of bacteria, potential analogies to patterns known from general ecology (e.g. 
Johst and Brandl 1997b; Banitz et al. 2008) can be investigated. 

Finally, and more broadly, microbial ecosystems may provide insights about the 
validity and generalisability of ecological theory, and new theory may originate from 
studying these ecosystems that is also relevant to animal and plant ecology (cf. Prosser 
et al. 2007). 
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Figure 1.3 Confocal laser scanning microscopy images of Pythium ultimum filaments 
growing on glass surfaces (source: Furuno et al. 2010). a Visualisation of the presence 
of liquid films (light grey) along fungal hyphae. Arrows in the insert indicate the 
dimensions of the liquid film (3-4 µm). b Visualisation of the presence of Pseudomonas 
putida PpG7 (green) within the liquid films. 

1.2 Research objectives 

Drawing on the research requirements stated in section 1.1, this doctoral thesis aims at 
understanding the mechanisms and conditions that determine the success of increasing 
contaminant bioavailability and biodegradation performance with networks facilitating 
bacterial dispersal. The ecological perspective given in section 1.1.4 suggests 
integrating theoretical knowledge from ecology into these investigations of microbial 
degradation processes. Therefore, the studies of this thesis include the development of 
an integrative approach to combine simulation modelling and laboratory experiments, 
based on both ecological and microbiological theory (cf. Sec. 8.1). The main research 
objectives are: 

 To derive relevant processes, ecological and microbiological, for 
appropriately modelling bacterial colony growth and achieving a high 
accordance of the simulation model with experimentally observed patterns. 

 To find out whether bacterial dispersal networks can considerably improve 
the performance of contaminant degradation. 

 To examine the consequences of different environmental conditions for the 
effects of bacterial dispersal networks on the performance of contaminant 
degradation. 

 To test if and characterise how the spatial structure of dispersal networks 
influences their effects on the performance of contaminant degradation. 
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Figure 1.4 Overview of the following chapters, regarding the categories focus, methods, 
abiotic conditions and dispersal networks. The size of the ‘modelling’ icons indicates 
the share of programming work comprised in the respective chapters. 

1.3 The chapters at a glance 

1.3.1 Synopsis 
Here, we summarise the major aspects covered in the following chapters of this thesis, 
including the methods applied and the crucial findings obtained. An overview of main 
focus as well as methods and assumptions for each chapter is provided in figure 1.4. 
First, we describe microbiological experiments that let us observe bacterial behaviour 
(Ch. 2). Second, we develop a mechanistic, process-based and spatially explicit 
computer model that enables us to simulate and interpret this behaviour (Ch. 3). This 
model serves as a tool for testing the validity and relevance of certain ecological 
concepts (conditional dispersal, resource allocation; Ch. 4) in the context of bacterial 
degradation. Most important, it allows for predictions of the ecosystem behaviour, also 
under conditions that cannot easily be examined in laboratory experiments (Ch. 5; 6; 7). 
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Finally, the approach developed in this thesis, the results obtained with this approach, 
and potential directions for future research are discussed (Ch. 8). 

1.3.2 Chapter 2 
Data for this thesis were derived from laboratory experiments with Pseudomonas putida 
PpG7 colonies growing on agar-plates. These experiments, which are described in detail 
in chapter 2, are a specific case study for consumer-resource systems that consist of 
organic substrate as resources and degrading bacteria as consumers. Spatiotemporal 
dynamics of bacterial colonies have been observed under various environmental 
conditions. Different abiotic conditions were investigated via different agar and glucose 
concentrations, and bacterial dispersal networks were mimicked with glass fibres. 

1.3.3 Chapter 3 
In chapter 3, the bacterial simulation model is presented. The model was developed to 
describe microbial consumer-resource systems, to understand their key behavioural 
mechanisms, and to predict the performance of an ecosystem service they provide – 
biodegradation of organic contaminants – under various environmental conditions. 
Fundamental to this model is the use of reaction-diffusion equations incorporating 
individual behavioural rules to describe spatiotemporal dynamics of bacterial colony 
growth and depletion of organic substrate. Furthermore, the integration of theoretical 
concepts from two disciplines, ecology and microbiology, is a specific feature. This 
simulation model is a major element of the thesis used for all subsequent analyses. It 
provides the means for fulfilling the research objectives stated in section 1.2. 

1.3.4 Chapter 4 
Chapter 4 addresses the question whether the theoretical ecological concept of 
conditional dispersal, denoting that the dispersal strategy depends on environmental 
conditions, is crucial for accurately assessing the dynamics and efficiency of bacterial 
degradation of contaminants. Different dispersal strategies, which either incorporate or 
neglect this concept, are implemented in the model and simulation results compared to 
the laboratory case study (Ch. 2). The results show that, with respect to the condition 
resource uptake, the model’s correspondence to observation data is significantly higher 
for conditional than for unconditional bacterial dispersal. One aspect of conditional 
dispersal in particular accounts for a major part of the improvement: the cessation of 
bacterial dispersal at high resource levels. It is also shown that the bacterial dispersal 
strategy has a significant impact on model predictions for bacterial degradation of 
resources: Disregarding conditional bacterial dispersal can lead to overestimations when 
assessing the performance of this ecosystem service. 

1.3.5 Chapter 5 
In chapter 5, the general effects of some simple exemplary bacterial dispersal networks 
on the performance of contaminant degradation are explored, with focus on abiotic 
conditions, particularly on the agar concentration. As biodegradation performance in 
soil often depends on the bioavailability of organic contaminants to degrading bacteria 
(cf. Sec. 1.1.2), this performance is analysed (and predicted) under various abiotic 
conditions and in response to dispersal networks with different spatial configurations, 
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including scenarios that are not easily feasible in experiments. It is shown that 
conditions of restricted bacterial dispersal also limit degradation performance. Under 
such unfavourable conditions, dispersal networks have the highest potential for 
improving the bioavailability of contaminants to bacteria. Furthermore, the 
biodegradation performance significantly varies with the spatial configuration of the 
dispersal networks applied and the time horizon over which performance is assessed. 

1.3.6 Chapter 6 
Chapter 6 takes into account the heterogeneity of environmental conditions, which is 
known to limit the bioavailability of contaminants to degrading bacteria in many cases 
(cf. Sec. 1.1.2). To match situations regarded as being typical in contaminated soils, two 
types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions, that 
is, a mix of areas where bacterial movement is efficient or restricted, and heterogeneous 
initial resource distributions, that is, a mix of areas of low and high contaminant 
concentrations. The simulation model predicts that bacterial dispersal networks can 
enhance the performance of biodegradation for a wide range of spatial heterogeneities 
under these conditions. Also here, the time horizon considered for assessing 
biodegradation performance and the spatial configuration of networks are key factors 
determining the degree of biodegradation improvement by dispersal networks. 

1.3.7 Chapter 7 
The focus of chapter 7 is the spatial configuration of bacterial dispersal networks. Since 
the spatial structure of real fungal networks can be very complex, several aggregated 
metrics for handling this complexity and distinguishing networks with regard to their 
impact on biodegradation performance are investigated. To this end, we develop a 
method to test single metrics and combinations of two metrics for their suitability to 
assess biodegradation performance. It is shown that a particular combination of two 
metrics allows for capturing most of the network’s characteristics that determine 
respective biodegradation improvements: Network coverage and accessibility lead to 
reliable assessments and should therefore be considered when developing enhanced 
bioremediation strategies based on stimulating the establishment of fungal mycelia on 
contaminated soil sites. 

1.3.8 Chapter 8 
Finally, chapter 8 concludes with a discussion of methods and results, and gives an 
outlook on planned research. First, a summary of the developed approach highlights the 
fundamental elements contributing to this thesis, how they are connected, and which 
benefits were derived from the approach. This integrative approach can serve as a basis 
for future research on ways to explore and understand microbial ecosystems, and also to 
generalise and answer fundamental ecological questions. Second, the main findings are 
summarised and discussed shortly. These results highlight the potential of applying 
fungal networks for enhancing bacterial degradation of soil contaminants, as well as key 
factors that will determine the success of strategies based on such enhancements. Third, 
the outlook covers topics of future studies that are planned in succession of this doctoral 
thesis, and collaborative research activities relating to topics beyond its scope that have 
been started already. 
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 Chapter 2
2 Laboratory Experiments∗ 

2.1 Organism and culture conditions 

Pseudomonas putida PpG7 (NAH7) bacteria (Dunn and Gunsalus 1973) and glucose 
(Fluka, Switzerland) were used as model organism and model substrate. Bacterial 
colonies were grown at a constant temperature of 30 °C in Petri dishes on minimal 
medium agar MMA (Harms and Zehnder 1994; Wick et al. 2001) under various abiotic 
conditions in terms of agar and glucose concentrations. We varied the agar 
concentration aC , which limits the potential dispersal of bacteria, and the initial 
concentration of glucose 0

sC , which was the sole energy resource (3, 4 and 5 g/l agar 
concentration; 0.1 and 1 g/l glucose concentration). The applied conditions ranged from 
‘swimming agar’ (below 3.5 g/l agar concentration) to ‘swarming agar’ (above 3.5 g/l 
agar concentration; cf. Harshey 2003). Four replicate experiments were performed for 
each combination of aC  and 0

sC . 

2.2 Observation data 

Each agar plate was inoculated in its centre with approximately 6 710×  bacterial cells 
pregrown on glucose. The colonies were observed for 66 h by hourly image scanning 
(e.g. Fig. 2.1a) using a commercial flatbed scanner (HP Jetset 7400c). From these 
images, the total area of the bacterial colonies was calculated with image analysis 
software ImageJ (Rasband 1997). Thus, subsequent image sequences provided the 
colony areas as a function of time for each combination of the two varied abiotic factors 

aC  and 0
sC  (Fig. 2.2). The observation data were used for validating and parameterising 

the simulation model (cf. Ch. 3; 4). 
Contrary to studies with other bacterial strains (Bacillus subtilis (Ohgiwari et al. 

1992; Wakita et al. 1994), Pseudomonas aeruginosa (Köhler et al. 2000; Rashid and 
Kornberg 2000), Mycobacterium gilvum (Fredslund et al. 2008)), in which diverse 
morphological growth patterns under various conditions could be identified, we 
observed a homogeneous circular colony growth over the whole range of abiotic 
conditions examined. 

                                                 
 
∗ Dr. Ingo Fetzer, Dr. Daniela Inkrot and Susann Pleger contributed substantially to 

conducting and observing laboratory experiments. 
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Figure 2.1 Observed spatial patterns of bacteria on agar plates (image scans). Bacterial 
concentrations are indicated by grey shading, increasing from black (no bacteria) to 
white. a After 33 h under 0.1 g/l initial glucose concentration and 3 g/l agar 
concentration. b After 66 h under 0.1 g/l initial glucose concentration and 5 g/l agar 
concentration, with a crosswise dispersal network of four glass fibres (cf. Sec. 2.3). 

2.3 Bacterial dispersal networks 

In order to simulate the effects of dispersal networks, we used disposable polymer 
coated glass fibres based on Mayer et al. (2000) as well-controlled substitutes for fungal 
networks. Glass fibres mimic the attributes of fungal hyphae, as thin films of water 
emerge around the glass fibres and provide dispersal corridors for the bacteria. They 
were placed on MMA, and experiments with 0.1 g/l initial glucose concentration and 3, 
4 and 5 g/l agar concentration were conducted (e.g. Fig. 2.1b). 
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Figure 2.2 Total area measurements of bacterial colonies plotted versus time. Columns 
show different initial glucose concentrations, increasing from left to right. Rows show 
different agar concentrations, increasing from top to bottom (cf. graph titles). Four 
experimental replicates for each scenario are plotted as black crosses. Note that at 
approximately 60 cm² the size of the agar plates is reached. 
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 Chapter 3
3 Simulation Model 

3.1 Overview 

The purpose of the simulation model is to describe consumer-resource systems 
consisting of organic contaminants as resource and degrading bacteria as consumers, in 
order to analyse their spatiotemporal dynamics and assess their degradation 
performance in response to various dispersal networks and under various abiotic 
conditions. Therefore, the model spatially explicitly describes the dynamics of bacterial 
colony growth and substrate depletion, using the following set of reaction-diffusion 
equations (cf. Symbols table on page 87 for units): 

( ) ( ) xxgsxsxax
x CDdaYCqCCqCCD

t
C )()())(,,( −−+∇∇=
∂
∂ , (3.1)

xsss
s CCqCD

t
C )(2 −∇=
∂
∂ , (3.2)

( ) xgs
y CYCqa

t
C

)(,0max −=
∂
∂

, (3.3)

where xC  is the concentration of active bacteria, sC  is the concentration of substrate, 
and yC  is the concentration of inactive bacteria. xD  is the bacterial diffusion coefficient 
for a given (constant) agar concentration aC . It varies with xC  and sC . sD  is the 
constant diffusion coefficient of substrate. The bacterial reaction term includes the 
substrate uptake rate q , the growth yield gY , and biomass loss rates due to maintenance 
a  and dispersal d . 

According to this system, the explicit spatiotemporal dynamics of concentrations of 
bacteria and substrate are approximated with a finite difference method, inspired by the 
BacSim model (Kreft et al. 1998), on a two-dimensional simulation area SA  
representing an 88 mm diameter agar plate with reflective boundaries. This area is 
divided into rectangular grid cells, which are indexed with ),( ji  starting from )0,0(  in 
the centre of the simulation area (Fig. 3.1). 

From a process-based point of view, one simulation time step tΔ  comprises the 
following sequence of processes: substrate uptake by bacteria, uptake allocation, 
bacterial dispersal, bacterial growth and reproduction, and substrate diffusion (cf. Fig. 
3.2 for an overview; Sec. 3.2 for a detailed description of these processes). Examples of 
bacterial colonies simulated with the model can be found in figures 3.3 and 3.4a. 
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Figure 3.1 The circular simulation area SA is divided into rectangular grid cells. 
Indexing starts from (i, j) = (0, 0) in the centre of the agar plate. The enlargement shows 
the 9 point neighbourhood NBHi, j of a grid cell (i, j) including the grid cell itself (cf. Eq. 
(3.8)), and the weights for diffusion wk, l (cf. Eq. (3.9)). 

3.2 Model processes 

3.2.1 Substrate uptake 
In agreement with other bacterial models (e.g. Panikov 1996; Kreft et al. 2001; 
Grijspeerdt et al. 2005; Schuler 2005; Picioreanu et al. 2007; Xavier and Foster 2007) 
the Monod kinetic function (Monod 1949) is used for calculating the substrate uptake in 
cell ),( ji  at time t: 

tji
ss

tji
stji

CK
Cqq ,,

,,

max
,,

+
= , (3.4)

where sK  is the Monod half-saturation constant. The maximum uptake rate maxq  is 
calculated according to equation (3.18) below. The corresponding change in substrate 
concentration is: 

tji
x

tji

react

tji
s

tji
s Cq

t
CC ,,,,

,,1,,

−=
Δ
−+

. (3.5)

3.2.2 Uptake allocation 
The substrate uptake tjiq ,,  is divided into fractions for maintenance, dispersal and 
growth. The fraction for maintenance a~  is constant. The fraction for dispersal tji

effd ,,~  
depends on resource uptake according to the conditional dispersal strategy described in 
detail in chapter 4. These two fractions are related to corresponding biomass loss rates 
( gYaa ~= , g

tji
eff Ydd ,,~

= , cf. Eq. (3.1)). The fraction for growth is left: 

tji
eff

tjitji
eff daqq ,,,,,, ~~ −−= . (3.6)
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Figure 3.2 Scheme of processes comprised in the bacterial simulation model. Processes 
on the left affect bacterial dynamics, processes on the right affect substrate dynamics, 
the process of substrate uptake by bacteria affects both. 

3.2.3 Bacterial dispersal 
The dispersal of bacteria is modelled as diffusion. For this purpose the finite difference 
approximation from the BacSim model (Kreft et al. 1998) is adapted to our simulation 
model. The original diffusion algorithm is: 

tji
x

x

diff

tji
x

tji
x C

cl
D

t
CC ,,

2

,,1,,

=
Δ
−+

, (3.7)

where tji
xC ,,  is the weighted average of bacterial concentrations tlk

xC ,,  in the 9 point 
neighbourhood of a regarded grid cell ),( ji  (cf. Fig. 3.1): 

( ) ( ){ }1111:),(, +≤≤−∧+≤≤−= jljikilkNBH ji  (3.8)

and cl is the side length of one grid cell. As in the BacSim model, the weights lkw ,  
accord to the following stencil (cf. Fig. 3.1): 

( ) ( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=−

≠∧≠

=∈∀

otherwise

jilk

jlik

wNBHlk lkji

5
1

),(),(1
20
1

:),( ,, . (3.9)

Thus, equation (3.7) reads: 
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jiNBHlk
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x Cw

cl
D
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,),(

,,
,2

,,1,,

, (3.10)

which can be written as: 

( )∑
≠
∈

+

−=
Δ
−

),(),(
),(

,,,,
,2

,,1,,

,
jilk

NBHlk

tji
x

tlk
xlk

x

diff

tji
x

tji
x

ji

CCw
cl
D

t
CC . (3.11)

In our system, the effective bacterial diffusion coefficient ),( ,,,,,,,
,

tjitji
x

Ctji
effx qCD a  may vary 

in space and time depending on the bacterial concentration and the conditional bacterial 
dispersal strategy (cf. Ch. 4), and on the presence of dispersal networks (cf. Sec. 3.5). 
Its maximum aC

xD max,  is determined by the agar concentration aC . Adapting to 

spatiotemporally varying bacterial diffusion coefficients aCtji
effxD ,,,

, , the approximation 
algorithm for the changes in bacterial concentration needs to be modified. With regard 
to the finite difference scheme, the effective diffusivity between two neighbour grid 
cells is given by the harmonic mean of their diffusion coefficients: 

aa

aa

aa
Ctlk

effx
Ctji

effx

Ctlk
effx

Ctji
effxCtlk

effx
Ctji

effx DD
DD

DDh ,,,
,

,,,
,

,,,
,

,,,
,,,,

,
,,,

,

2
),(

+
= . (3.12)

The harmonic mean is used, because it provides the average velocity over a distance, 
when half the distance is travelled with one and the other half with another velocity. 
Inserting these diffusivities (Eq. (3.12)) for xD  into equation (3.11) results in: 

( )∑
≠
∈

+

−=
Δ
−

),(),(
),(

,,,
,

,,,
,

,,,,
,2

,,1,,

,

),(1

jilk
NBHlk

Ctlk
effx

Ctji
effx

tji
x

tlk
xlk

diff

tji
x

tji
x

ji

aa DDhCCw
clt

CC . (3.13)

In addition to varying diffusion coefficients, which depend on bacterial concentration 
and substrate uptake (cf. Ch. 4), this algorithm allows for the incorporation of very high 
diffusion coefficients for grid cells, which belong to dispersal networks (cf. Sec. 3.4). It 
also allows for spatially heterogeneous bacterial dispersal conditions (cf. Ch. 6). 

