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Abstract Temporal shifts in phenology or vegetation

period of plants are seen as indicators of global warming

with potentially severe impacts on ecosystem functioning.

In spite of increasing knowledge on drivers, it is of utmost

importance to disentangle the relationship between air

temperatures, phenological events, potential temporal lags

(phase shifts) and time scale for certain plant species.

Assessing the phase shifts as well as the scale-dependent

relationship between temperature and vegetation phenol-

ogy requires the development of a nonlinear temporal

model. Therefore, we use wavelet analysis and present a

framework for identifying scale-dependent cross-phase

coupling of bivariate time series. It allows the calculation

of (a) scale-dependent decompositions of time series,

(b) phase shifts of seasonal components in relation to the

annual cycle, and (c) inter-annual phase differences

between seasonal phases of different time series. The

model is applied to air temperature data and remote sensing

phenology data of a beech forest in Germany. Our study

reveals that certain seasonal changes in amplitude and

phase with respect to the normal annual rhythm of

temperature and beech phenology are coupled time-

delayed components, which are characterized by a time

shift of about one year.

Keywords Beech forest � Bivariate time series analysis �
Coherence phase � Morlet wavelet � Normalized

difference vegetation index � Remote

sensing signal

1 Introduction

Time shifts in the phenology of plant species (e.g. earlier

onset of flowering, early start and prolonged duration of

vegetation period) are seen as indicators of global warming

(Badeck et al. 2004; Post et al. 2008). In particular, changes

in flowering phenology such as date of first flowering can

be a response to climate change. Although plant phenology

depends on various climate variables, temperature is the

main driver for many species (Badeck et al. 2004; Cleland

et al. 2007; Delbart et al. 2008; Menzel 2000). It was found

that the onset of flowering is correlated with the mean

temperature of the flowering month or the months prior to

flowering (Menzel et al. 2006; Sparks et al. 2000).

Responding to recent warming, many plants are flowering

earlier in most study areas today (Menzel 2003; Miller-

Rushing et al. 2008; Parmesan 2007). Especially in tem-

perate and boreal systems, the initiation of spring activity is

mainly driven by an immediately antecedent period of

sufficiently high temperatures for many species (Badeck

et al. 2004). For some species, such as beech (Fagus

sylvatica), however, it was stated long ago that bud burst is

strongly dependent on day length (Wareing 1953) rather

than chilling or temperature requirements. Therefore one

can expect that the dependence on day-length could
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counteract physiological responses to altered climatic

regimes.

In spite of such increasing knowledge, it is crucial to take

into account that phenological events depend on plant spe-

cies and scale. Temporal shifts in phenology can be the result

of shifts in the temperature regime. However, it may occur

for different species on different temporal scales. Moreover,

vegetation phenology may not be exclusively driven by

immediately antecedent temperatures. Modeling the impact

of climatic parameters such as temperature on the phenology

of certain species across different seasons and temporal

scales is therefore a prerequisite for understanding the spe-

cies–climate relationship. It is of utmost importance to dis-

entangle the relationship between air temperature,

phenological events, and scale for certain plant species.

Various studies analyzed the effects of temperature on

the phenological timing of plants. For an overview, see

Lu et al. (2006). In general, the authors analyzed pheno-

logical ground observations in relation to mean monthly air

temperatures or mean temperatures of a period of several

months. For example, Chmielewski and Rötzer (2001)

calculated linear regressions concerning the influence of air

temperature. In particular, the annual lengths of growing

season are regressed on the mean annual air temperatures.

Lu et al. (2006) demonstrated the need for a better

understanding, refined the method and used average tem-

peratures over different periods to calculate the correlation

of temperature with flowering dates. Hudson (2010)

explored recent and newly developed analytic and statis-

tical methods in vegetation phenology.

In the presence of strong scale-dependence, a linear

approach will not be able to extract information on when

coupling between environmental factors such as temperature

and species phenology occurs. Instead, scale-dependent

analyses of coupling between two time series would be nee-

ded for a systematic investigation of periods when tempera-

ture has a potential influence on plant growing. Wavelet

analysis has been proved to be a suitable mean to quantify

temporal structure as a function of both time and scale (Per-

cival and Walden 2000). Many of the concepts for wavelet

analysis apply to time series analysis. Because wavelet

analysis does not assume stationarity of the process creating

the data, it is a more general approach than common analysis

techniques such as Fourier analysis. Wavelet transform is a

powerful method to reveal and identify time periods of the

frequency-dependent variations in a time series (Yang et al.