3.2.4 Bacterial growth and reproduction 
The processes of growth and reproduction are not distinguished but modelled 
simultaneously as the growth of bacterial biomass. This growth is related to the 
substrate uptake – the more uptake is available for growth (cf. Eqs. (3.4); (3.6)) the 
more the bacteria can grow. The effective bacterial growth rate is given by: 



 
 

3.2 Model processes 
 

 

27 

aq
q

µµ
tji

effefftji
eff ~

max

,,

max
,,

−
= , (3.14)

where eff
maxμ  is the maximum effective growth rate, and aq ~

max −  is the potential 
maximum effective uptake rate, calculated by assuming maximum uptake, which is 
exclusively used for maintenance and growth. Hence, the change in biomass through 
growth is given by: 

tji
x

tji
eff

react

tji
x

tji
x C

t
CC ,,,,

,,1,,

μ=
Δ
−+

, (3.15)

which can be negative, if the maintenance rate is not met (i.e. 0,, <tji
effq ). In this case 

bacterial cells become inactive – they do not consume substrate, disperse, or grow any 
more but do remain in the system, which leads to an increase in the concentration of 
inactive biomass: 

( ) tji
x

tji
eff

react

tji
y

tji
y C

t
CC ,,,,

,,1,,

,0max μ−=
Δ

−+

. (3.16)

To determine the maximum uptake rate maxq  we use the growth yield coefficient 
corrected for maintenance, which only considers the substrate consumption for growth 
(cf. van Bodegom 2007): 

tji
eff

tji
eff

g q
µ

Y ,,

,,

=  (3.17)

and, by inserting equation (3.14), get: 

a
Y

µq
g

eff
~max

max += . (3.18)

3.2.5 Substrate diffusion 
The substrate diffusion is modelled with the same approximation algorithm as the 
bacterial dispersal (cf. Sec. 3.2.3), but with a spatially and temporally invariant 
diffusion coefficient. Hence, the finite difference equation is (cf. Eqs. (3.7); (3.10)): 

∑
∈

+

=
Δ
−

jiNBHlk

tlk
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tji
s

tji
s Cw
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D
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,),(
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. (3.19)
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3.2.6 Summary 
Summing up all processes, we can write the following discrete equations which 
correspond to the reaction-diffusion model given by equations (3.1), (3.2) and (3.3): 
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tji
eff CYq ,,,,,0max − . (3.22)

3.3 Model inputs and outputs 

The simulation model for the consumer-resource system was implemented in Delphi 5.0 
(Borland 1999), including a graphical user interface (Fig. 3.3).  

In accordance with the laboratory experiments (Ch. 2), the model inputs (cf. Fig. 
3.3) include the abiotic conditions (agar concentration aC : 3, 4, 5 g/l; initial substrate 
concentration 0

sC : 0.01-1 g/l) and the bacterial biomass inoculated (the average wet 
mass of 1 bacterial cell is assumed to be 2.5 pg, i.e. 6 710×  cells (as inoculated in the 
experiments; cf. Sec. 2.2) relate to 0.15 mg). The simulation time can be chosen up to 
2000 h. The standard grid cell side length cl  is 1 mm, but the mesh is variable from 
0.25-2 mm. The standard time step tΔ  of 60 s can be reduced down to 10 s, in 
particular, to simulate very fast bacterial diffusion along dispersal networks (cf. Sec. 
3.5). The presence of dispersal networks and their spatial configuration (cf. Ch. 5; 6; 7) 
also belong to the model inputs. Finally, the relative abundance and spatial 
autocorrelation of fractal patterns for heterogeneous abiotic conditions (cf. Ch. 6) can be 
specified. 

All model outputs (cf. Fig. 3.3) are time-dependent. Most important are the 
simulated spatial patterns of bacteria and substrate. From the bacterial distribution, the 
bacterial colony area, its growth velocity, the mean, minimum, maximum and total 
population (biomass) of bacteria in the system and the population growth rate are 
calculated. From the substrate distribution the mean, minimum, maximum and total 
amount of substrate in the system are derived. This allows for determining the amount 
of substrate consumed by bacteria at any given time in the simulation, which is an 
operationalisation of the ecosystem service of interest – the biodegradation of organic 
contaminants. Bacterial substrate consumption (proportional to the initial amount of 
substrate) serves as a measure of biodegradation performance throughout the following 
chapters. 
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Figure 3.3 Graphical user interface of the bacterial simulation model. 

3.4 Model parameterisation 

The maximum effective growth rate eff
maxμ  of Pseudomonas putida PpG7 bacteria was 

approximated for growth on liquid minimal medium in presence of 2 g/l glucose (Fluka, 
Switzerland) as sole energy source, as described earlier by Wick et. al. (2001). 
Moreover, the model contains a number of parameters that were approximated from 
literature (cf. Table 3.1). Following the approach of pattern-oriented modelling (Grimm 
et al. 2005), the remaining parameter values are indirectly determined by optimising the 
fit of the model output to particular patterns observed from the laboratory experiments – 
the total area covered by the bacterial colony as a function of time and abiotic 
conditions (cf. Ch. 2). 

To fit a selected set of simulation model parameter values to the data we define 
bound constraints for the parameter values and perform a pattern search within these 
constraints (Lewis and Torczon 1998; 1999). For this purpose, the objective value R  to 
be minimised during the pattern search is defined as the sum of weighted squared 
residuals: 
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This R -value provides a measure of the model’s agreement to the data, that is, the 
model performance (low R  means high performance and vice versa). The residuals are 
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the differences between model output )(
0, tTA sa CC

mdl  and the four replicate measurements 

),(
0, tmTA sa CC

msr  at each point in time ( 4..2,1=m ; 66..1,0=t  h) and for each combination 
of initial conditions ( 1,1.0;5,4,3 0 == sa CC  g/l). The weights for each point are 

obtained from the variance of the measurement data at this point )(
0, tVAR sa CC

smth , which is 
smoothed with a fourth-order polynomial Savitzky-Golay filter (Orfanidis 1995) with a 
frame width of 15 points, and biased with a default variance of 0.5 cm4. 

According to the different model configurations (e.g. different bacterial dispersal 
strategies; cf. Ch. 4) specific subsets of simulation model parameters are included in the 
optimisations. The excluded parameters are fixed to standard values (cf. Ch. 4 for 
details). The high correspondence between simulation model and observation data is 
exemplified in figure 3.4. 

Table 3.1 Simulation model parameters. 

Parameter Symbol Values Unitsa Source 

time step tΔ  30-60 s - 

minimum dispersal 
fraction 

minλ  0.5b 
0.05c 

- qualitative fit to experiments, 
(cf. Golding et al. 1998) 

maximum effective 
growth rate 

eff
maxμ  0.4142 1/h own measurement 

maintenance rate a~  0.0005 gs/gx/h parameter testingd 

0c  0.0005 gs/gx/h 

1c  0.0055 gs/gx/h 

strategy thresholds 

2c  0.581 gs/gx/h 

parameter optimisatione 

 3c  0.6684 gs/gx/h  

dispersal reduction 
limitf 

λ,xC  0.125 610−× gx/mm2 qualitative fit to experiments, 
(cf. Golding et al. 1998) 

maximum dispersal 
concentrationf 

max,xC  0.25 610−×  gx/mm2 qualitative fit to experiments, 
(cf. Golding et al. 1998) 

grid cell side length cl  1 mm - 

maximum dispersal 
consumption rate max

~d  0.005 gs/gx/h parameter testingd 

substrate diffusion 
coefficient 

sD  2.33 mm2/h (Zhang and Fang 2005) 

lg
x

aD /3
max,  5.58 mm2/h parameter optimisatione maximum bacterial 

diffusion coefficients 
lg

x
aD /4

max,  1.81 mm2/h  
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Parameter Symbol Values Unitsa Source 
lg

x
aD /5

max,  0.21 mm2/h parameter optimisatione maximum bacterial 
diffusion coefficients 

DN
xD max,  144 mm2/h qualitative fit to experiments 

Monod half-saturation 
constant 

sK  0.09 gs/l approximated from literature (cf. 
Hardy et al. 1993) 

maximum substrate 
uptake rate 

maxq  0.6908 gs/gx/h calculated from Eq. (3.18) 

growth yield 
coefficient 

GY  0.6 gx/gs approximated from literature (cf. 
Isken et al. 1999) 

fraction of protein 
mass in dry biomass 

 0.5 -  

fraction of dry 
biomass in wet 
biomass 

 0.25 -  

a  gs – grams of substrate, gx – grams of dry biomass 
b  On swimming agar (agar concentration < 3.5 g/l; cf. Sec. 4.2). 
c  On swarming agar (agar concentration > 3.5 g/l; cf. Sec. 4.2). 
d  Cf. Sec. 4.2.2. 
e  Cf. Sec. 4.3; Table 4.3. 
f  Cf. Sec. 4.2.1; Eq. (4.3). Not on dispersal networks. 

3.5 Bacterial dispersal networks 

In the simulation model, high diffusivity corridors are implemented through a high 
bacterial diffusion coefficient DN

xD max,  in the corresponding grid cells (cf. Table 3.1). The 
value of the bacterial diffusion coefficient along these dispersal networks DN  was 
determined by qualitative comparison of the simulation model outcome (e.g. Fig. 3.4c) 
to the observations from the laboratory experiments with glass fibres (e.g. Fig. 3.4d; cf. 
Sec. 2.3). Throughout this thesis, different spatial configurations of dispersal networks 
are applied: crosswise networks for adjusting the model to experiments (e.g. Fig. 3.5a; 
cf. Sec. 3.4), grid-like networks for simulating general effects of networks and obtaining 
indications about the role of their spatial configuration (e.g. Fig. 3.5b, c; cf. Ch. 5; 6) 
and random networks for analysing the spatial configuration’s impact on biodegradation 
performance in detail (e.g. Fig. 3.5d, e, f; cf. Ch. 7). 
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t = 66 h 

t = 33 h 

 

Figure 3.4 Spatial patterns of bacteria on agar plates. Bacterial concentrations are 
indicated by grey shading, increasing from black (no bacteria) to white. a, b After 33 h 
under 0.1 g/l initial glucose concentration and 3 g/l agar concentration. a Simulation 
model result. b Experimental result (cf. Fig. 2.1a). c, d After 66 h under 0.1 g/l initial 
glucose concentration and 5 g/l agar concentration, with a dispersal network of four 
glass fibres. c Simulation model result (cf. Sec. 3.5). d Experimental result (cf. Sec. 2.3; 
Fig. 2.1b). 

a cb

d fe

 

Figure 3.5 Examples of different bacterial dispersal networks in the model, 
implemented as high diffusivity corridors (white grid cells) on the simulation area 
(visualised in black). a Crosswise configuration (cf. Fig. 3.4). b, c Grid-like 
configurations (cf. Ch. 5; 6). d-f Random configurations (cf. Ch. 7). 
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 Chapter 4
4 Conditional Bacterial Dispersal∗ 

4.1 Conditional dispersal 

Ecological studies have shown that mode of dispersal has a fundamental impact on the 
dynamics, spatial distribution and survival of populations in many ecosystems (e.g. 
Roughgarden et al. 1988; Hastings 1993; Hovestadt and Poethke 2006; Münkemüller 
and Johst 2008). In microbiology, however, its role is largely unexplored. Hence, we 
investigate the impact of dispersal mode on bacterial colony growth and its relevance 
for subsequent resource consumption and, in turn, biodegradation performance. In 
particular, we study the ecological concept of conditional dispersal (e.g. Ims and 
Hjermann 2001; Bowler and Benton 2005; Armsworth 2009; Cosner 2009; Hovestadt et 
al. 2010). 

Generally, unconditional dispersal refers to the assumption of a constant dispersal 
rate, irrespective of biotic and abiotic factors. By contrast, conditional dispersal refers to 
dispersal rates with functional dependence on these factors. Various internal and 
external conditions can be considered to determine a conditional dispersal function (Ims 
and Hjermann 2001; Bowler and Benton 2005), for instance, habitat quality (Armsworth 
2009), habitat dynamics (Travis and Dytham 1999), population density (Johst and 
Brandl 1997a; Poethke and Hovestadt 2002; Ims and Andreassen 2005; Travis et al. 
2009; Münkemüller et al. 2011), and different more or less complex functional 
relationships can be assumed (Hovestadt et al. 2010). 

To analyse whether conditional dispersal is a relevant aspect of the bacterial 
behaviour we use the bacterial simulation model described in chapter 3. Bacterial 
models are known to provide excellent possibilities for investigating ecological 
concepts in a microbiological context (e.g. Jessup et al. 2004; Kreft 2004), which can 
benefit both ecology (Kerr et al. 2002; Cadotte et al. 2005; Jessup et al. 2005; Benton et 
al. 2007) and microbiology (Battin et al. 2007; Prosser et al. 2007). They have been 
used successfully to interpret experimental observations (Wimpenny and Colasanti 
1997; van Loosdrecht et al. 2002; Matsushita et al. 2004; Picioreanu et al. 2007) and to 
predict bacterial behaviour (Lega and Passot 2004; Zorzano et al. 2005). 

The simulation model translates bacterial dispersal into a bacterial diffusion 
coefficient (cf. Sec. 3.2.3). Two aspects of conditional dispersal can be regarded in this 
context: (a) the dependence of bacterial dispersal on bacterial density, and (b) the 
dependence of bacterial dispersal on resource uptake. Both aspects are included in the 
                                                 
 
∗ A research paper with analogous content to this chapter was submitted (title: The 

relevance of conditional dispersal for bacterial colony growth and biodegradation). 
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model as variable functional dependencies of the bacterial diffusion coefficient on (a) 
bacterial concentration and (b) substrate uptake rate. The focus of our study lies on 
aspect (b), because in existing bacterial colony models (e.g. Kreft et al. 1998; Mimura et 
al. 2000; Ginovart et al. 2002a) bacterial dispersal is often considered to be uncoupled 
from resource uptake. Kawasaki et al. (1997) proposed a simple linear relationship 
between the bacterial diffusion coefficient and resource uptake. We consider several 
functional relationships of increasing complexity. 

Drawing on the corresponding model results, implications can be derived about the 
sensitivity of the spatiotemporal bacterial colony dynamics to differences in the 
dispersal process. Pivotal to our approach is the incorporation of well-controlled 
laboratory experiments into the analysis with Pseudomonas putida PpG7 organisms 
growing under a variety of environmental conditions on glucose agar (cf. Ch. 2). The 
different model configurations are fitted to multiple colony growth patterns obtained 
from these laboratory experiments (cf. Sec. 2.2) in the sense of pattern-oriented 
modelling (Grimm et al. 2005). Based on goodness of fit, we show the extent to which 
conditional dispersal with respect to resource uptake improves the accuracy of the 
simulation model compared with unconditional dispersal. We also show that 
disregarding conditional dispersal may have a considerable impact on bacterial 
degradation in the model and derive a conditional dispersal mode for reliably assessing 
the performance of this ecosystem service. 

Furthermore, we discuss how the implementation of conditional bacterial dispersal 
with respect to resource uptake is related to the ecological concept of resource 
allocation (e.g. Piceno and Lovell 2000; Ernest et al. 2003; Brown et al. 2004; Johst et 
al. 2008). This concept describes the division of resource uptake into fractions allocated 
to different energy-demanding processes, such as reproduction, movement or 
maintenance. In the given context of bacterial colony growth and biodegradation, the 
relation is based on the assumption that bacterial dispersal requires energy expenditure. 

4.2 Methods 

4.2.1 Bacterial dispersal strategies 
In the simulation model, bacterial dispersal at agar concentration aC  is related to two 
conditions: bacterial concentration and substrate uptake via 

),(),(),( ,,,,,,,,,,,
, a

tji
xa

tji
x

tjitji
x

Ctji
effx CqDCCqCD a ⋅= α . (4.1)

Omitting indices, this formula can be simply written as: 

)()(),(, qDCqCD xxxeffx ⋅= α . (4.2)

The first term defines how bacterial dispersal depends on bacterial concentration: 
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Figure 4.1 Functional dependence of bacterial dispersal on substrate uptake in general 
form (cf. Eq. (4.4); Table 4.1). Bacterial dispersal strategies I, II and III (cf. legend, 
definitions on page 36). 
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At high bacterial concentrations the access of the bacteria to the dispersal medium is 
limited and the probability of collisions between bacteria increases (Golding et al. 
1998). At low bacterial concentrations the bacteria suffer from the limited provision of 
dispersal-facilitating substances (to disperse on swarming agar (agar concentration 
above 3.5 g/l) bacteria need to produce a lubrication fluid (Golding et al. 1998; Cohen et 
al. 1999), also referred to as wetting agents (Matsuyama and Nakagawa 1996; Bees et 
al. 2000; Harshey 2003); to disperse in swimming agar (agar concentration below 
3.5 g/l) bacteria secrete materials which make the liquid more suitable for swimming 
(Golding et al. 1998)). Hence, dispersal is reduced in both cases, at high ( max,

,,
x

tji
x CC > ) 

and at low ( λ,
,,

x
tji

x CC < ) bacterial concentrations. 

The second term in equation (4.1) defines the general dependence of bacterial dispersal 
on substrate uptake (cf. Fig. 4.1): 
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This relationship is given by a piecewise linear function, defined by the strategy 
parameters aC

xD max, , 0c , 1c , 2c  and 3c . The explicit values of these parameters were 
determined by optimisation (cf. Sec. 3.4). As our focus lies on conditional bacterial 
dispersal with respect to substrate uptake, we analysed three different bacterial 
 



 
 
4 Conditional Bacterial Dispersal 
   

 

36 

Table 4.1 Bacterial dispersal strategies – parameters included in the optimisations. 

Strategy Fixed parameters Optimised parameters 

I ac ~
0 = , max1

~~ dac += , 

max2 qc = , max3 qc =  

aC
xD max,  

II ac ~
0 = , max1

~~ dac +=  aC
xD max, , 

2c , 3c  

III - aC
xD max, , 

2c , 3c , 

0c , 1c  

dispersal strategies of increasing complexity with regard to functional dependence on 
substrate uptake. These were defined in the following way: 

 Strategy I – Dispersal is unconditional with respect to substrate uptake (black 
curve in Fig. 4.1). The bacteria always disperse as much as they can. Only if 
the uptake falls below the energy demand for dispersal and maintenance 
( max

,, ~~ daq tji +< ) will dispersal be reduced. Then the bacteria cannot grow, 
because the whole uptake is allocated to (reduced) dispersal and 
maintenance. If the uptake falls below the maintenance rate ( aq tji ~,, < ), it 
will be allocated to (reduced) maintenance only. This leads to no bacterial 
dispersal and negative growth (cf. Eqs. (3.6); (3.14)). 

 Strategy II – Simple conditional dispersal with respect to substrate uptake is 
implemented (red curve in Fig. 4.1). The bacteria can reduce their dispersal at 
high uptake rates ( 2

,, cq tji > ). The uptake, which is not used for dispersal, is 
allocated to bacterial growth instead. 

 Strategy III – More complex conditional dispersal with respect to substrate 
uptake (in comparison to strategy II) is implemented (blue curve in Fig. 4.1). 
The bacteria can reduce their dispersal at high uptake rates ( 2

,, cq tji > ) as 
well as at low uptake rates ( 1

,, cq tji < ), allocating the available uptake to 
growth instead. 

The effective bacterial diffusion coefficient aCtji
effxD ,,,

,  (cf. Eq. (4.1)) also determines the 
fraction of uptake allocated to dispersal (cf. Sec. 3.2.2; Eq. (3.6)): 

a

a

C
x

Ctji
effxtji

eff D
D

dd
max,

,,,
,

max
,, ~~
= . (4.5)
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Table 4.2 Energy setups. 

max
~d  [gs/gx/h]

a~  [gs/gx/h] 

0 0.005 0.01 

0.0005 A B C 

0.001 D E F 

According to the different bacterial dispersal strategies specific subsets of parameters of 
the dispersal function were included in the optimisations (Table 4.1; cf. Sec. 3.4). The 
excluded parameters were fixed to the values given in table 4.1. 