2010). The technique has proved especially valuable, e.g., in

hydrological applications such as tidal analysis and analysis

of high/low water levels at rivers (Zhang et al. 2010).

Therefore, an analysis based on wavelets should also be a

suitable method to solve the problems posed above.

However, wavelet analysis is an apparently little-known

method in the field of phenology (Hudson 2010). Using

satellite data for vegetation phenology in combination with

different wavelet techniques, the authors pursue different

strategies. White et al. (2003) firstly determined start and

end of a growing season at different sites. Afterwards, they

used wavelet variance analysis to analyze spatial patterns

and dominant scales of such growing season lengths. In a

different way, the same topic is addressed by Yang et al.

(2012). Using scale-dependent wavelet decomposition,

they firstly extracted several important features character-

izing vegetation dynamics. Thereafter they discussed spa-

tial patterns and correlations between these key features

and climatic factors. In a third manner, Hudson et al.

(2011) applied wavelet transforms in phenological

research. To improve the understanding of flowering–cli-

mate relationship, they evaluated wavelet cross-correla-

tions of bivariate time series. This was achievable because,

for eucalypt species, the authors were able to utilize phe-

nological records that, although originating from traditional

land based phenology, are characterized by relatively high

information content. However, they used discrete wavelet

transforms, which are limited to a discrete set of scales.

In a similar way, the focus in our study will be on

bivariate time series analysis and detecting couplings

between two series. A good introduction to wavelet meth-

ods for time series analysis was given by Percival et al.

(2004). Calculations of wavelet power spectra characterized

by an arbitrary fine set of scales can be carried out by

continuous non-orthogonal wavelet transforms (Torrence

and Compo 1998). Cross-wavelet spectra have been used to

identify both frequency bands and time intervals within

which two different time series are covarying. For complex-

valued wavelet functions, it is additionally possible to cal-

culate phases. Therefore, such wavelets are particularly

suitable for capturing oscillatory behavior (Torrence and

Compo 1998). Phase differences between two time series

can be calculated by the coherence phase. Such wavelet

methods have been successfully applied in geophysics and

climatology. For example, links between temperature or

rainfall and North Atlantic oscillation index or El Niño–

southern oscillation index were investigated (Torrence and

Webster 1999; Paluš et al. 2005). Afterwards, phase anal-

ysis concepts based on continuous wavelet transforms were

adopted and applied in the fields of medicine (Cazelles et al.

2005; Grenfell et al. 2001) and ecology and population

biology (Klvana et al. 2004; Cazelles et al. 2008). In the

papers in biology, the authors analyzed the possible asso-

ciation between the cycles of population abundance of some

animals and environmental signals such temperature, pre-

cipitation, and the solar cycle.

The focus in our study will be on phenological data

derived from satellite observations, its seasonal and inter-

annual variability, and the bivariate relationship between

phenological and temperature time series. To address the
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issue of periods when temperature has a potential influence

on plant growing, seasonal fluctuations in relation to the

normal annual rhythm must be taken into account regard-

ing their influence on the vegetation phenology, i.e. timing

and phase of plant development. Therefore, the main

objective of this paper is to analyze the scale-dependent

coupling of phenological and temperature data. By apply-

ing the techniques of wavelet analysis, we will be able to

determine to which extent the phase shifts are dependent on

scale. Furthermore, the methodology presented below

allows us to detect scale-dependent inter-annual phase

shifts. The model is applied to daily air temperature data

and daily NDVI (normalized difference vegetation index)

observations (Doktor et al. 2009) of a beech forest in

Germany.

2 Methods

2.1 Morlet wavelets

A complex-valued wavelet for a complex continuous

wavelet transform is required for our application, as it

yields information on both the amplitude and the phase of

time series without any restrictions on scale. There are a

few different types of complex-valued wavelets. The

advantage of the Morlet wavelet is that it has optimal joint

time–frequency concentration with respect to the Heisen-

berg’s uncertainty principle, i.e. it attains the minimum

possible value regarding time–frequency–resolution (Agu-

iar-Conraria et al. 2008). Therefore, the use of Morlet

wavelets is especially advantageous in case of insufficient

prior knowledge of phase and frequency variations.