4.2.2 Selected dispersal model configurations 
To compare the bacterial dispersal strategies, it was necessary to specify the model 
parameter values for the maintenance rate a~  and the maximum energy demand for 
dispersal max

~d . We call a combination of values for a~  and max
~d  an energy setup. Based 

on the outcome of several test parameter optimisations 6 different energy setups, 
comprising reasonable ranges of values for a~  and max

~d , were analysed (A-F; cf. Table 
4.2). As many microbial models neglect energy demands for bacterial dispersal, we also 
investigated the performance of the different strategies when a max

~d -value of 0 gs/gx/h 
was assumed (energy setups A and D; cf. Table 4.2). 

For each energy setup, we optimised the model parameter values of the three 
different bacterial dispersal strategies (cf. Table 4.1; Fig. 4.1). We defined a dispersal 
model configuration as the combination of an energy setup (A-F) and a bacterial 
dispersal strategy (I, II, III). The comparison of dispersal model configurations 
comprised the goodness-of-fit measure R  (cf. Eq. (3.23)), the number of optimised 
parameters parsN , and the graphical congruence to the experimental data (e.g. Fig. 4.2). 

Since we focussed on the functional dependence on substrate uptake )(qDx , the 
functional dependence on bacterial concentration )( xCα  was not varied during strategy 
optimisation (cf. Eq. (4.2)). The following parameter values were applied: 

5.03
min ==aCλ  gx/mm2, 05.05,4

min ==aCλ  gx/mm2, 6
, 10125.0 −×=λxC  gx/mm2, 

6
max, 1025.0 −×=xC  gx/mm2 (cf. Eq. (4.3)). To test the robustness of our findings to 

variations in this functional dependence, values of 6
max, 105.0 −×=xC  gx/mm2 and 

6
max, 1025.1 −×=xC  gx/mm2 were applied, too, but did not alter our results qualitatively. 

4.3 Results 

The fixed and the optimised parameter values, and the sum of weighted squared 
residuals R  for each dispersal model configuration are given in table 4.3. These  
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Table 4.3 Optimisation results for each dispersal model configuration. The small-
written values were fixed during optimisation (cf. Table 4.1). The bold values indicate 
the dispersal model configurations shown in figures 4.2 and 4.3. 

Model 
configuration A I A II A III B I B II B III C I C II C III 

a~   [gs/gx/h]  0.0005   0.0005   0.0005  

max
~d  [gs/gx/h]  0   0.005   0.01  

lg
x

aD /3
max,  [mm2/h] 4.99 5.54 7.24 5.03 5.58 7.17 5.1 5.69 7.2

lg
x

aD /4
max,  [mm2/h] 1.19 1.75 2.94 1.19 1.81 2.92 1.19 1.82 2.87

lg
x

aD /5
max,  [mm2/h] 0.18 0.21 0.25 0.18 0.21 0.26 0.18 0.21 0.26

2c  [gs/gx/h] 0.6908 0.5857 0.5625 0.6908 0.581 0.5537 0.6908 0.583 0.5444

3c  [gs/gx/h] 0.6908 0.6654 0.663 0.6908 0.6684 0.6684 0.6908 0.6656 0.6737

0c  [gs/gx/h] 0.0005 0.0005 0.1892 0.0005 0.0005 0.178 0.0005 0.0005 0.1643

1c  [gs/gx/h] 0.0005 0.0005 0.2875 0.0055 0.0055 0.2733 0.0105 0.0105 0.2874

parsN  [] 3 5 7 3 5 7 3 5 7

R  [] 9306 4198 4056 9404 4215 4004 9501 4252 3990
          

Model 
configuration D I D II D III E I E II E III F I F II F III 

a~   [gs/gx/h]  0.001   0.001   0.001  

max
~d  [gs/gx/h]  0   0.005   0.01  

lg
x

aD /3
max,  [mm2/h] 4.97 5.54 7.18 5.05 5.6 7.25 5.09 5.7 7.27

lg
x

aD /4
max,  [mm2/h] 1.19 1.74 2.94 1.19 1.8 2.98 1.2 1.85 3

lg
x

aD /5
max,  [mm2/h] 0.18 0.2 0.26 0.18 0.21 0.26 0.18 0.21 0.25

2c  [gs/gx/h] 0.6913 0.5898 0.5571 0.6913 0.584 0.5527 0.6913 0.593 0.5625

3c  [gs/gx/h] 0.6913 0.6624 0.6674 0.6913 0.6664 0.6693 0.6913 0.6583 0.6625

0c  [gs/gx/h] 0.001 0.001 0.1843 0.001 0.001 0.1855 0.001 0.001 0.178

1c  [gs/gx/h] 0.001 0.001 0.2787 0.006 0.006 0.2797 0.011 0.011 0.288

parsN  [] 3 5 7 3 5 7 3 5 7

R  [] 9327 4214 4007 9414 4228 4002 9512 4295 4081
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optimisation results show a significant increase in model accuracy for the conditional 
bacterial dispersal strategies II and III ( R -values 3990-4295) in comparison to the 
unconditional bacterial dispersal strategy I ( R -values 9306-9512). Furthermore, the 
model accuracy is slightly lower for strategy II than for strategy III. The latter, however, 
comprises two additional optimisation parameters. These results are robust for all 
energy setups A-F, and the optimised parameter values are very similar. Hence, the 
graphical comparison of dispersal model configurations B I-III and the measurement 
data (Fig. 4.2) is representative for all energy setups. 

Inspecting the optimised parameter values, we found a general trend of increasing 
bacterial diffusion coefficients from unconditional dispersal strategy I to conditional 
dispersal strategies II and III (cf. Table 4.3). The reason for this is that the range of 
substrate uptake rates at which the bacteria disperse is smaller for strategies II and III 
than for strategy I. Consequently, the bacterial diffusion coefficients have to increase to 
fit the same experimental colony growth curves. 

The model output deviates significantly from the empirical data for 4 g/l agar 
concentration (Fig. 4.2). This is due to the fact that the model is optimised to the whole 
dataset at once and the residuals are weighted according to the variances of the data (cf. 
Sec. 3.4; Eq. (3.23)). These variances are comparatively high for 4 g/l agar 
concentration. Hence, the corresponding data have less influence on the optimisation 
than the data obtained with 3 g/l and 5 g/l agar concentration. 

Figure 4.3 shows an example of the simulated substrate (glucose) consumption resulting 
from the dispersal model configurations B I, B II and B III (for 3 g/l agar concentration 
and 1 g/l initial substrate concentration). Substrate consumption depends sensitively on 
the assumed bacterial dispersal strategy. Unconditional bacterial dispersal according to 
strategy I results in higher substrate consumption than conditional dispersal according to 
the strategies II and III. Similar to the colony areas (Fig. 4.2), the differences in the 
dispersal model configurations B II and B III are rather small. 

4.4 Discussion 

The motivation for studying the theoretical ecological concept of conditional dispersal 
(e.g. Travis and Dytham 1999; Bowler and Benton 2005; Armsworth 2009) was to 
investigate and improve the accuracy of the process-based bacterial simulation model 
(cf. Ch. 3), which was developed to assess the ecosystem service of biodegradation of 
organic contaminants in terms of the bacterial consumption of resources during colony 
growth. This requires a reliable model structure that includes all ecological processes 
relevant for the bacterial system dynamics. Therefore, we examined three bacterial 
dispersal strategies differing in their functional response to resource uptake with regard 
to their impacts on colony growth and biodegradation performance. A fundamental 
aspect of our approach was to confront the simulation data resulting from the different 
dispersal strategies with empirical bacterial colony growth data from adequate 
laboratory experiments (cf. Ch. 2) in order to estimate model accuracy (e.g. cf. Hilborn 
and Mangel 1997). We analysed which bacterial dispersal strategy and which parameter 
combinations fit best to the laboratory results. This allowed us to identify the relevance 
of the ecological concept of conditional dispersal and the parameter values for correctly  
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Figure 4.2 Experimental measurement data (grey crosses; cf. Fig. 2.2) and simulation 
model results with the energy setup B and three different bacterial dispersal strategies I, 
II and III (different line types; cf. legend). Total area of bacterial colonies plotted versus 
time. Different subplots display different combinations of agar concentration and initial 
glucose concentration (cf. subplot titles). 

describing bacterial colony growth with the simulation model and, more importantly, 
for reliably assessing the performance of biodegradation. 

4.4.1 The necessity to incorporate conditional dispersal 
Comparison of the simulation results to empirical data (cf. Fig. 4.2) revealed that the 
accuracy of the model can be significantly enhanced when conditional, rather than 
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Figure 4.3 Simulated consumption of substrate (glucose) with the bacterial dispersal 
configurations B I, B II and B III (different line types; cf. legend), for 3 g/l agar 
concentration and 1 g/l initial substrate concentration. Proportion of substrate consumed 
plotted against time. 

unconditional, bacterial dispersal with respect to resource uptake is assumed. In 
particular, it proved to be very important that bacterial dispersal ceases at high resource 
uptake rates (i.e. conditional dispersal strategy II fitted much better than unconditional 
dispersal strategy I). The additional assumption of the cessation of bacterial dispersal at 
low resource uptake rates (conditional dispersal strategy III) only led to minor 
improvements (compared to conditional dispersal strategy II). Hence, the two additional 
optimisation parameters 0c  and 1c  included in strategy III did not add significant 
benefit. For this reason, we use the conditional bacterial dispersal strategy II for 
subsequent applications of the simulation model (cf. Table 3.1). 

Most important for the assessment of biodegradation performance is our finding 
that, in addition to significantly improving the agreement with laboratory experiments 
and the reliability of the model, conditional dispersal may result in markedly different 
resource consumption curves compared to unconditional dispersal (Fig. 4.3). Hence, 
assuming unconditional instead of conditional bacterial dispersal can lead to biased 
model predictions on the performance of the ecosystem service of bacterial degradation. 

The impact of conditional dispersal has rarely been studied in microbial systems. In 
experimental studies, Friedenberg (2003) tested it in microcosms for bacteriophagous 
nematodes, and Taylor and Buckling (2010) used resource-free zones to limit bacterial 
dispersal. Also, some colony growth modelling studies introduced a simple functional 
dependence of the bacterial diffusion coefficient on resource uptake using a linear 
function (e.g. Kawasaki et al. 1997; Lega and Passot 2003). But this is the first study to 
include different forms of this functional dependence on resource uptake, where 
unconditional versus conditional dispersal strategies (cf. Eq. (4.4); Fig. 4.1) are 
compared in the analytical framework of bacterial colony growth modelling and in 
relation to empirical data from experiments. 
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4.4.2 Relating conditional dispersal to resource allocation 
Our results help to clarify the interrelations between the ecological concepts of 
conditional dispersal and resource allocation (e.g. Piceno and Lovell 2000; Ernest et al. 
2003; Brown et al. 2004; Johst et al. 2008) in the given microbiological context. By 
considering bacterial energy demands for maintenance, dispersal and reproduction, the 
bacterial colony simulation model implicitly incorporates the ecological concept of 
resource allocation to these processes. The fraction of resource uptake which is 
allocated to dispersal is determined by the bacterial dispersal strategy. Thus, if dispersal 
is reduced conditionally, fewer resources will be allocated to dispersal and, 
consequently, more resources will be allocated to reproduction. In this way, the two 
ecological concepts of conditional dispersal and resource allocation are linked. 
Ultimately, resource allocation turned out to be a key process for bacterial colony 
growth and biodegradation performance. 

4.4.3 The potential of the approach presented 
The central idea behind the approach presented in this chapter was: 

 To consider model configurations that either incorporate the ecological 
concept of interest (here: conditional dispersal depending on resource uptake) 
in a certain way or neglect it. 

 To compare the results of these model configurations based on their goodness 
of fit to a variety of empirical data from laboratory experiments in order to 
investigate whether the concept considered actually matters and should be 
incorporated. 

 To assess the relevance of this concept for reliably assessing the performance 
of the ecosystem service of interest (here: biodegradation). 

Thus, we optimised the analytical framework for assessing bacterial ecosystems and 
their services. Simulation model (cf. Ch. 3) and laboratory experiments (cf. Ch. 2) had 
different roles in this approach with complementary benefits. 

 Simulation model – The model allowed us to test different scenarios of 
incorporating the ecological concept. This variation of behavioural 
mechanisms such as the bacterial dispersal strategy is impossible in 
experiments. But it is possible in the model and we gained insight into the 
extent to which the ecological concept matters by comparing its effects on 
bacterial colony growth and on the ecosystem service of interest (resource 
consumption). 

 Laboratory experiments – The experiments were essential for parameterising 
the different model configurations. Of major importance was the fact that the 
experiments comprised a broad range of abiotic conditions (here: agar 
concentration determining bacterial dispersal potential, and glucose 
concentration determining resource supply). For each combination of abiotic 
conditions the colony growth curves form an independent empirical pattern 
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and the model configurations were optimised to fit the whole variety of these 
patterns at once (cf. Fig. 4.2). Therefore, the approach corresponds to the 
strategy of pattern-oriented modelling widely used in ecology (cf. Grimm et 
al. 2005, and references therein). Only by fitting to multiple empirical 
patterns at once it was possible to reveal the relevance of conditional 
dispersal for bacterial colony growth and biodegradation. 

Evidently, the approach allowed the analysis of bacterial ecosystem services on 
different levels of abstraction: concepts, models and experiments. Therefore, it can be 
viewed as a rigorous implementation of the scientific principle of combining pure 
rationalism (abstract concepts) and radical empiricism (concrete experiments), with 
models mediating between them. This combination is known to be crucial for gaining 
an understanding of the principles of complex systems, which is a precondition for both 
theory building and management support. 

4.4.4 Main conclusion 
Summing up, our study shows that the ecological concept of conditional dispersal can 
significantly improve the agreement of a bacterial simulation model to corresponding 
experimental observations. Our results specifically suggest that the propensity of 
bacteria to disperse may not be constant, but may depend on resources in such a way 
that bacterial dispersal ceases when resource uptake is high. Therefore, considering the 
ecological concept of conditional dispersal in microbiology can be beneficial and, in 
particular, of key importance for reliable predictions of bacterial degradation 
performance. 

By following the presented approach, microbiology and theoretical ecology can 
benefit from each other: Microbiological models can be made more theoretically sound 
by founding them on general ecological concepts. On the other hand, the validity and 
reliability of general ecological concepts can be tested in microbiological contexts. 





 
 
 
 
 

45 

  
  

 Chapter 5
5 Biodegradation Benefits from Dispersal 

Networks* 

5.1 Assessing biodegradation performance in response to 
bacterial dispersal networks 

Several experimental studies suggest that fungal hyphae can act as dispersal networks, 
increasing the performance of biodegradation in situ (Kohlmeier et al. 2005; Wick et al. 
2007a; Furuno et al. 2010). This in turn is pivotal for developing more energy-efficient 
and environmentally friendly biotechnologies for remediation of contaminated soil sites 
(cf. Ch. 1). Such technologies require a comprehensive understanding of the dynamics, 
functioning and services of soil-bacteria-fungi ecosystems. Particularly, when applying 
dispersal networks, the impact of both their spatial configuration and the abiotic 
conditions on biodegradation performance have been rarely studied. These factors, 
however, may be essential for efficient biodegradation. 

Here, we study the impact of different dispersal networks with various spatial 
configurations and under various abiotic conditions on the spatiotemporal dynamics of 
the consumer-resource system consisting of organic substrate as resource and bacteria 
as consumers (cf. Ch. 3; 4), with particular focus on the performance of bacterial 
degradation. In order to gain a mechanistic understanding of the system’s 
spatiotemporal dynamics, we use the simulation model (cf. Ch. 3) to investigate 
scenarios which are not experimentally feasible, due to their complex spatial 
configurations. Thus, we are able to make predictions of biodegradation performance in 
response to dispersal network configurations and abiotic conditions. We show that 
bacterial dispersal, and thus contaminant uptake and degradation, strongly depend on 
abiotic conditions, and that dispersal networks can efficiently improve degradation 
performance, especially under otherwise adverse conditions. 

5.2 Methods 

To analyse bacterial degradation performance as a function of abiotic conditions, time 
and dispersal network configurations, we monitored the amount of substrate consumed 
by bacteria in the simulation model. According to the experimental setup in the 
                                                 
 
* A research paper with analogous content to this chapter was published (Banitz et al. 

2011a). 
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particular case study considered (cf. Ch. 2 for a description of the laboratory 
experiments performed), we varied the abiotic conditions in terms of agar 
concentrations from 3 to 5 g/l. The initial substrate concentration was set to 0.1 g/l. We 
applied three different dispersal networks with grid-like structures (Networks 1, 2 and 
3) as shown in figure 5.1. By simulating the combined dynamics of bacteria and 
substrate over a total period of 120 h without and with different dispersal networks, we 
analysed, if and how such networks may change the biodegradation performance. We 
varied the coverage of the networks and the networks’ position relative to the bacterial 
inoculum to test, whether these factors change the simulation results significantly. 

5.3 Results 

Figure 5.1 shows the biodegradation performance in response to dispersal networks, 
measured in terms of substrate consumption during bacterial colony growth, as a 
function of abiotic conditions (different agar concentrations, compare graphs a, b and c), 
time (x-axis), and dispersal network configurations (different line colours in the graphs, 
cf. legend) over a total period of 120 h, and the spatial patterns of bacteria and substrate 
after 120 h (images). 

First, figure 5.1 highlights the impact of varying abiotic conditions, in terms of 
different agar concentrations: The results without dispersal networks (black curves; cf. 
legend) clearly indicate a decrease in biodegradation performance with an increasing 
concentration of agar, and so with an increasingly limited bacterial dispersal. This 
model outcome is robust to a wide range of changes in initial substrate concentration. 
While the addition of dispersal networks generally leads to minor improvements under 
favourable bacterial dispersal conditions (i.e. low agar concentration; Fig. 5.1a), they 
are found to significantly improve glucose consumption under unfavourable bacterial 
dispersal conditions (i.e. high agar concentration; Fig. 5.1c). 

Second, the graphs in figure 5.1 demonstrate the importance of specifying the time 
horizon over which biodegradation performance is assessed. For instance, as depicted in 
figure 5.1a, there are significant differences among the four simulated network 
configurations after 40 h, but no differences occur after 120 h. Whereas in figure 5.1c, 
three of the four scenarios show the same performance after 40 h, but significant 
differences after 120 h. 

Third, the impact of different dispersal network configurations (different line 
colours; cf. legend) on glucose consumption, in comparison to consumption without 
dispersal networks, is visualised. Adding a grid-like dispersal network on half of the 
plate’s area (Network 1) lets the bacteria disperse faster on the plates and hence, they do 
degrade faster than without the dispersal network. This effect gets stronger when the 
network covers almost the whole plate (Network 2) or when the initial distance between 
the network’s branches and the bacterial inoculum is reduced (Network 3). The 
differences in degradation performance, resulting from the four different dispersal 
network scenarios presented, increase with an increasing concentration of agar and vary 
over time. 

Taking everything into account, these results are a strong indication that, in addition 
to the presence of dispersal networks, three factors will affect biodegradation 
performance in reality: the abiotic conditions, the time horizon over which performance 
is assessed, and the structure and location of the dispersal networks. 
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Figure 5.1 Simulated consumption of substrate (glucose) under 0.1 g/l initial glucose 
concentration, plotted versus time. No dispersal network – black curves, Network 1 – 
ochre curves, Network 2 – blue curves, Network 3 – red curves (cf. legend). The images 
on the right show the corresponding dispersal network configurations (white grids), and 
simulated spatial patterns of bacteria (left column) and substrate (right column) after 
120 h. Bacterial concentrations are indicated by grey shading, increasing from black (no 
bacteria) to white. Substrate concentrations are indicated by colour shading, decreasing 
from green (0.1 g/l) to yellow (0 g/l). a Agar concentration 3 g/l. b Agar concentration 
4 g/l. c Agar concentration 5 g/l. 
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5.4 Discussion 

In this chapter, we presented simulations of the spatiotemporal dynamics of 
contaminant degrading bacteria, growing on agar plates with and without various 
dispersal networks and under various abiotic conditions. A number of studies have 
modelled bacterial colony growth on agar plates using reaction-diffusion equations 
(Kawasaki et al. 1997; Kitsunezaki 1997; Golding et al. 1998; Kessler and Levine 1998; 
Mimura et al. 2000), reaction-diffusion equations coupled with a hydrodynamic 
equation (Lega and Passot 2003; 2004), individual-based modelling (Ben-Jacob et al. 
1994; Kreft et al. 1998; Ginovart et al. 2002b; Krone et al. 2007), or individual-based 
modelling coupled with reaction-diffusion equations (Golding et al. 1999). Selected 
aspects of these bacterial studies have been adapted to our model. For instance, we used 
finite difference algorithms to approximate the solutions of a set of reaction-diffusion 
equations for the concentrations of bacteria and organic substrate (cf. Sec. 3.2.3; 3.2.5) 
and we used the Monod kinetic function (cf. Sec. 3.2.1). However, our model differs 
from existing studies in two aspects. First, we implemented the ecological concepts of 
conditional dispersal and resource allocation (cf. Ch. 4) as we explicitly considered 
division of consumer energy uptake into fractions for bacterial maintenance, dispersal 
and growth (cf. Eqs. (3.6); (4.4); (4.5)). Second, our model is first and foremost 
focussed on the degradation of organic contaminants, and its performance in response to 
dispersal networks and abiotic conditions. This ecosystem service of bacteria in soil is 
of high relevance (Whitman et al. 1998), as contaminated soils are known to severely 
influence human food production, health, recreation or even reproduction (Harms and 
Bosma 1997; Ehlers and Luthy 2003). 

The modelling approach has major advantages for investigating the bacterial colony 
dynamics: It permits to simulate a large number of scenarios with different conditions, it 
provides a mechanistic understanding of the ecosystem service of interest – the bacterial 
degradation of organic contaminants, and it allows for directly measuring the 
performance of this ecosystem service – in terms of the simulated glucose consumption. 
This is unfeasible in laboratory experiments, as indicator compounds added to make the 
glucose consumption quantifiable bear the risk of modifying the bacterial behaviour (cf. 
Sec. 8.3.1). 

We identified three important factors influencing the performance of bacterial 
degradation in response to dispersal networks: the abiotic conditions, the time horizon, 
and the dispersal network’s spatial configuration. 

 Abiotic conditions – The agar concentration was identified as a key factor 
limiting the biodegradation performance. The more fluid the medium is, the 
easier the flagellated bacteria can disperse, and the faster the contaminants 
can be accessed and, hence, become bioavailable for degradation. This is in 
accordance with the general dependence of bacterial motility on moist 
conditions (Harshey 2003; Schroll et al. 2006). 

We have also shown that the abiotic conditions are essential for the 
relative improvement of biodegradation performance, which dispersal 
networks can cause: The more difficult it is for the bacteria to disperse, the 
more crucial the dispersal networks are for reaching remote areas. This does 
not imply that the biodegradation under unfavourable abiotic conditions will 
outperform the biodegradation under favourable abiotic conditions (cf. Fig. 
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5.1), but that dispersal networks have the potential to compensate for the 
detrimental effects unfavourable abiotic conditions have on biodegradation. 

 Time horizon – The time horizon considered proved to be an essential aspect 
for assessing the ecosystem service’s performance. Our results reveal that 
contrasting findings can arise when not specifying this time horizon (cf. Fig. 
5.1). Hence, when assessing the performance of biodegradation in response 
to different abiotic conditions and dispersal networks, one should always be 
aware of the time horizon’s impact. 

 Dispersal network’s spatial configuration – The results show that the 
dispersal network’s ability to enhance contaminant degradation is highly 
sensitive to its spatial configuration. Both the network coverage and the 
initial distance from the bacterial inoculum to the network appear to be 
important criteria for determining the potential improvement of 
biodegradation performance. 

We used an integrative approach combining the simulation model with laboratory 
experiments. In a case study, Pseudomonas putida colonies were grown under different 
well-defined abiotic conditions (cf. Ch. 2). The simulation model (Ch. 3) shows high 
accordance with real bacterial colonies. It is able to reproduce the observed bacterial 
behaviour qualitatively, in terms of the colony patterns (cf. Fig. 3.4a, b), and 
quantitatively, in terms of the increase of colony areas over time (cf. Fig. 4.2). We also 
included simple dispersal networks in the laboratory experiments. The model 
qualitatively reproduces the corresponding bacterial colony patterns too (e.g. Fig. 3.4c, 
d), in particular as it was designed to incorporate bacterial diffusion coefficients, which 
vary temporally and spatially in structured environments (cf. Sec. 3.2.3). 
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 Chapter 6
6 Spatially Heterogeneous Environments∗ 

6.1 Considering spatially heterogeneous abiotic conditions 

In situ bioremediation is a promising strategy for energy-efficient treatment of 
contaminated soil. Nonetheless, biodegradation performance is often limited by low 
bioavailability of contaminants to bacteria (cf. Ch. 1). Experimental studies have shown 
that fungal mycelia can act as bacterial dispersal networks, facilitating bacterial access 
to the contaminants (Kohlmeier et al. 2005; Wick et al. 2007a; Furuno et al. 2010). 
More generally, simulation modelling has demonstrated that bacterial dispersal 
networks have the potential to improve biodegradation performance (Ch. 5). These 
simulations revealed that abiotic conditions, by governing the ability of bacteria to 
disperse and the bioavailability of contaminants, have a strong impact on 
biodegradation benefits from bacterial dispersal networks. However, in chapter 5 abiotic 
conditions were assumed to be homogeneous in space, which is unlikely in soil systems, 
where water-air interfaces and pores are prevalent and contaminants (i.e. bacterial 
resources) are often heterogeneously distributed (Boswell et al. 2002; Semple et al. 
2003; Boswell et al. 2003; Young and Crawford 2004; Harms and Wick 2006; Or et al. 
2007; Boswell et al. 2007; Wick et al. 2010). Whether biodegradation benefits from 
dispersal networks in homogeneous environments are maintained in heterogeneous 
environments, for instance, with a mix of areas where bacterial movement is efficient or 
restricted or a mix of high and low contaminant concentrations, remained an open 
question. 

In this chapter we therefore explicitly assume spatial heterogeneity of abiotic 
conditions and investigate the effects of bacterial dispersal networks on biodegradation 
performance. We extend the simulation model developed in chapter 3 and include (a) 
spatially heterogeneous bacterial dispersal conditions and (b) spatially heterogeneous 
initial resource distributions. In particular, we use fractal landscapes (With 1997; With 
and King 1999) to create heterogeneous patterns which vary in two attributes: relative 
abundance and spatial autocorrelation of abiotic conditions of a certain quality. We 
simulate bacterial consumption of resources without and with different dispersal 
networks. This allows us to derive predictions about the impacts of dispersal networks 
on biodegradation under the more realistic assumption of environmental heterogeneity. 
Our results show that dispersal networks facilitate the colonisation of areas otherwise 
restricting bacterial dispersal and enable the bacteria to reach even remote resource-rich 
 

                                                 
 
∗ A research paper with analogous content to this chapter was published (Banitz et al. 

2011b). 
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Figure 6.1 Examples of heterogeneous fractal patterns, created with the midpoint 
displacement algorithm. Both attributes, relative abundance p (x-axis) and spatial 
autocorrelation H (y-axis), can be varied from 0 to 1. 

areas quickly. Concerning the attributes of the heterogeneities investigated, we find that 
relative abundance (i.e. quantity) of favourable abiotic conditions is much more relevant 
for biodegradation improvements than spatial autocorrelation (i.e. degree of clumping). 
Altogether, bacterial dispersal networks (mimicking the effects of fungal mycelia) 
greatly accelerate resource consumption and improve biodegradation performance in 
most instances of heterogeneous abiotic conditions. 

6.2 Methods 

Using the simulation model (cf. Ch. 3), we investigated the interaction of heterogeneous 
abiotic conditions and bacterial dispersal networks in relation to biodegradation 
performance. This performance was assessed from determining the amount of substrate 
consumed as a proportion of the initial amount (cf. Sec. 3.3). We tested (a) spatially 
heterogeneous bacterial dispersal conditions and (b) spatially heterogeneous initial 
resource distributions. To apply spatial heterogeneity, we systematically generated 
fractal patterns with the midpoint displacement algorithm (Saupe 1988). The two input 
attributes for this algorithm are the relative abundance (as a proportion ]1,0[∈p  of the 
simulation area) and the spatial autocorrelation (determined by parameter ]1,0[∈H ) of 
the pattern of grid cells (Fig. 6.1). 

Simulations were performed without and with bacterial dispersal networks, the latter 
using three different spatial configurations varying in network coverage and initial 
distance between bacterial inoculum and network (the same configurations as in Ch. 5). 



 
 

6.2 Methods 
 

 

53 

ba
ct

er
ia

 
su

bs
tra

te
 

t = 100 h 

ag
ar

 

a b

c d

fe

 

Figure 6.2 Example of heterogeneous bacterial dispersal conditions without a dispersal 
network (left panel) and with dispersal Network 3 (white grid; right panel). The initial 
substrate concentration was set to 0.1 g/l. a, b Pattern of agar concentrations, blue grid 
cells – low agar concentration (3 g/l, i.e. favourable bacterial dispersal conditions), black 
grid cells – high agar concentration (5 g/l, i.e. unfavourable bacterial dispersal 
conditions). c, d Simulated spatial patterns of bacteria after 100 h. Bacterial 
concentrations are indicated by grey shading, increasing from black (no bacteria) to 
white. e, f Simulated spatial patterns of substrate after 100 h. Substrate concentrations 
are indicated by colour shading, decreasing from green (0.1 g/l) to yellow (0 g/l). 

6.2.1 Spatially heterogeneous bacterial dispersal conditions 
Patterns of grid cells with favourable bacterial dispersal conditions (corresponding to 
bacterial dispersal at 3 g/l agar) were created and unfavourable bacterial dispersal 
conditions (5 g/l agar) were assigned to the remaining grid cells. Values of p  and H  
were varied from 0 to 1 with a step width of 0.05. Figure 6.2 shows an example of 
heterogeneous agar concentrations and resulting bacterial and substrate distributions, 
without and with one specific bacterial dispersal network. For each combination of p  
and H , and for each of the four dispersal network configurations, 20 random spatial 
patterns of heterogeneous agar concentrations were simulated over 200 h. From these 20 
simulation runs, mean values and standard deviations of consumed substrate were 
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Figure 6.3 Example of heterogeneous initial resource concentrations, without a 
dispersal network (left panel) and with dispersal Network 3 (white grid; right panel). 
The agar concentration was set to 5 g/l. a, b Pattern of initial substrate concentrations, 
green grid cells – high initial substrate concentration (1 g/l), yellow grid cells – no initial 
substrate concentration (0 g/l). c, d Simulated spatial patterns of bacteria after 100 h. 
Bacterial concentrations are indicated by grey shading, increasing from black (no 
bacteria) to white. e, f Simulated spatial patterns of substrate after 100 h. Substrate 
concentrations are indicated by colour shading, decreasing from green (1 g/l) to yellow 
(0 g/l). 

calculated. For one particular combination ( 5.0=p ; 5.0=H ), we compared the mean 
consumption curves to a reference case of homogeneous moderate bacterial dispersal 
conditions (4 g/l agar; cf. Ch. 5). Moreover, at a given point in time (e.g. after 100 h), 
the mean values provided a measure of degradation performance, as a function of 
autocorrelation H  and abundance p  of the patterns, for different dispersal network 
configurations. 

6.2.2 Spatially heterogeneous initial resource distributions 
Patterns of grid cells with high substrate concentration (1 g/l) were created, the 
remaining grid cells were left without substrate at the start of the simulations. The value 
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of p  was varied from 0.05 to 1 and the value of H  from 0 to 1, both with a step width 
of 0.05. If p  were set to 0, the bacteria could neither grow nor disperse in the 
simulations, as they need to consume substrate for both processes. An example of 
heterogeneous initial substrate concentrations and the resulting bacterial and substrate 
distributions, without and with a dispersal network, is given in figure 6.3. Note that 
substrate diffuses to initially empty grid cells during simulation. Thus, bacteria located 
on these grid cells can consume substrate after some time and use the energy uptake to 
disperse and grow. Degradation performance was assessed from mean values of 
substrate consumption in the same way as for heterogeneous agar concentrations. For 
comparison, we also simulated a homogeneous initial substrate concentration of 0.5 g/l. 

6.3 Results 

6.3.1 Spatially heterogeneous bacterial dispersal conditions 
Figure 6.2a, b shows an example pattern of spatially heterogeneous agar concentrations. 
Half of the grid cells ( 5.0=p ) have a low agar concentration (3 g/l, i.e. favourable 
bacterial dispersal conditions) while the remaining grid cells have a high agar 
concentration (5 g/l, i.e. unfavourable bacterial dispersal conditions). The spatial 
autocorrelation H  (cf. Sec. 6.2) is set to 0.5. Without a dispersal network, the bacteria 
predominantly colonise areas with favourable dispersal conditions within 100 h (Fig. 
6.2c). Most of the areas with unfavourable dispersal conditions and, also, some remote 
areas with favourable dispersal conditions remain inaccessible to the bacteria. The 
spatial pattern of substrate corresponds to that of bacteria (Fig. 6.2e). With a dispersal 
network, the bacteria colonise almost all areas within 100 h (Fig. 6.2d) and substrate is 
consumed completely (Fig. 6.2f). 

In figure 6.4a-d, substrate consumption is plotted against time for heterogeneous 
patterns of favourable dispersal conditions (as in the example in Fig. 6.2). For each 
dispersal network configuration, the outcomes of 20 simulation runs and their mean 
values show a considerable improvement in biodegradation performance through the 
introduction of dispersal networks (e.g. from 64% up to 100% after 100 h; compare red 
spots). The degree of improvement and, thus, the differences between the four dispersal 
network configurations varies with the time horizon considered. Moreover, except for 
Network 3, the outcomes of the single simulation runs vary distinctly. The simulated 
substrate consumption for the homogeneous reference pattern (cf. Sec. 6.2) with 4 g/l 
agar assumed (dashed cyan curves) shows some similarity to the mean values under 
heterogeneous conditions (thick black curves), but also a notably deviating curve shape. 

The lower panels in figure 6.4 display biodegradation improvements by bacterial 
dispersal networks for the whole range of heterogeneous patterns examined (Fig. 
6.4e-h). Network 3 leads to highest benefits, followed by Network 2 and Network 1. 
Regarding the attributes of the different spatial patterns, mean biodegradation 
performance generally increases with increasing abundance p  of favourable dispersal 
conditions, but is much less sensitive to variations in their spatial autocorrelation H . 
Also, the differences among the single simulation runs depend on p  and H : Standard 
deviations (Fig. 6.4i-k) vary greatly with the relative abundance p  and, to a minor 
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Figure 6.4 Simulated biodegradation performance under heterogeneous bacterial 
dispersal conditions. Each column shows a different bacterial dispersal network 
configuration (cf. images and titles on top). Within these columns, the red spots in the 
different subplots correspond to each other. a-d Substrate consumption over time for 
exemplary patterns with a relative abundance p = 0.5 and a spatial autocorrelation 
H = 0.5 (cf. example in Fig. 6.2). Each subplot shows 20 simulation runs (thin grey 
curves), their mean values (thick black curves), and the reference simulation results with 
homogeneous bacterial dispersal conditions (dashed cyan curves; cf. legend). e-h Mean 
values of substrate consumption at 100 h, increasing from green (no substrate 
consumed) to yellow (all substrate consumed; cf. colour bar), for multiple 
heterogeneous patterns differing in the attributes relative abundance p (x-axes) and 
spatial autocorrelation H (y-axes). i-k Standard deviations of substrate consumption at 
100 h, increasing from white to black (cf. colour bar), for the same heterogeneous 
patterns. For Network 3 the simulation runs did not deviate from the mean values. 

degree, with the spatial autocorrelation H  of heterogeneous bacterial dispersal 
conditions. 

6.3.2 Spatially heterogeneous initial resource distributions 
Figure 6.3a, b shows an example pattern of spatially heterogeneous substrate 
concentrations, where high initial substrate concentration (1 g/l) covers half of the grid  
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Figure 6.5 Simulated biodegradation performance under heterogeneous initial resource 
distributions. Each column shows a different bacterial dispersal network configuration 
(cf. images and titles on top). Within these columns, the red spots in the different 
subplots correspond to each other. a-d Substrate consumption over time for exemplary 
patterns with a relative abundance p = 0.5 and a spatial autocorrelation H = 0.5 (cf. 
example in Fig. 6.3). Each subplot shows 20 simulation runs (thin grey curves), their 
mean values (thick black curves), and the reference simulation results with 
homogeneous initial resource distributions (dashed cyan curves; cf. legend). e-h Mean 
values of substrate consumption at 100 h, increasing from green (no substrate 
consumed) to yellow (all substrate consumed; cf. colour bar), for multiple 
heterogeneous patterns differing in the attributes relative abundance p (x-axes) and 
spatial autocorrelation H (y-axes). i-k Standard deviations of substrate consumption at 
100 h, increasing from white to black (cf. colour bar), for the same heterogeneous 
patterns. For Network 3 the simulation runs did only negligibly deviate from the mean 
values. 

cells ( 5.0=p ) and has a spatial autocorrelation H  of 0.5 (cf. Sec. 6.2). The remaining 
grid cells are empty at the start of the simulations. Due to the high agar concentration 
assumed (5 g/l, i.e. unfavourable dispersal conditions), without a dispersal network 
bacterial colony growth towards substrate-rich regions is substantially limited and the 
colony covers a very small area after 100 h (Fig. 6.3c). Only substrate initially located 
in the vicinity of the bacteria can be consumed (Fig. 6.3e). Contrarily, with a dispersal 
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network the bacteria are able to reach even remote substrate-rich regions within 100 h 
(Fig. 6.3d) and consume this substrate (Fig. 6.3f). 

Figure 6.5a-d shows substrate consumption against time for heterogeneous patterns 
of grid cells initially containing substrate (as in the example in Fig. 6.3). Bacterial 
dispersal networks improve mean biodegradation performance greatly (e.g. from 17 % 
up to 100 % after 100 h; compare red spots). Also, variations with the time horizon 
considered can be observed. For instance, after 50 h bacterial substrate consumption is 
only improved by Network 3 in comparison to the configuration without a dispersal 
network. Differences between single simulation runs occur, but are smaller than under 
heterogeneous agar concentrations (cf. Fig. 6.4a-d). The simulation outcomes for the 
same initial amount of substrate, but homogeneously distributed, i.e. 0.5 g/l in each grid 
cell (dashed cyan curves), are very similar to the mean values under heterogeneous 
initial substrate distributions (thick black curves). 

Mean substrate consumption after 100 h (Fig. 6.5e-h) is highly improved by the 
introduction of dispersal networks for almost any initial substrate distribution, with the 
improvement increasing from Network 1 via Network 2 to Network 3. Biodegradation 
performance generally increases when the abundance p  of substrate-rich grid cells, and 
thus also the total amount of substrate, increases. It is, however, not very sensitive to the 
spatial autocorrelation H  of these grid cells. Again, the standard deviations of the 
single simulation runs from the mean values after 100 h (Fig. 6.5i-k) vary greatly with 
the attributes abundance p  and autocorrelation H  of spatially heterogeneous initial 
resource distributions. 

6.4 Discussion 

The aim of the studies in this chapter was to systematically investigate whether bacterial 
dispersal networks can considerably improve the performance of biodegradation under 
spatially heterogeneous environmental conditions, which are characteristic for 
contaminated soils (e.g. Semple et al. 2003; Young and Crawford 2004; Boswell et al. 
2007). Although it had been shown that dispersal networks have the potential to greatly 
improve bacterial degradation under (various) homogeneous abiotic conditions (cf. Ch. 
5), the question of whether the benefits of dispersal networks also hold true for 
heterogeneous abiotic conditions, and if so, depending on which factors, remained open. 
This knowledge, however, is of major importance for an appreciation of the natural role 
of dispersal networks for bioremediation and even more so for their practical 
application. 

6.4.1 Simulation model 
To test the impact of bacterial dispersal networks under spatially heterogeneous abiotic 
conditions we used a suitable simulation model, which was designed to gain a 
mechanistic understanding of the spatiotemporal dynamics of bacterial colony growth 
and to investigate the performance of bacterial contaminant degradation (cf. detailed 
description in Ch. 3). Heterogeneous bacterial dispersal conditions and contaminant 
distributions were incorporated via agar concentrations and initial substrate 
concentrations, both varying in space. Thereby, we took advantage of the following 
strengths of this model: 
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 It provides a conceptually sound spatially explicit framework for analysing 
bacterial colony growth in any type of (homogeneous or heterogeneous) 
environment. The model integrates theoretical concepts from both ecology 
and microbiology and it was comprehensively validated and parameterised 
by means of empirical data from controlled laboratory experiments (cf. Ch. 3; 
4). 

 The model allows for directly measuring the performance of an ecosystem 
service of interest represented by simulated bacterial substrate consumption 
(cf. Sec. 3.3). This operationalisation facilitates a mechanistic understanding 
of this ecosystem service and a focussed analysis of the roles of abiotic 
conditions and bacterial dispersal networks for its performance. 

 The model permits the simulation of a large number of scenarios of abiotic 
conditions and different bacterial dispersal networks. Therefore, we were 
able to analyse a huge variety of conceivable heterogeneities which are hard 
to cover in laboratory experiments. Even if it were technically possible to 
realise such conditions experimentally, the number of experiments required 
would be enormous (in this chapter we presented the results of ca. 70.000 
simulation runs over 200 h, each, and we performed more than 500.000 
simulation runs relating to this study). Only by harnessing this major 
advantage of the simulation model were we able to obtain the findings 
discussed below. 

6.4.2 Biodegradation benefits from bacterial dispersal networks 
We found that bacterial dispersal networks accelerate substrate consumption for most of 
the heterogeneities tested. The networks allow bacteria to bridge areas of unfavourable 
dispersal conditions and reach remote areas quickly. This effect is similar to that of 
dispersal corridors in macro-ecological systems, which may facilitate species dispersal 
across unfavourable regions in heterogeneous landscapes (e.g. Hill 1995; Tischendorf 
and Wissel 1997; Tischendorf et al. 1998). When initial substrate distributions are 
heterogeneous, the networks let the bacteria reach and consume remote substrate 
quickly (in particular when the bacterial inoculum directly adjoins the network, e.g. 
Network 3). 

Key factors for biodegradation improvements in the presence of bacterial dispersal 
networks under homogeneous abiotic conditions (cf. Sec. 5.4) are also important under 
heterogeneous abiotic conditions: The improvements depend on the given abiotic 
conditions, the time horizon, and the spatial configuration of the dispersal network 
applied. Under initially adverse abiotic conditions the degree of improvement is highest 
as dispersal networks can compensate for the negative effects of these conditions. 
Assessments of biodegradation performance can vary greatly for different time horizons 
considered, which may lead to contrasting findings. Regarding spatial configurations, 
biodegradation performance increases with a high network coverage and a short initial 
distance between bacterial inoculum and network. However, it is important to highlight 
that these three factors are interrelated. Their effects on biodegradation performance 
depend complexly on each other and cannot always be disentangled. 

By including spatially heterogeneous conditions typical for unsaturated subsurface 
soils, our study elevates the recent finding that biodegradation benefits from bacterial 
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dispersal networks to a much higher level of reliability and generalisability. Stimulating 
the establishment of fungal networks, for instance by planting trees associated with 
mycorrhizal fungi, to achieve energy-efficient and environmentally sound 
bioremediation appears to be a robust and promising strategy for many contaminated 
soil sites. 

6.4.3 Inspecting the attributes of spatial heterogeneities – relative 
abundance 

Our simulations revealed that substrate consumption is positively correlated to the 
relative abundance (cf. Sec. 6.2) of favourable dispersal conditions (cf. Fig. 6.4). This is 
plausible as the bacteria have access to more substrate when larger areas are easy to 
colonise. Similarly, with an increasing initial abundance of substrate, biodegradation 
performance increases as well (cf. Fig. 6.5). On the one hand, less substrate in the 
system demands less bacterial efforts to degrade it. On the other hand, more substrate 
fosters bacterial colony growth, since it is the sole energy source for bacterial 
maintenance, dispersal and reproduction. Apparently, the latter effect dominates the 
former and leads to better biodegradation performance when more substrate is initially 
present in the system. 

6.4.4 Inspecting the attributes of spatial heterogeneities – spatial 
autocorrelation 

Interestingly, the spatial autocorrelation (cf. Sec. 6.2) in the patterns of heterogeneous 
abiotic conditions only affects the mean substrate consumption to a minor degree (cf. 
Figs. 6.4; 6.5). For heterogeneous dispersal conditions, the explanation is that the mean 
diffusion rate over an area of slow and fast sections does not depend on the spatial 
arrangement of these sections. Hence, the mean area colonised by the bacteria at a given 
time, and consequently the mean amount of substrate consumed, remain very similar for 
different spatial autocorrelations, provided that the abundance of favourable dispersal 
conditions is the same. Of course, patches of favourable dispersal conditions are more 
(less) beneficial when they are close to (far away from) the bacterial inoculation point. 
Hence, the explicit consideration of spatial heterogeneities and randomly chosen patch 
distributions can lead to varying outcomes of individual simulation runs (cf. Fig. 
6.4a-d). However, it should be sufficient to consider the mean biodegradation 
performance, since bacterial dispersal from scattered indigenous microcolonies or 
multiple, distributed inoculations with bacteria are very likely in bioremediation 
measures. 

For heterogeneous initial substrate distributions, a high spatial autocorrelation leads 
to substrate-rich patches which support high bacterial growth, sometimes close to the 
inoculation point and sometimes far away, but this does not alter the mean substrate 
consumption very much in comparison to less correlated initial substrate distributions. 

6.4.5 Homogeneous approximations for heterogeneous conditions 
Because it is known from ecological theory that, under certain conditions, some 
characteristics of complex heterogeneous systems can be predicted by simpler 
homogeneous systems with appropriate parameters (Frank and Wissel 2002; Drechsler 
2009), we also tested whether mean biodegradation performance under heterogeneous 
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conditions could be adequately represented by homogeneous conditions, on the example 
of one specific scenario of spatial heterogeneities (Fig. 6.4a-d). Our test, however, 
indicates qualitative differences in biodegradation performance between homogeneous 
and heterogeneous bacterial dispersal conditions. Only an easily accessible and 
widespread bacterial dispersal network can largely homogenise spatially heterogeneous 
bacterial dispersal conditions and lead to a considerable overlap of the biodegradation 
performance curves under homogeneous and heterogeneous conditions, respectively 
(Network 3; cf. Fig. 6.4d). This suggests that spatially heterogeneous bacterial dispersal 
conditions should be taken into account explicitly to obtain reliable predictions of 
biodegradation performance. 

Spatially heterogeneous initial substrate distributions are smoothed over time by 
substrate diffusion. This important difference to spatially heterogeneous bacterial 
dispersal conditions, which are temporally invariant, has two consequences: First, single 
simulation runs with equal attributes of spatial heterogeneity vary less than those under 
spatially heterogeneous bacterial dispersal conditions (compare Figs. 6.5a-d, i-k and 
6.4a-d, i-k). Second, our comparison on the example of one specific heterogeneous 
scenario suggests that a spatially homogeneous initial resource distribution might 
adequately represent a heterogeneous one, in terms bacterial degradation performance. 
This is due to the homogenising effect of resource diffusion. However, when diffusion 
of resources is limited, it is very likely that, similar to temporally invariant bacterial 
dispersal conditions, spatial heterogeneities need to be taken into account explicitly. A 
detailed analysis of the general validity of homogeneous approximations is beyond the 
scope of this chapter and a topic for future investigations (cf. Sec. 8.3.1). 





 
 
 
 
 

63 

  
  

 Chapter 7
7 Spatial Configuration of Dispersal 

Networks 

7.1 Multiple complex spatial configurations of bacterial 
dispersal networks 

Simulation results with grid-like bacterial dispersal networks have shown that, in 
addition to the prevalent abiotic conditions and the time horizon considered for 
assessing biodegradation performance, the spatial configuration of networks may 
significantly affect potential enhancement of biodegradation (Ch. 5; 6). Understanding 
the role of this spatial configuration is important for developing effective 
bioremediation strategies based on stimulating the establishment of fungal networks in 
contaminated soils. Beyond that, criteria to distinguish different spatial configurations 
are required for assessing biodegradation benefits from bacterial dispersal networks. 

In this chapter, we therefore use the bacterial colony growth model (cf. detailed 
description in Ch. 3) to simulate complex, randomly created dispersal network 
configurations and analyse their impact on bacterial substrate consumption. We obtain 
indications about the dependence of biodegradation performance on the spatial 
configuration of bacterial dispersal networks. A methodological approach is developed 
to investigate the suitability of several spatial metrics, which characterise the manifold 
and complex explicit network configurations in an aggregated manner, for reliably 
assessing the biodegradation benefits created by different dispersal networks. Thus, our 
analysis provides the basis for selecting appropriate characteristics to focus on when 
dealing with the complexity of real fungal networks in future practical applications. 

7.2 Methods 

7.2.1 Abiotic conditions and dispersal networks applied 
To investigate the dependence of biodegradation on the spatial configuration of 
bacterial dispersal networks, we used abiotic conditions of 5 g/l agar concentration (i.e. 
unfavourable bacterial dispersal conditions) and 0.1 g/l initial substrate concentration. 
The dispersal-enhancing effects of fungal networks were modelled with high-diffusivity 
corridors, as described earlier (cf. Sec. 3.5). We generated dispersal networks by 
randomly selecting the number (1-40) of dispersal corridors. For each of these corridors, 
length (11-51 mm), location (midpoint coordinates ),( ji ), and orientation on the 
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Figure 7.1 Simulation results for three exemplary, randomly created spatial 
configurations of dispersal networks (Networks 1-3; cf. titles; dispersal corridors 
visualised in white) under 5 g/l agar concentration and 0.1 g/l initial substrate 
concentration. a-f After 100 h. g-l After 200 h. a, c, e, g, i, k Spatial patterns of bacteria. 
Bacterial concentrations are indicated by grey shading, increasing from black (no 
bacteria) to white. b, d, f, h, j, l Spatial patterns of substrate. Substrate concentrations 
are indicated by colour shading, decreasing from green (0.1 g/l) to yellow (0 g/l). 

simulated Petri dish (horizontal or vertical) were selected randomly too (see example 
network configurations in Fig. 7.1). 

7.2.2 Metrics of spatial configuration of dispersal networks 
As a variety of metrics can be considered for characterising the explicit spatial 
configurations of dispersal networks in an aggregated manner, we investigated the 
suitability of the following (cf. Symbols table on page 87 for units): 

 Network area – The network area ]1,0[∈na  is the area of grid cells ),( ji  
belonging to the dispersal network DN , as a proportion of the simulation 
area SA : 

∑
∑

∈

∈=

SAji

DNji

cl

cl
na

),(

2
),(

2

, (7.1)

where cl  is the side length of one grid cell ( 11 =cl  mm; cf. Table 3.1). 

 Network coverage – The network coverage nc  is defined as the area of grid 
cells not more than 5 mm away from the network, as a proportion of the 
simulation area. For this purpose, the set NC  containing these grid cells is 
defined: 
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so that network coverage nc  is: 

∑
∑

∈
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),(

2
),(

2

. (7.3)

 Network connectivity – For determining network connectivity, the Euler 
characteristic χ , a well-established measure in image analysis (e.g. Vogel 
2002; Roth et al. 2005), is used:  

lo nn −=χ . (7.4)

It counts the number of unconnected network objects on  minus the number of 
closed loops in these objects ln  (cf. Roth et al. 2005). Hence, it leads to 
positive values for poorly connected structures and decreases far into 
negative when connectivity rises. 

 Mean distance to network – For each grid cell in the simulation area, the 
distance to the nearest grid cell belonging to the dispersal network is 
calculated, as a proportion of the diameter of the simulation area 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
∈ lj

ki
d

SAlkjiSA ),(),,(
max . The mean value of these distances is given by: 
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Additionally, we investigated one metric that takes into account the bacterial 
inoculation point: 

 Inoculum distance to network – We calculate the distance from the centre 
)0,0(),( =ji  of the simulation area (cf. Fig. 3.1), where the bacteria are 

inoculated, to the nearest grid cell belonging to the dispersal network, as a 
proportion of the diameter of the simulation area: 

SA

DNlk

d
l
k

idn
⎟⎟
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⎞
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⎛

=
∈),(
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. 

(7.6)
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Figure 7.2 Scheme of the methodological approach developed in this chapter. The two 
network metrics selected for the second step are nc and idn. 

7.2.3 Methodological approach 

The approach we used for performing and analysing simulations with multiple spatial 
configurations of dispersal networks is visualised in figure 7.2. 

In a first step (cf. Sec. 7.3.1), we simulated 1500 different random dispersal network 
configurations over 200 h. In order to increase the diversity of examined dispersal 
networks, 500 simulation runs had the additional restriction that the midpoints of the 
dispersal corridors forming a network all lie in the left half of the Petri dish. Thus, the 
right half remained nearly free of grid cells belonging to the network. We calculated 
Spearman’s rank correlation coefficient ρ , a non-parametric measure of dependence 
(Hollander and Wolfe 1999; Gibbons and Chakraborti 2010), between each metric and 
the simulated substrate consumption at four points in time (after 50, 100, 150 and 
200 h), as well as the mean values of these correlation coefficients ρ  (cf. Table 7.1). 
Thus, we estimated the metrics’ suitability for assessing biodegradation performance 
based on the spatial configurations of networks. Substrate consumption was plotted 
against the metrics (cf. Fig. 7.3). 
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To improve the assessment, we also analysed the combination of two metrics (cf. 
second step below). To this end, we calculated Spearman’s rank correlation coefficient 
ρ  pairwise between the metrics (cf. Table 7.2) and selected two metrics with a 
comparatively low correlation between each other, but both having a comparatively 
high correlation to substrate consumption. 

In a second step (cf. Sec. 7.3.2), we changed our perspective on how to create the 
dispersal networks. Instead of generating many different random spatial configurations 
and calculating resulting metrics afterwards as in the first step (cf. above), we 
deliberately generated random spatial configurations that cover all possible value 
combinations of the two metrics selected ( nc , idn ). To this end, the possible values for 
these metrics were grouped into classes ( 1..04.0,02.0,0:nc , 5.0..02.0,01.0,0:idn ). 
We constrained the number of networks allowed for each combination of classes of the 
two metric values to 20. Thus, a total of more than 25000 simulation runs were 
performed, each with a different explicit spatial configuration of dispersal networks. 
Note that not all combinations of classes of metric values could be simulated, since 
certain combinations did appear rarely or not at all, due to the random generation of 
network configurations according to Sec. 7.2.1. 

Using box plots for the sets of simulation runs sharing the same class of metric 
values, we visualised the distributions of simulated substrate consumption against the 
single metrics at two points in time (after 100 and 200 h). This allowed for comparison 
to the results of the first step (Fig. 7.4). Moreover, due to the classification of metric 
values, it was possible to calculate mean values and standard deviations of substrate 
consumption for each class. To estimate how much of the variability in substrate 
consumption is explained by the respective network metric considered, we also 
calculated values of the coefficient of determination 2R  (Table 7.3) according to: 

∑
∑

=

=

−

−
−=

r

r

nr
r

nr
rr

yy

yy
R

..2,1

2
..2,1

2

2

)(

)(
1 , (7.7)

where ry  is the substrate consumption of a single simulation run ( rnr ..,2,1= ), y  is 
the mean substrate consumption of all simulation runs, ry  is the mean substrate 
consumption of all simulation runs sharing the same class of metric values as ry , and 

]1,0[2 ∈R . 
Finally, we analysed mean values and standard deviations of substrate consumption 

of the up to 20 simulation runs for each combination of classes of the two metric values, 
at two points in time (after 100 and 200 h; Fig. 7.5). Also here, 2R -values were 
calculated based on these mean values and the variation of single simulation runs 
sharing the same combination of classes of metric values (Table 7.3). This allowed for 
estimating the improvement gained by taking into account the selected combination of 
two metrics and the suitability of this combination for assessing biodegradation 
performance in an aggregated manner. 
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Figure 7.3 Substrate consumption of the first 1500 simulation runs under 5 g/l agar 
concentration and 0.1 g/l initial substrate concentration, plotted against five metrics of 
spatial configurations (different columns; cf. labels at bottom; Sec. 7.2) at four points in 
time (different rows; cf. labels at right). Corresponding Spearman’s rank correlation 
coefficients are given in table 7.1. 

7.3 Results 

7.3.1 First step – single metrics 
Figure 7.3 visualises the relations between the five metrics of spatial configuration of 
bacterial dispersal networks investigated and respective substrate consumption, that is, 
biodegradation performance, of the first 1500 simulation runs. Table 7.1 shows the 
corresponding correlation coefficients (cf. Sec. 7.2). 

Network area na  ( 82.0=ρ ) and coverage nc  ( 84.0=ρ ) are highly positively 
correlated to substrate consumption, meaning that, on average, biodegradation 
performance increases when the values of these two metrics increase. The two metrics 
are similar to each other, but nc  is slightly more suitable for assessing biodegradation 
performance. The other three metrics, Euler characteristic χ , mean distance to network 
mdn  and inoculum distance to network idn , are negatively correlated to substrate 
consumption. On average, biodegradation performance increases when χ  decreases 
(i.e. connectivity increases) and when mdn  and idn  decrease, respectively. The 
correlation between substrate consumption and χ  is low ( 5.0−=ρ ), and particularly 
for high values of χ  various significantly different simulation outcomes occur (cf. Fig. 
7.3). Hence, the possibilities to assess biodegradation performance based on this metric 
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Table 7.1 Spearman’s rank correlation coefficients ρ between five metrics of network 
configuration and substrate consumption from 1500 simulation runs (cf. Sec. 7.2), at 
four different points in time and mean values (cf. first column). The bold values indicate 
the two metrics selected for a combined analysis (cf. Sec. 7.3.2). 

Metric na  nc  χ  mdn  idn  

t = 50 h 0.74 0.65 -0.55 -0.59 -0.86 

t = 100 h 0.85 0.85 -0.56 -0.79 -0.7 

t = 150 h 0.86 0.91 -0.48 -0.88 -0.63 

t = 200 h 0.84 0.93 -0.42 -0.91 -0.59 

Mean value ρ  0.82 0.84 -0.5 -0.79 -0.69 

are very limited. The absolute values of correlation are higher between substrate 
consumption and the remaining metrics mdn  ( 79.0−=ρ ) and idn  ( 69.0−=ρ ). The 
network’s potential to enhance substrate consumption increases, when mdn  decreases, 
but a low value of mdn  does not necessarily lead to fast substrate consumption, in 
particular, at early points in time (cf. Fig. 7.3). The shorter the distance between 
bacterial inoculum and dispersal network idn , the higher is the potential for quick 
substrate consumption. Additionally, substrate consumption is only enhanced below a 
certain threshold of idn , which is increasing with time (cf. Fig. 7.3). Therefore, the 
metric idn  is important for assessing biodegradation performance and, particularly, can 
be used to categorise into beneficial and non-beneficial configurations of dispersal 
networks, for a certain time horizon considered. 

All metrics, except for χ , show a reasonable correlation to substrate consumption 
but also highly scattered simulation outputs for certain ranges of metric values and at 
several points in time (cf. Fig. 7.3). That is why we selected a combination of two 
metrics (out of the remaining four, i.e. excluding χ ) for further investigations. This was 
done based on their pairwise correlations, which are given in Table 7.2. Although the 
combination of idn  and mdn  has the lowest absolute value of correlation ( 44.0=ρ ) 
we selected idn  and nc  ( 49.0−=ρ ) since nc  has the highest absolute value of mean 
correlation to substrate consumption ( 84.0=ρ ; cf. Table 7.1). 

7.3.2 Second step – a combination of two metrics 
In figure 7.4, the box plots show the substrate consumption of the simulation runs 
performed in the second step of the methodological approach (cf. Fig. 7.2), classified 
with respect to the two aggregated metrics selected, that is, network coverage nc  and 
inoculum distance to the network idn  (cf. Sec. 7.2; 7.3.1). The relations between the 
two metrics and substrate consumption are similar to those in figure 7.3. Substrate 
consumption increases with increasing nc , and with decreasing idn , respectively. 
Again, a threshold in idn  is clearly identifiable, increasing with the time horizon 
considered. Only spatial configurations of dispersal networks that are closer to the 
inoculation point than this threshold can enhance biodegradation performance. 
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Table 7.2 Pairwise Spearman’s rank correlation coefficients ρ between metrics of 
network configurations. The bold values indicate the two metrics selected for a 
combined analysis (cf. Sec. 7.2). The small-written values were not considered for 
selection due to the low correlation between χ and substrate consumption (cf. Table 7.1). 

Metric na  nc  χ  mdn  idn  

na  1 0.89 -0.67 -0.81 -0.53 
nc  0.89 1 -0.37 -0.97 -0.49 
χ  -0.67 -0.37 1 0.25 0.32 

mdn  -0.81 -0.97 0.25 1 0.44 

idn  -0.53 -0.49 0.32 0.44 1 

The mean values of substrate consumed (solid curves in Fig. 7.4) underpin the trends 
observed in the first step (cf. Fig. 7.3), while standard deviations (dashed curves in Fig. 
7.4) are high for many values of the metrics. Hence, when considered alone, each of the 
two metrics cannot capture all characteristics of the explicit spatial configurations 
relevant for biodegradation improvements. Also the corresponding 2R -values (Table 
7.3) indicate that the two metrics on their own allow for a rough assessment of substrate 
consumption, but leave a substantial proportion of the variability unexplained. 

The substrate consumption belonging to the three exemplary spatial configurations 
of dispersal networks (red spots in Fig. 7.4; cf. Fig. 7.1) highlights the importance of 
both metrics. Network 1 has a shorter idn  than Network 2, leading to a higher 
biodegradation performance after 100 h (Fig. 7.4a, b). But since Network 2 has a higher 
nc , more substrate is consumed compared to Network 1 after 200 h (Fig. 7.4c, d). 
Network 3, having a high nc  and a short idn , leads to a high biodegradation 
performance for both time horizons. 

In figure 7.5, the mean values (Fig. 7.5a, c) and standard deviations (Fig. 7.5b, d) of 
substrate consumption are plotted against both metrics together, nc  (x-axes) and idn  
(y-axes), at two points in time (after 100 and 200 h). Figure 7.5a shows a zone of high 
substrate consumption in the bottom right corner, that is, with a high nc  and a short 
idn . The further away from this zone the network configurations are, the less substrate 
is consumed after 100 h. The threshold value of idn , above which substrate 
consumption cannot be enhanced by the dispersal networks because they are too far 
from the inoculation point (cf. Fig. 7.4b), is observable too. In figure 7.5c the zone of 
high substrate consumption is much larger, that is, more network configurations lead to 
improved biodegradation performance after 200 h. The standard deviations of substrate 
consumption of the up to 20 simulation runs for each combination of classes of metric 
values (Fig. 7.5b, d; cf. Sec. 7.2) are rather low, and the 2R -values (Table 7.3) are very 
high. Hence, the combination of the two metrics nc  and idn  captures most of the 
characteristics of the explicit spatial configurations relevant for biodegradation 
improvements, and is suitable for assessing biodegradation performance in an 
aggregated manner. 
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Figure 7.4 Box plots of substrate consumption of ca. 25000 simulation runs under 5 g/l 
agar concentration and 0.1 g/l initial substrate concentration, plotted against two metrics 
of spatial configurations (a, c network coverage, b, d inoculum distance to network; cf. 
Sec. 7.2). For each class of metric values (cf. Sec. 7.2), the boxes show the interquartile 
range (i.e. the spread of the middle 50 % of simulation runs). The whiskers (grey 
vertical lines) extend to the minimum and maximum values. Solid black curves show 
mean values, dashed black curves show standard deviations (cf. legend). Corresponding 
R2-values are given in Table 7.3. Three red spots in each subplot belong to the three 
network configurations depicted in figure 7.1 (cf. spot labels). a, b After 100 h. c, d 
After 200 h. 

The three exemplary dispersal network configurations are marked as before (red spots 
in Fig. 7.5; cf. Fig. 7.1). Also here, it is visualised that Network 1 leads to better 
biodegradation performance than Network 2 after 100 h (Fig. 7.5a), but not after 200 h 
(Fig. 7.5c). Network 3 is a much more beneficial spatial configuration, located in the 
zone of high biodegradation performance for both time horizons. 

7.4 Discussion 

In the simulation model, developed to investigate the spatiotemporal dynamics of 
bacterial colony growth and resulting substrate consumption, that is, biodegradation 
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Table 7.3 R2-values (cf. Eq. (7.7)) for the two metrics network coverage and inoculum 
distance to network (cf. Fig. 7.4), and the combination of these two metrics (cf. Fig. 
7.5). 

Metric nc  idn  nc  and idn  

t = 100 h 0.43 0.57 0.93 

t = 200 h 0.66 0.6 0.94 

performance, bacterial dispersal networks were used to model the dispersal-enhancing 
effects of fungal mycelia in microbial systems (cf. Ch. 3). Adding to experimental 
studies (Kohlmeier et al. 2005; Wick et al. 2007a; Furuno et al. 2010), it was shown 
earlier with the model that bacterial dispersal networks have the potential to improve 
biodegradation performance significantly (Ch. 5; 6). These studies revealed that 
biodegradation improvements will depend on the abiotic conditions under which 
bacteria degrade organic substrate and the time horizon considered for assessing 
biodegradation performance. Moreover, testing simple exemplary grid-like bacterial 
dispersal networks, these studies indicated that the spatial configuration of dispersal 
networks is an important factor determining biodegradation improvements (e.g. cf. Fig. 
5.1). 

Here, we used the simulation model and assumed initially unfavourable abiotic 
conditions, under which dispersal networks had shown highest potential for 
improvements (cf. Ch. 5). Taking great advantage of the model’s spatial explicitness, 
we studied the impact of more complex spatial configurations of bacterial dispersal 
networks on biodegradation performance. We considered randomly generated network 
configurations in order to model fungal mycelia more realistically. Such mycelia might 
be widespread or narrow, highly or poorly connected, dense or sparse, close to or far 
away from the bacterial inoculum. The spatial characteristics of fungal mycelia were 
qualitatively represented by simulating multiple spatial configurations of bacterial 
dispersal networks. We developed a methodological approach to investigate the 
suitability of a set of aggregated spatial metrics for capturing the complex spatial 
characteristics of manifold dispersal networks that are relevant for biodegradation 
performance. In view of future practical applications, this is of particular importance for 
assessing potential biodegradation benefits from spatially complex fungal networks. 

The first step of our approach showed that four of the five metrics considered allow 
for a rough characterisation of the dispersal network configurations’ impact on 
biodegradation performance, whereas one of them, the Euler characteristic as a measure 
for connectivity, is not suitable (cf. Table 7.1). However, when considered alone, none 
of the metrics proved to capture the spatial characteristics relevant for biodegradation 
improvements completely. There were always additional aspects of the explicit spatial 
configurations of dispersal networks influencing biodegradation performance (cf. Fig. 
7.3). 

Therefore, in the second step of the approach, we selected two metrics, network 
coverage nc  and initial distance between dispersal network and bacterial inoculum idn , 
for a detailed analysis, based on severalfold more simulation runs. The explicit spatial 
configurations of dispersal networks from these simulation runs were classified 
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Figure 7.5 Mean substrate consumption (a, c) and standard deviations (b, d) of up to 20 
simulation runs under 5 g/l agar concentration and 0.1 g/l initial substrate concentration, 
plotted in an aggregated manner against network coverage and inoculum distance to 
network (cf. axes labels). Mean values are indicated by colour, increasing from green 
(no substrate consumed) to yellow (all substrate consumed; cf. colour bar). Marker sizes 
indicate the number of simulation runs performed, increasing from 0 to 20. Standard 
deviations are indicated by grey shading, increasing from white to black (cf. colour bar). 
Corresponding R2-values are given in Table 7.3. Three red spots in each subplot belong 
to the three network configurations depicted in figure 7.1 (cf. spot labels). a, b After 
100 h. c, d After 200 h. 

according to their values of the metrics. From analysing the mean values and standard 
deviations of substrate consumption within these classes (Fig. 7.4), we revealed how 
much of the networks’ characteristics relevant for biodegradation performance were 
captured by the two aggregated spatial metrics, respectively. The values of 2R  (cf. 
Table 7.3) provided a good estimate of this relation, and confirmed our finding that each 
of the two metrics allows for a rough assessment of prospective biodegradation 
improvements, but also loses a substantial part of the characteristics of the explicit 
spatial configurations. 

Thereupon, we showed that the combined consideration of the two aggregated 
metrics, network coverage nc  and inoculum distance to network idn , is an appropriate 
choice for reliable assessments of biodegradation performance. From very high values 
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of 2R  (cf. Table 7.3), we observed that these two metrics cover the major part of the 
networks’ spatial characteristics that influence biodegradation, irrespective of the 
explicit configurations. 

The larger the area covered by the dispersal network, that is, the area made ‘easily 
accessible’ to the bacteria, the higher the potential biodegradation improvements. In 
addition to that, the distance from the point where bacteria were inoculated to the 
dispersal network needs to be covered before dispersal benefits are put into effect, 
which delays biodegradation improvements. The shorter this distance, the quicker the 
dispersal networks can improve biodegradation performance. The degree of 
improvement will then depend on network coverage. As a consequence, by taking into 
account the bacterial inoculation point, the metric idn  allows for categorising into 
beneficial and non-beneficial spatial configurations of dispersal networks, for a certain 
time horizon considered. The importance of this time horizon for assessing 
biodegradation benefits from bacterial dispersal networks (cf. Sec. 5.4; 6.4) is also 
clearly detectable when comparing the exemplary dispersal network configurations 
(Fig. 7.1) and their impacts on biodegradation performance, respectively (Figs. 7.4; 
7.5). 

We conclude that the combination of two aggregated metrics of the spatial 
configuration of bacterial dispersal networks, network coverage and inoculum distance 
to the network, is best suited for assessing biodegradation performance, irrespective of 
explicit network configurations. It is likely that these two metrics are equivalently 
important for assessing biodegradation benefits from real fungal networks in future 
practical applications. They should, therefore, be taken into account when developing 
methods for stimulating the establishment of fungi and/or inoculating degrading 
bacteria on contaminated soil sites. These findings are planned to be further examined 
by experiments with real fungal networks and adequate simulation modelling, which go, 
however, beyond the scope of this study (cf. Sec. 8.3.1). 
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 Chapter 8
8 Discussion and Outlook 

8.1 The approach developed in this thesis 

Addressing the research objectives of investigating key factors and processes for 
biodegradation performance in response to bacterial dispersal networks (as specified in 
Sec. 1.2), an integrative approach was developed in this doctoral thesis. It comprises the 
combination of simulation modelling and laboratory experiments, based on theoretical 
concepts from two disciplines: microbiology and ecology. The design of this approach 
is visualised in figure 8.1. 

Of central interest was understanding and predicting the dynamics of microbial 
ecosystems, with a clear focus on the ecosystem service of biodegradation. To this end, 
laboratory experiments were conducted (cf. Sec. 8.1.1) and a simulation model was 
generated (cf. Sec. 8.1.2). In the experiments, we performed a case study of a microbial 
consumer-resource system under various conditions, driven by microbiological 
theoretical knowledge. Commencing from this case study, the fundamental element of 
the thesis was developed: a mechanistic, process-based and spatially explicit bacterial 
simulation model. A high agreement between experiments and model was achieved on 
the basis of systematic comparison of spatiotemporal patterns that characterise the 
microbial system dynamics (cf. Sec. 8.1.3). Concepts from microbiological and  
 

Microbiological theory

Ecological theoryEcology

Microbiology

Microbial
ecosystem

Ecosystem service
Biodegradation
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Figure 8.1 Scheme of the approach developed in this thesis, which is interdisciplinary 
between microbiology and ecology. Single arrows show direct impact of one element on 
another. Double arrows show direct impact and feedback. 
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ecological theory were incorporated into this model and, in return, new insights gained 
with the model contribute to microbiological and ecological theory. Most important, the 
simulation model provided the tool for assessing the performance of biodegradation 
under systematically varied environmental scenarios and determining key factors that 
control this performance (cf. Sec. 8.1.4). Hypotheses and findings that were derived 
with the simulation model can also be tested in microbial experiments. This potential to 
use simulation modelling for designing specific experiments is another important aspect 
of the integrative approach developed, and will be focussed on in future studies (cf. Sec. 
8.3.1). 

8.1.1 Laboratory experiments 
Starting point of the thesis was a case study of a microbial consumer-resource system 
with Pseudomonas putida colonies growing on agar plates in well-controlled laboratory 
experiments (Ch. 2; cf. Fig. 8.1). In this context, the thesis benefited from the 
interdisciplinary cooperation with microbiologists and their expertise on how to perform 
and observe experimental assays, and to visualise the corresponding results. In 
particular, it was possible to mimic the dispersal-enhancing properties of fungal hyphae 
using glass fibres. 

The applied abiotic conditions (agar concentration determining bacterial dispersal 
potential, initial glucose concentration determining resource supply) were varied 
systematically, such that the observations revealed characteristic spatial patterns of 
bacteria in response to all combinations of these abiotic conditions. High degree of 
control and short time spans for observing system dynamics exhibit a great advantage of 
microbial experiments in comparison to ecological field studies. This also allowed for 
performing replicate experiments, showing that bacterial behaviour resulting from equal 
conditions may be subject to variations. These variations provided a measure for the 
‘degree of confidence’ in the experimental observations, which was directly 
incorporated into the process of model parameterisation later on (cf. Sec. 3.4). 

8.1.2 Simulation model 
We developed a simulation model (Ch. 3; cf. Fig. 8.1) to appropriately describe the 
spatiotemporal dynamics of bacterial colony growth and resulting biodegradation 
performance, and the specific microbial system studied in the experiments (cf. Sec. 
8.1.1). With regard to our research objectives (Sec. 1.2), this model should be capable 
of modifying bacterial behavioural mechanisms, investigating bacterial dispersal 
networks of complex spatial structures, and simulating manifold scenarios with 
systematically varied abiotic conditions. It is therefore mechanistic, process-based and 
spatially explicit, and combines the advantages of individual-based and continuous 
population modelling (cf. Ferrer et al. 2009). 

The method of individual-based modelling is highly valued for its ability to derive 
system dynamics from individual behaviour in ecology (Huston et al. 1988; Grimm and 
Railsback 2005; DeAngelis and Mooij 2005) and also in microbiology (Kreft et al. 
2001; Picioreanu et al. 2004; Gregory et al. 2006; Ferrer et al. 2008; Hellweger and 
Bucci 2009). On the other hand, successful applications of reaction-diffusion equations 
(Murray 2002) for modelling sophisticated bacterial colony patterns (e.g. Golding et al. 
1998; Mimura et al. 2000; Lega and Passot 2004) have proven that not every detail of 
individual variability is necessarily important to represent microbial consumer-resource 
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systems appropriately. These equations can comprise substrate consumption, growth 
and reproduction, linear or nonlinear diffusion, and even bacterial chemotaxis (cf. 
Murray 2002; Lega and Passot 2003). 

Our simulation model is based on reaction-diffusion equations for organic 
contaminants as resources and degrading bacteria as consumers. Thus, restrictions 
concerning the spatial and temporal scale that result from high computational demands 
of discretely modelling huge numbers of individual bacteria (and sometimes also 
substrate particles) were avoided. Taking advantage of individual-based modelling, we 
also incorporated bacterial behavioural rules (e.g. conditional dispersal strategies; cf. 
Ch. 4). Concentrations of bacteria and organic substrate were modelled explicitly in 
space and time, such that various environmental conditions (e.g. heterogeneous bacterial 
motility; cf. Ch. 6) and bacterial dispersal networks (e.g. manifold spatial configurations 
of networks; cf. Ch. 7) could be taken into account. 

To solve the reaction-diffusion equations for bacteria and substrate, a finite 
difference approximation was used (Press et al. 2007). This basic approach worked 
satisfactorily and did not lead to numerical instabilities. Testing more complex solving 
methods for partial differential equations may be subject to subsequent studies with the 
model (cf. Sec. 8.3). 

8.1.3 Fitting the model to experiments 
An important part of the integrative approach of this thesis (cf. Fig. 8.1) was to bring the 
simulation model into good accordance with observations from the laboratory case 
study, which required executing the following steps: 

 For some general parameters, appropriate values could be directly obtained 
from literature or from specific experiments (e.g. glucose diffusion 
coefficient in agar, maximum effective growth rate of P. putida PpG7; cf. 
Sec. 3.4). 

 Other, more specific parameter values were determined by qualitative fitting 
of model outcomes to experimental observations (e.g. bacterial diffusion 
coefficient along dispersal networks; cf. Fig. 3.4; Sec. 3.5). Also 
microbiological processes to be incorporated were selected in this way. For 
instance, parameter values for the reduction of dispersal at low or high 
bacterial densities, a concept based on microbiological theory (cf. Sec. 4.2), 
were tuned by qualitative fitting. 

 Values for the remaining model parameters were determined by quantitative 
fitting to the experimental observations, in particular, to the bacterial colony 
area data (e.g. bacterial diffusion coefficients depending on agar 
concentration, bacterial dispersal strategy thresholds; cf. Sec. 3.4). At first, 
this inverse modelling task was executed with a Markov Chain Monte Carlo 
method (the Shuffled Complex Evolution Metropolis algorithm; Vrugt et al. 
2003). This provided an idea of reasonable parameter values and 
distributions. Thereafter, a computationally less expensive bound constrained 
pattern search algorithm was finally applied (cf. Sec. 3.4). 

In this context, the availability of replicate measurements covering a 
variety of abiotic conditions was essential. By simultaneously fitting the 
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model to the corresponding variety of empirical patterns at once, thereby 
weighing the confidence in these patterns based on their variances (cf. Sec. 
3.4), we determined a highly reliable model parameterisation. Moreover, this 
approach allowed for selecting ecological processes to be incorporated, by 
comparing different model versions on the basis of agreement between 
optimised model output and empirical patterns (cf. Sec. 8.1.4). 

A comparison of experimental observations and simulation results for a scenario that 
was not used for parameterisation is given in figure 8.2. The model’s capability to 
qualitatively reproduce the observed patterns endorses our fitting approach. 

8.1.4 Model application 
In chapter 4, the quantitative fitting method described above was used to test the 
validity of certain theoretical ecological concepts (conditional dispersal, resource 
allocation) for the microbial consumer-resource system and analyse their consequences 
for biodegradation performance assessments (cf. Fig. 8.1). To our knowledge, this was 
the first systematic comparison of different bacterial dispersal strategies varying in their 
functional dependence on resource uptake. The approach of confronting different model 
versions with multiple empirical patterns followed the strategy of pattern-oriented 
modelling (cf. Grimm et al. 2005) and is thoroughly discussed in section 4.4.3. 

In subsequent chapters (Ch. 5; 6; 7), the appropriately implemented model served as 
a tool for simulating bacterial colony growth and analysing biodegradation performance 
under various environmental conditions, many of which can not be examined in the 
same way in laboratory experiments. The simulation model provided the great 
advantage that different scenarios of environmental conditions and bacterial dispersal 
networks could be controlled and tested systematically. As a consequence, the high 
number and variety of simulations performed allowed for general findings on a broad 
basis, which add substantially to the insights gained from experimental observations 
alone. Hence, this doctoral thesis also demonstrates the suitability and efficiency of 
simulation modelling for understanding ecosystem dynamics and predicting ecosystem 
behaviour, in particular, for microbial ecosystems. Moreover, the hypotheses and 
findings obtained from the model can be taken advantage of when designing further 
experimental and modelling studies to examine opportunities and key factors for 
biodegradation improvement (cf. Sec. 8.3.1). 

8.2 Main results 

8.2.1 Summary of results 
The first main result of this doctoral thesis (derived in Ch. 4) relates to the research 
objective of selecting relevant processes for an appropriate simulation model and 
achieving high accordance with observation data (cf. Sec. 1.2): 

 Relevance of conditional dispersal – It was shown that the ecological concept 
of dispersal depending on resource uptake is likely to be of high relevance for 
certain microbial consumer-resource systems. In particular, the cessation of 
bacterial dispersal at high resource levels proved to be important. Moreover, 
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ba t = 45 h 

 

Figure 8.2 Spatial patterns of bacteria after 45 h under 0.1 g/l initial glucose 
concentration and 5 g/l agar concentration, with a dispersal network of three glass fibres 
(white grid). Bacterial concentrations are indicated by grey shading, increasing from 
black (no bacteria) to white. a Simulation model result (unmodified model version as 
described in Ch. 3). b Experimental result (experiments performed by Helen Brzezinski 
during her diploma thesis). 

simulations have shown that conditional dispersal may significantly alter 
biodegradation performance compared to unconditional dispersal. The 
necessity to incorporate conditional bacterial dispersal, and also the relation 
to the concept of resource allocation, are discussed in more detail in section 
4.4. 

The following results (derived in Ch. 5; 6; 7) relate to the research objectives of finding 
out if, and depending on which factors, bacterial dispersal networks lead to 
biodegradation improvements (cf. Sec. 1.2):  

 Biodegradation benefits from dispersal networks – It was shown that 
bacterial dispersal networks have the potential for significantly improving 
contaminant bioavailability and, thus, biodegradation performance. This 
finding proved to be valid both under homogeneous (i.e. as in the laboratory 
case study; cf. Ch. 2) and heterogeneous (i.e. more realistic with regard to the 
heterogeneity of contaminated soils; cf. Ch. 6) environmental conditions. 
Therefore, our results strongly support the idea of deliberately using soil 
fungi for enhanced natural attenuation. 

 Three key factors determine the degree of improvement – Biodegradation 
benefits from bacterial dispersal networks depend sensitively on the abiotic 
conditions, the time horizon over which biodegradation performance is 
assessed and the spatial configuration of dispersal networks. 

Abiotic conditions – Highest biodegradation improvement by dispersal 
networks is observable under adverse abiotic conditions, for instance, when 
bacterial dispersal is initially restricted due to low humidity (high agar 
concentration). This finding was obtained under homogeneous, but also 
under a wide range of spatially heterogeneous abiotic conditions typical for 
contaminated soils. In the heterogeneous case, we found that the abundance 
of unfavourable abiotic conditions is of much higher importance than their 
explicit spatial distribution. We conclude that fungal networks may 
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compensate for negative effects of unfavourable abiotic conditions on 
biodegradation performance in soils (cf. detailed discussions in Sec. 5.4; 6.4). 

Time horizon – Biodegradation improvements may be substantial only for 
certain time horizons considered, either because positive dispersal network 
effects are temporally delayed (e.g. when bacteria need to overcome an initial 
distance to the dispersal network) or because after a certain time 
biodegradation would be equally efficient also without dispersal networks. 
Ideally, the success of enhanced bioremediation by fungi should be assessed 
for several time horizons and/or one should be aware that expected effects 
might be small for a particular time horizon considered. 

Dispersal network’s spatial configuration – The dependence of 
biodegradation improvements on the spatial structure of bacterial dispersal 
networks can be characterised appropriately with a combination of two 
aggregated network metrics: network coverage and inoculum distance to the 
network (cf. detailed discussion in Sec. 7.4). High network coverage, that is, 
dense and widespread networks, together with low distance to inoculation 
point(s), that is, networks easily accessible to bacteria, lead to highest 
degradation benefits. Therefore, these two criteria need to be considered for 
the development of bioremediation strategies that include inoculation of 
bacteria and/or stimulation of fungal growth. 

In many cases, the effects of these three key factors on biodegradation 
performance complexly depend on each other and can not be completely 
disentangled. For instance, a certain network configuration may improve 
biodegradation much more than another one for a certain time horizon 
considered, but the opposite is the case for a different time horizon. 

8.2.2 Potential of fungal networks for enhancing biodegradation in soil 
Successful bioremediation of soil-bound contaminants relies on the presence of 
degrading bacteria, optimal physical and chemical conditions for their activity, and the 
bioavailability of contaminants (cf. Sec. 1.1.2). Particularly the latter is often achieved 
by homogenisation of the contaminated matrix by mechanical treatment of soil. Our 
results, by contrast, suggest that fungal networks have the potential for greatly 
improving the bioavailability of contaminants to degrading bacteria in soil, without 
excavation and mechanical treatment. This is especially valid for otherwise adverse 
abiotic conditions for bacterial degradation. Thorough analyses, also under 
heterogeneously distributed abiotic conditions, which are known to be prevalent in 
contaminated soil sites (cf. Ch. 6), elevate these findings to a high level of reliability 
and generalisability. 

We are convinced that in many cases stimulating the establishment of fungal 
networks (e.g. by planting trees associated with mycorrhizal fungi) will be more 
accomplishable for bioremediation in situ than improving the abiotic conditions (e.g. by 
increasing the humidity). In particular, this is very promising for the development of 
novel energy-efficient and environmentally sound bioremediation strategies for many 
contaminated soil sites. However, for assessing the prospective degradation benefits 
from fungal networks, it will also be important to consider their spatial structure and 
accessibility, and the time horizon over which biodegradation is expected to occur. 
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Additionally, our results are of high relevance for the performance of natural 
attenuation, that is, bioremediation without human intervention. In some cases, the 
given environmental conditions allow natural attenuation of contaminated soil sites (cf. 
Sec. 1.1.2). Considering the fact that fungi on average constitute about 75 % of the soil 
microbial biomass corresponding to up to 1000 m of fungal hyphae per gram of dried 
soil (Ritz and Young 2004), it is likely that favourable environmental conditions for 
bacterial degradation often already involve the presence of fungal networks that 
enhance bacterial dispersal. When assessing the feasibility and robustness of natural 
attenuation, it may therefore be important not only to consider the risk of impaired 
abiotic conditions (e.g. caused by climate change), but also the risk of fungal 
infrastructure losses (e.g. caused by fungicides). 

8.3 Outlook on future research 

8.3.1 Possible studies relating to research objectives of this thesis 
An important element of the methodological approach developed in this doctoral thesis 
is the interplay between laboratory experiments and simulation model (cf. Fig. 8.1). We 
have extensively used experimental results to parameterise the simulation model (cf. 
Sec. 8.1.3) and to identify key processes and factors influencing bacterial degradation 
performance (cf. Sec. 8.1.4). However, another potential of the approach lies in the 
feedback from model to experiments. Commencing from the results summarised in 
section 8.2.1, it is now possible: 

 To select appropriate scenarios for more complex field experiments (e.g. 
abiotic conditions with a high potential for improvement). 

 To focus on particular factors when performing such experiments (e.g. the 
time horizon for biodegradation improvements to occur or the direct 
accessibility of fungal networks to bacteria). 

 To create new laboratory setups to further examine certain hypotheses (e.g. 
the cessation of bacterial dispersal at high resource levels). 

Hence, our studies provide a comprehensive basis for designing future experiments that 
will be necessary to promote the development of novel bioremediation strategies. 

Moreover, the following extensions of the simulation model developed in this doctoral 
thesis are eligible: 

 Temporal heterogeneities – So far, we have analysed various instances of 
spatial heterogeneities (particularly, in Ch. 6). In many contaminated soils, 
however, another dimension of environmental variability is added by 
temporal heterogeneities. For instance, changes in temperature and weather 
conditions may lead to alternating periods of favourable and unfavourable 
abiotic conditions. Then, bacterial dispersal networks might act as a 
resilience mechanism and support bacterial recovery from ‘stressful’ periods, 
comparable to how they enable bacteria to bridge areas of unfavourable 
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conditions in space (cf. Sec. 6.4). Therefore, we see potential in investigating 
also temporal variations and, consequently, spatiotemporal interactions in 
order to improve our ecological understanding of bacteria-fungi associations 
as a basis for the development of innovative bioremediation strategies (cf. 
Wick et al. 2010). 

 Spatial configuration of fungal networks – By studying various random 
configurations of dispersal networks (Ch. 7), we have gained both a good 
understanding of the role of the spatial structure of fungal networks and 
confidence about their applicability for enhanced bioremediation. However, 
we are looking forward to experiments with natural fungi that let us observe 
sophisticated spatial configurations of real mycelia, possibly including also 
temporal dynamics (cf. above). After implementing such configurations in 
the model, which may necessitate certain modifications (e.g. regarding the 
spatial resolution), their impact on biodegradation performance could be 
tested, too. This would particularly allow further studies of (a) the suitability 
of approximations with artificial dispersal corridors to model the dispersal 
facilitating effects of fungi and (b) the two network characteristics coverage 
and accessibility, which were found to be crucial for assessing potential 
biodegradation benefits (cf. Sec. 8.2.1). 

 Transport networks for contaminants – Recent studies revealed that fungal 
networks may not only facilitate the dispersal of bacteria, but also translocate 
contaminants (Furuno et al. 2010; Wick et al. 2010; Harms et al. 2011). This 
effect may lead to additional improvements of contaminant bioavailability to 
degrading bacteria and is, therefore, another option for further investigations 
with the simulation model. 

During the analysis of spatially heterogeneous environments (Ch. 6), we referred to the 
issue of subsuming the effects of explicit heterogeneities in corresponding 
homogeneous scenarios with appropriate parameters. The advantage of such 
approximations is a reduction of complexity, leading to simplified, handier, easier 
comparable and computationally less expensive models (cf. Frank and Wissel 2002; 
Drechsler 2009). Not explicitly taking into account heterogeneities may, however, also 
lead to losses of important information (cf. Sec. 6.4.5). For future studies, we hence see 
high potential in analysing in detail if, under which conditions, and with regard to which 
system properties, judiciously parameterised homogeneous scenarios are applicable for 
reliable approximations of spatial, and potentially also temporal (cf. above), 
heterogeneities in the framework of modelling microbial ecosystems. Of particular 
interest would be the question, which aggregated parameters can adequately preserve 
the heterogeneities’ characteristics concerning the specific research objectives 
addressed. 

The performance of bacterial degradation of organic contaminants was fundamental to 
the studies of this thesis. This performance is directly observable in the simulation 
model via the quantity and spatial distribution of substrate, at any given point in time 
(e.g. Fig. 8.3a, c; cf. Sec. 3.3). However, to measure substrate consumption directly in 
laboratory experiments, and, particularly, to quantify its spatial distribution during 
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Figure 8.3 Spatial patterns of substrate (glucose) on agar plates. a, c Simulation model 
results. Substrate concentrations are indicated by colour shading, decreasing from green 
(1 g/l) to yellow (0 g/l). b, d Experimental results (experiments performed by Susann 
Pleger during her diploma thesis). pH values are indicated by colour shading, decreasing 
from blue (7.6) to yellow (6). a, b After 35 h under 1 g/l initial substrate concentration 
and 3 g/l agar concentration. c, d After 50 h under 1 g/l initial substrate concentration 
and 5 g/l agar concentration, with a dispersal network of two glass fibres. 

bacterial colony growth, is very difficult, as added indicator compounds may modify the 
microbial systems dynamics. In relation to this thesis, it was tried to assess bacterial 
glucose consumption based on a pH indicator (bromothymol blue) that undergoes a 
change in colour when the pH value changes. Thus, a decreasing pH value, which is 
expected during glucose metabolism due to several acids released by bacteria, could be 
visualised (Fig. 8.3). The simulation model may be applied in this context for 
verification of experimentally observed spatiotemporal substrate patterns. 

8.3.2 Further studies relating to research objectives beyond the scope of 
this thesis 

Alongside with the studies for this doctoral thesis, additional collaborative projects have 
been initiated to apply the developed bacterial simulation model in different contexts. 
One example for potential applications is the investigation of bacterial chemotaxis, 
denoting directed bacterial movement either towards (positive chemotaxis) or away 
from (negative chemotaxis) a chemical gradient (Pandey and Jain 2002). Particularly in 
soils, bacterial chemotaxis towards contaminants is considered an essential process, 
which might increase the bioavailability and, thus, enhance the bioremediation of 
contaminants (Lanfranconi et al. 2003; Harms and Wick 2006; Ford and Harvey 2007). 
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t = 120 h t = 0 h 

 

Figure 8.4 Simulation of positive chemotactic behaviour of P. putida towards a glucose 
gradient (unmodified model version as described in Ch. 3) under 3 g/l agar 
concentration. a Pattern of initial substrate concentrations, green grid cells – high initial 
substrate concentration (1 g/l), yellow grid cells – no initial substrate concentration 
(0 g/l). b Spatial pattern of bacteria after 120 h. Bacterial concentrations are indicated by 
grey shading, increasing from black (no bacteria) to white. 

However, bacterial chemotaxis in typical heterogeneous soil environments with many 
air-water interfaces is still poorly understood. 

The response of Pseudomonas putida PpG7 bacteria to both water-borne and air-
borne contaminants (naphthalene) was tested experimentally and positive as well as 
negative chemotactic bacterial behaviour was observed (Hanzel et al. 2010). In the 
simulation model developed for this thesis, classical bacterial chemotaxis sensu Keller 
and Segel (1971a; 1971b; cf. also Lega and Passot 2003) was not implemented. 
However, due to the dependence of bacterial growth on substrate uptake (cf. Sec. 3.2.4) 
the model already allows for qualitatively reproducing positive chemotactic behaviour. 
Simulation results in figure 8.4 show directed dispersal and colony growth towards the 
area where substrate was initially distributed. We hope that only minor modifications 
will be necessary before the model can be used to confirm or reject hypotheses that 
were derived from observations of chemotaxis experiments. 

Another potential model application is the simulation of two or more competing 
bacterial strains. The phenomenon of surfing mutations, denoting propagation of rare 
mutations at the front of expanding populations, has recently become prominent in 
ecology (Eswaran 2002; Edmonds et al. 2004; Klopfstein et al. 2006), for instance, to 
explain dynamic spatial patterns during range expansions (Münkemüller et al. 2011). It 
has also been investigated in microbial systems (Hallatschek et al. 2007). Particularly 
with regard to rapid global change and resulting habitat shifts, it is important to assess 
the chances of deleterious mutations (i.e. having fitness disadvantages) to surf and reach 
high densities at the wave front of expanding populations (cf. Travis et al. 2007). 

To test, whether the phenomenon of surfing deleterious mutations may occur in 
reality, microbial laboratory experiments were performed. Two different strains of 
Escherichia coli JM109 bacteria, one wild type and one deleterious mutation with a 
growth rate reduced by half, were grown on glycerine agar (Fig. 8.5). The simulation 
model will be used to gain a mechanistic understanding of these experimental 
observations and to make further predictions. First tests to adjust a modified model 
version to experiments showed a qualitative agreement (cf. Fig. 8.5). However,  
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Figure 8.5 Spatial patterns of bacteria from two different E. coli strains on agar plates 
under 1 g/l initial glycerine concentration and 4 g/l agar concentration. Red – fast 
growing wildtypes, green – slow growing mutants. Bacterial concentrations are 
indicated by colour shading. a, b After 15 h. c, d After 30 h. e, f After 45 h. a, c, e 
Experimental results. b, d, f Simulation model results (modified model version). 

additional simulations and calibration are needed and will be executed in the near 
future. 
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Symbols 

Symbol Description Unitsa 

α  bacterial dispersal reduction factor - 
∂  partial derivative symbol - 

tΔ  time step h, s 

∇  gradient in space mm-1 
2∇  Laplace operator in space mm-2 

χ  Euler characteristic - 

minλ  minimum dispersal fraction - 
tji

eff
,,μ  effective bacterial growth rate in cell ),( ji  at time t h-1 

eff
maxμ  maximum effective bacterial growth rate h-1 

ρ  Spearman’s rank correlation coefficient - 
ρ  mean Spearman’s rank correlation coefficient - 

a  maintenance biomass loss rate h-1 
a~  maintenance rate gs gx

-1 h-1 

aC  agar concentration gx l-1, gx mm-2  b

hc  bacterial dispersal strategy threshold, 4..2,1=h  gs gx
-1 h-1 

sC  substrate concentration gs l-1, gs mm-2  b

0
sC  initial substrate concentration at 0=t  gs l-1, gs mm-2  b

tji
sC ,,  substrate concentration in cell ),( ji  at time t gs l-1, gs mm-2  b

xC  bacterial concentration (dry mass) gx l-1, gx mm-2  b

tji
xC ,,  bacterial concentration in cell ),( ji  at time t gx l-1, gx mm-2  b

tji
xC ,,  weighted average of bacterial concentrations in jiNBH ,  gx l-1, gx mm-2  b

λ,xC  dispersal reduction limit gx l-1, gx mm-2  b

max,xC  maximum dispersal concentration gx l-1, gx mm-2  b

yC  inactive bacterial concentration (dry mass) gy l-1, gy mm-2  b

tji
yC ,,  inactive bacterial concentration in cell ),( ji  at time t gy l-1, gy mm-2  b
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Symbol Description Unitsa 

cl  grid cell side length mm 

d  dispersal biomass loss rate h-1 

SAd  diameter of the simulation area mm 
tjid ,,~  dispersal consumption rate in cell ),( ji  at time t gs gx

-1 h-1 
tji

effd ,,~  effective dispersal consumption rate in cell ),( ji  at time t gs gx
-1 h-1 

max
~d  maximum dispersal consumption rate gs gx

-1 h-1 

sD  substrate diffusion coefficient mm2 h-1 

xD  bacterial diffusion coefficient mm2 h-1 
tji

xD ,,  bacterial diffusion coefficient in cell ),( ji  at time t mm2 h-1 

aCtji
effxD ,,,

,  
effective bacterial diffusion coefficient in cell ),( ji  at 
time t for agar concentration aC  mm2 h-1 

aC
xD max,  

maximum bacterial diffusion coefficient for agar 
concentration aC  mm2 h-1 

dn
xD max,  maximum bacterial diffusion coefficient along dispersal 

networks mm2 h-1 

DN  bacterial dispersal network (set of grid cells) - 

h  harmonic mean - 

H  spatial autocorrelation (of fractal pattern) - 
i  spatial coordinate (in x-direction) mm 
idn  inoculum distance to dispersal network - 
j  spatial coordinate (in y-direction) mm 

k  spatial coordinate (in x-direction) mm 

sK  Monod half-saturation constant gs l-1, gs mm-2  b 

l  spatial coordinate (in y-direction) mm 
m  index of replicate measurements - 
mdn  mean distance to dispersal network - 

ln  number of closed loops in dispersal networks - 

on  number of dispersal network objects - 

rn  number of simulation runs - 
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Symbol Description Unitsa 

na  dispersal network area - 

jiNBH ,  9 point neighbourhood of cell ),( ji  (set of grid cells) - 

nc  dispersal network coverage - 
NC  set of grid cells covered by the dispersal network - 
p  relative abundance (of fractal pattern) - 
q  substrate uptake rate gs gx

-1 h-1 
tjiq ,,  substrate uptake rate in cell ),( ji  at time t gs gx

-1 h-1 
tji

effq ,,  effective uptake rate for growth in cell ),( ji  at time t gs gx
-1 h-1 

maxq  maximum substrate uptake rate gs gx
-1 h-1 

r  index of simulation run - 

R  measure of agreement between simulated and measured 
bacterial colony area data - 

2R  coefficient of determination - 

SA  simulation area (set of grid cells) - 
t  time h, s 

0, sa CC
mdlTA  modelled total area of bacterial colony mm2 

0, sa CC
msrTA  measured total area of bacterial colony mm2 

0, sa CC
smthVAR  

smoothed variance of measurement data for agar 
concentration aC  and initial substrate concentration 0

sC  mm4 

lkw ,  weight for diffusion between cell ),( ji  and cell ),( lk  - 

y  mean substrate consumption over rn  simulation runs - 

ry  substrate consumption of simulation run r  - 

ry  
mean substrate consumption over all simulation runs 
belonging to the same class of network metric values as 
simulation run r  

- 

gY  bacterial growth yield coefficient gx gs
-1 

a gs – grams of substrate, gx – grams of dry active biomass, gy – grams of dry inactive biomass 
b All concentrations can be given in both units as the simulation model translates a three-

dimensional agar plate into a plane two-dimensional grid. The agar plate’s volume (0.03 l) 
and surface (6082.12 mm2) are fixed. Hence, the relation between g l-1 and g mm-2 is 
constant for the simulated system (1 g l-1 = 4.9325 610−×  g mm-2). 
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Figures 

Figure 1.1  Oil mining, pesticide use and landfills are typical exemplary sources 
of soil contamination. a Petroleum wells near Baku, Azerbaijan 
(source: Stern magazine, Gruner + Jahr AG & Co KG). b Pesticide 
spraying in California, USA (source: United States Department of 
Agriculture) c Illegal landfill near Halle (Saale), Germany (source: Dr. 
Stefan Klotz, Helmholtz Centre for Environmental Research – UFZ). ... 11 

Figure 1.2  Visualisation of contaminant bioavailability at the microscale (source: 
Semple et al. 2004). Merely a fraction of contaminants is bioavailable 
to degrading organisms in heterogeneous soils. A substantial part is 
only bioaccessible, denoting that it is physically or temporally 
constrained, but could become bioavailable. Contaminants can also be 
occluded and, thence, are non-bioaccessible (cf. legend). ....................... 13 

Figure 1.3  Confocal laser scanning microscopy images of Pythium ultimum 
filaments growing on glass surfaces (source: Furuno et al. 2010). a 
Visualisation of the presence of liquid films (light grey) along fungal 
hyphae. Arrows in the insert indicate the dimensions of the liquid film 
(3-4 µm). b Visualisation of the presence of Pseudomonas putida 
PpG7 (green) within the liquid films. ...................................................... 15 

Figure 1.4  Overview of the following chapters, regarding the categories focus, 
methods, abiotic conditions and dispersal networks. The size of the 
‘modelling’ icons indicates the share of programming work comprised 
in the respective chapters. ........................................................................ 16 

Figure 2.1  Observed spatial patterns of bacteria on agar plates (image scans). 
Bacterial concentrations are indicated by grey shading, increasing 
from black (no bacteria) to white. a After 33 h under 0.1 g/l initial 
glucose concentration and 3 g/l agar concentration. b After 66 h under 
0.1 g/l initial glucose concentration and 5 g/l agar concentration, with 
a crosswise dispersal network of four glass fibres (cf. Sec. 2.3). ............ 20 

Figure 2.2  Total area measurements of bacterial colonies plotted versus time. 
Columns show different initial glucose concentrations, increasing 
from left to right. Rows show different agar concentrations, increasing 
from top to bottom (cf. graph titles). Four experimental replicates for 
each scenario are plotted as black crosses. Note that at approximately 
60 cm² the size of the agar plates is reached. ........................................... 21 
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Figure 3.1  The circular simulation area SA is divided into rectangular grid cells. 
Indexing starts from (i, j) = (0, 0) in the centre of the agar plate. The 
enlargement shows the 9 point neighbourhood NBHi, j of a grid cell 
(i, j) including the grid cell itself (cf. Eq. (3.8)), and the weights for 
diffusion wk, l (cf. Eq. (3.9)). .....................................................................24 

Figure 3.2  Scheme of processes comprised in the bacterial simulation model. 
Processes on the left affect bacterial dynamics, processes on the right 
affect substrate dynamics, the process of substrate uptake by bacteria 
affects both. ..............................................................................................25 

Figure 3.3  Graphical user interface of the bacterial simulation model. .....................29 

Figure 3.4  Spatial patterns of bacteria on agar plates. Bacterial concentrations are 
indicated by grey shading, increasing from black (no bacteria) to 
white. a, b After 33 h under 0.1 g/l initial glucose concentration and 
3 g/l agar concentration. a Simulation model result. b Experimental 
result (cf. Fig. 2.1a). c, d After 66 h under 0.1 g/l initial glucose 
concentration and 5 g/l agar concentration, with a dispersal network of 
four glass fibres. c Simulation model result (cf. Sec. 3.5). d 
Experimental result (cf. Sec. 2.3; Fig. 2.1b).............................................32 

Figure 3.5  Examples of different bacterial dispersal networks in the model, 
implemented as high diffusivity corridors (white grid cells) on the 
simulation area (visualised in black). a Crosswise configuration (cf. 
Fig. 3.4). b, c Grid-like configurations (cf. Ch. 5; 6). d-f Random 
configurations (cf. Ch. 7)..........................................................................32 

Figure 4.1  Functional dependence of bacterial dispersal on substrate uptake in 
general form (cf. Eq. (4.4); Table 4.1). Bacterial dispersal strategies I, 
II and III (cf. legend, definitions on page 36)...........................................35 

Figure 4.2  Experimental measurement data (grey crosses; cf. Fig. 2.2) and 
simulation model results with the energy setup B and three different 
bacterial dispersal strategies I, II and III (different line types; cf. 
legend). Total area of bacterial colonies plotted versus time. Different 
subplots display different combinations of agar concentration and 
initial glucose concentration (cf. subplot titles)........................................40 

Figure 4.3  Simulated consumption of substrate (glucose) with the bacterial 
dispersal configurations B I, B II and B III (different line types; cf. 
legend), for 3 g/l agar concentration and 1 g/l initial substrate 
concentration. Proportion of substrate consumed plotted against time. ...41 
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Figure 5.1  Simulated consumption of substrate (glucose) under 0.1 g/l initial 
glucose concentration, plotted versus time. No dispersal network – 
black curves, Network 1 – ochre curves, Network 2 – blue curves, 
Network 3 – red curves (cf. legend). The images on the right show the 
corresponding dispersal network configurations (white grids), and 
simulated spatial patterns of bacteria (left column) and substrate (right 
column) after 120 h. Bacterial concentrations are indicated by grey 
shading, increasing from black (no bacteria) to white. Substrate 
concentrations are indicated by colour shading, decreasing from green 
(0.1 g/l) to yellow (0 g/l). a Agar concentration 3 g/l. b Agar 
concentration 4 g/l. c Agar concentration 5 g/l. ....................................... 47 

Figure 6.1  Examples of heterogeneous fractal patterns, created with the midpoint 
displacement algorithm. Both attributes, relative abundance p (x-axis) 
and spatial autocorrelation H (y-axis), can be varied from 0 to 1............ 52 

Figure 6.2  Example of heterogeneous bacterial dispersal conditions without a 
dispersal network (left panel) and with dispersal Network 3 (white 
grid; right panel). The initial substrate concentration was set to 0.1 g/l. 
a, b Pattern of agar concentrations, blue grid cells – low agar 
concentration (3 g/l, i.e. favourable bacterial dispersal conditions), 
black grid cells – high agar concentration (5 g/l, i.e. unfavourable 
bacterial dispersal conditions). c, d Simulated spatial patterns of 
bacteria after 100 h. Bacterial concentrations are indicated by grey 
shading, increasing from black (no bacteria) to white. e, f Simulated 
spatial patterns of substrate after 100 h. Substrate concentrations are 
indicated by colour shading, decreasing from green (0.1 g/l) to yellow 
(0 g/l). ....................................................................................................... 53 

Figure 6.3  Example of heterogeneous initial resource concentrations, without a 
dispersal network (left panel) and with dispersal Network 3 (white 
grid; right panel). The agar concentration was set to 5 g/l. a, b Pattern 
of initial substrate concentrations, green grid cells – high initial 
substrate concentration (1 g/l), yellow grid cells – no initial substrate 
concentration (0 g/l). c, d Simulated spatial patterns of bacteria after 
100 h. Bacterial concentrations are indicated by grey shading, 
increasing from black (no bacteria) to white. e, f Simulated spatial 
patterns of substrate after 100 h. Substrate concentrations are indicated 
by colour shading, decreasing from green (1 g/l) to yellow (0 g/l).......... 54 
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Figure 6.4  Simulated biodegradation performance under heterogeneous bacterial 
dispersal conditions. Each column shows a different bacterial 
dispersal network configuration (cf. images and titles on top). Within 
these columns, the red spots in the different subplots correspond to 
each other. a-d Substrate consumption over time for exemplary 
patterns with a relative abundance p = 0.5 and a spatial autocorrelation 
H = 0.5 (cf. example in Fig. 6.2). Each subplot shows 20 simulation 
runs (thin grey curves), their mean values (thick black curves), and the 
reference simulation results with homogeneous bacterial dispersal 
conditions (dashed cyan curves; cf. legend). e-h Mean values of 
substrate consumption at 100 h, increasing from green (no substrate 
consumed) to yellow (all substrate consumed; cf. colour bar), for 
multiple heterogeneous patterns differing in the attributes relative 
abundance p (x-axes) and spatial autocorrelation H (y-axes). i-k 
Standard deviations of substrate consumption at 100 h, increasing 
from white to black (cf. colour bar), for the same heterogeneous 
patterns. For Network 3 the simulation runs did not deviate from the 
mean values. .............................................................................................56 

Figure 6.5  Simulated biodegradation performance under heterogeneous initial 
resource distributions. Each column shows a different bacterial 
dispersal network configuration (cf. images and titles on top). Within 
these columns, the red spots in the different subplots correspond to 
each other. a-d Substrate consumption over time for exemplary 
patterns with a relative abundance p = 0.5 and a spatial autocorrelation 
H = 0.5 (cf. example in Fig. 6.3). Each subplot shows 20 simulation 
runs (thin grey curves), their mean values (thick black curves), and the 
reference simulation results with homogeneous initial resource 
distributions (dashed cyan curves; cf. legend). e-h Mean values of 
substrate consumption at 100 h, increasing from green (no substrate 
consumed) to yellow (all substrate consumed; cf. colour bar), for 
multiple heterogeneous patterns differing in the attributes relative 
abundance p (x-axes) and spatial autocorrelation H (y-axes). i-k 
Standard deviations of substrate consumption at 100 h, increasing 
from white to black (cf. colour bar), for the same heterogeneous 
patterns. For Network 3 the simulation runs did only negligibly 
deviate from the mean values. ..................................................................57 

Figure 7.1  Simulation results for three exemplary, randomly created spatial 
configurations of dispersal networks (Networks 1-3; cf. titles; 
dispersal corridors visualised in white) under 5 g/l agar concentration 
and 0.1 g/l initial substrate concentration. a-f After 100 h. g-l After 
200 h. a, c, e, g, i, k Spatial patterns of bacteria. Bacterial 
concentrations are indicated by grey shading, increasing from black 
(no bacteria) to white. b, d, f, h, j, l Spatial patterns of substrate. 
Substrate concentrations are indicated by colour shading, decreasing 
from green (0.1 g/l) to yellow (0 g/l)........................................................64 
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Figure 7.2  Scheme of the methodological approach developed in this chapter. 
The two network metrics selected for the second step are nc and idn. .... 66 

Figure 7.3  Substrate consumption of the first 1500 simulation runs under 5 g/l 
agar concentration and 0.1 g/l initial substrate concentration, plotted 
against five metrics of spatial configurations (different columns; cf. 
labels at bottom; Sec. 7.2) at four points in time (different rows; cf. 
labels at right). Corresponding Spearman’s rank correlation 
coefficients are given in table 7.1. ........................................................... 68 

Figure 7.4  Box plots of substrate consumption of ca. 25000 simulation runs 
under 5 g/l agar concentration and 0.1 g/l initial substrate 
concentration, plotted against two metrics of spatial configurations (a, 
c network coverage, b, d inoculum distance to network; cf. Sec. 7.2). 
For each class of metric values (cf. Sec. 7.2), the boxes show the 
interquartile range (i.e. the spread of the middle 50 % of simulation 
runs). The whiskers (grey vertical lines) extend to the minimum and 
maximum values. Solid black curves show mean values, dashed black 
curves show standard deviations (cf. legend). Corresponding R2-
values are given in Table 7.3. Three red spots in each subplot belong 
to the three network configurations depicted in figure 7.1 (cf. spot 
labels). a, b After 100 h. c, d After 200 h. ............................................... 71 

Figure 7.5  Mean substrate consumption (a, c) and standard deviations (b, d) of 
up to 20 simulation runs under 5 g/l agar concentration and 0.1 g/l 
initial substrate concentration, plotted in an aggregated manner against 
network coverage and inoculum distance to network (cf. axes labels). 
Mean values are indicated by colour, increasing from green (no 
substrate consumed) to yellow (all substrate consumed; cf. colour 
bar). Marker sizes indicate the number of simulation runs performed, 
increasing from 0 to 20. Standard deviations are indicated by grey 
shading, increasing from white to black (cf. colour bar). 
Corresponding R2-values are given in Table 7.3. Three red spots in 
each subplot belong to the three network configurations depicted in 
figure 7.1 (cf. spot labels). a, b After 100 h. c, d After 200 h. ................ 73 

Figure 8.1  Scheme of the approach developed in this thesis, which is 
interdisciplinary between microbiology and ecology. Single arrows 
show direct impact of one element on another. Double arrows show 
direct impact and feedback....................................................................... 75 

Figure 8.2  Spatial patterns of bacteria after 45 h under 0.1 g/l initial glucose 
concentration and 5 g/l agar concentration, with a dispersal network of 
three glass fibres (white grid). Bacterial concentrations are indicated 
by grey shading, increasing from black (no bacteria) to white. a 
Simulation model result (unmodified model version as described in 
Ch. 3). b Experimental result (experiments performed by Helen 
Brzezinski during her diploma thesis)...................................................... 79 
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Figure 8.3  Spatial patterns of substrate (glucose) on agar plates. a, c Simulation 
model results. Substrate concentrations are indicated by colour 
shading, decreasing from green (1 g/l) to yellow (0 g/l). b, d 
Experimental results (experiments performed by Susann Pleger during 
her diploma thesis). pH values are indicated by colour shading, 
decreasing from blue (7.6) to yellow (6). a, b After 35 h under 1 g/l 
initial substrate concentration and 3 g/l agar concentration. c, d After 
50 h under 1 g/l initial substrate concentration and 5 g/l agar 
concentration, with a dispersal network of two glass fibres.....................83 

Figure 8.4  Simulation of positive chemotactic behaviour of P. putida towards a 
glucose gradient (unmodified model version as described in Ch. 3) 
under 3 g/l agar concentration. a Pattern of initial substrate 
concentrations, green grid cells – high initial substrate concentration 
(1 g/l), yellow grid cells – no initial substrate concentration (0 g/l). b 
Spatial pattern of bacteria after 120 h. Bacterial concentrations are 
indicated by grey shading, increasing from black (no bacteria) to 
white. ........................................................................................................84 

Figure 8.5  Spatial patterns of bacteria from two different E. coli strains on agar 
plates under 1 g/l initial glycerine concentration and 4 g/l agar 
concentration. Red – fast growing wildtypes, green – slow growing 
mutants. Bacterial concentrations are indicated by colour shading. a, b 
After 15 h. c, d After 30 h. e, f After 45 h. a, c, e Experimental results. 
b, d, f Simulation model results (modified model version)......................85 
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Table 3.1  Simulation model parameters................................................................... 30 

Table 4.1  Bacterial dispersal strategies – parameters included in the 
optimisations. ........................................................................................... 36 

Table 4.2  Energy setups. .......................................................................................... 37 

Table 4.3  Optimisation results for each dispersal model configuration. The 
small-written values were fixed during optimisation (cf. Table 4.1). 
The bold values indicate the dispersal model configurations shown in 
figures 4.2 and 4.3. ................................................................................... 38 

Table 7.1  Spearman’s rank correlation coefficients ρ between five metrics of 
network configuration and substrate consumption from 1500 
simulation runs (cf. Sec. 7.2), at four different points in time and mean 
values (cf. first column). The bold values indicate the two metrics 
selected for a combined analysis (cf. Sec. 7.3.2). .................................... 69 

Table 7.2  Pairwise Spearman’s rank correlation coefficients ρ between metrics 
of network configurations. The bold values indicate the two metrics 
selected for a combined analysis (cf. Sec. 7.2). The small-written 
values were not considered for selection due to the low correlation 
between χ and substrate consumption (cf. Table 7.1). ............................. 70 

Table 7.3  R2-values (cf. Eq. (7.7)) for the two metrics network coverage and 
inoculum distance to network (cf. Fig. 7.4), and the combination of 
these two metrics (cf. Fig. 7.5)................................................................. 72 
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