The Morlet wavelet including its family of scaled and

translated versions is given by

Ws;f tð Þ ¼ p�1=4s�1=2 � exp 2pif t � sð Þ½ � � exp � t � sð Þ2

2s2

" #

for different scale and location parameters f and s,

respectively. These complex-valued Morlet wavelets are

products of a complex exponential of frequency f and a

Gaussian density function. This Gaussian is centred at time

s and characterized by a width s (or standard deviation s as

well-defined parameter in a statistical context), which is

approximately proportional to the inverse of f (Lachaux

et al. 2000; Foufoula-Georgiou and Kumar 1997).

Therefore, the real and imaginary parts of the wavelets

are sinusoidal waves modulated by a Gaussian function.

The wavelet transform of function x tð Þ at time s and

frequency f is defined as

Wx s; fð Þ ¼
Z1
�1

x tð Þ �W�s;f tð Þdt

where W�s;f is the complex conjugate of the Morlet wavelet.

Because Wxðs; f Þ is complex as well, it is an expression of

the form

Wx s; fð Þ ¼ Re Wx s; fð Þf g þ iIm Wx s; fð Þf g
¼ Wx s; fð Þj j exp iU s; fð Þ½ � ð1Þ

where real and imaginary part are denoted RefWx s; fð Þg
and ImfWx s; fð Þg; respectively. Using Morlet wavelets,

one is able to estimate the instantaneous amplitude

jWx s; fð Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re Wx s; fð Þf g�2 þ ½Im Wx s; fð Þf g
h i2

r
ð2Þ

and the instantaneous phase of the signal (Torrence and

Compo 1998).

Ux s; fð Þ ¼ atan2 ImfWx s; fð Þg;RefWx s; fð Þg½ � ð3Þ

where atan2 is the two-argument inverse tangent. If the

function that should be analysed is a nearly periodic

function representable by x tð Þ ¼ A tð Þ cos 2pf0t þ ux tð Þ½ �;
then this instantaneous phase measures the shift between

function x tð Þ and sinusoidal wave Re exp �2pif t � sð Þ½ �f g
¼ cos½2pf t � sð Þ� for different scale and location

parameters f ; s. Hence it follows for f0 ¼ f , that the

effective phase is

~ux ¼ Ux � 2pf s: ð4Þ

In order to avoid large increases of phase values, the last

step in phase calculation is the transformation from

effective phase to wrapped effective phase, i.e. a phase

constrained to an interval such as 0; 2pÞ½ :

ux ¼ ~ux mod 2p: ð5Þ

Given two time series x tð Þ and y tð Þ with wavelet

transforms Wx s; fð Þ and Wy s; fð Þ, respectively, the cross-

wavelet transform is defined as Wxy s; fð Þ ¼ Wx s; fð ÞW�y s; fð Þ
and the coherence phase as

Uxy s; fð Þ ¼ atan2 ImfWxy s; fð Þg;RefWxy s; fð Þg
� �

ð6Þ

(Torrence and Compo 1998).

2.2 Wavelet analysis

In the following, we consider in more detail how wavelet

transforms can be used to study the issue of periods when

temperature has a potential influence on plant growing.

As a starting point for subsequent analysis, all series

were normalized. The procedure itself includes the
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following three steps: calculation of (1) scale-dependent

decompositions of time series, (2) phase shifts of seasonal

components in relation to the annual cycle, and (3) inter-

annual phase differences between seasonal phases of dif-

ferent time series. This means in detail:

(1) The analysis is based on a previous time–frequency

analysis of the time series. Because nearly peri-

odic time series are characterized by a specific

frequency they can be estimated by x̂ s; fð Þ ¼
jWx s; fð Þj cos 2pf sþ ux s; fð Þ½ �; that is a sinusoidal

oscillation as a function of time-dependent amplitudes

[Eq. (1)–(2)] and phases [Eq. (3)–(5)] calculated by

wavelet analysis (Paluš et al. 2005). Moreover, signals

can be decomposed into a finite set of such frequency

components. To correctly represent the dominant

component of an annual cycle, one should regard the

period length of the tropical year T ¼ 365:25 d as

lowest mode of oscillation. Thus the lowest frequency

is one cycle per year. According to this fundamental

frequency f0 ¼ 1=T ; the harmonics should have fre-

quencies f1 ¼ 2f0; f2 ¼ 4f0; f3 ¼ 8f0; . . .etc: This is

feasible with Morlet wavelets, because in case of

such continuous wavelet transforms not only several

numbers of octaves (powers of 2), but also several

scales per octave can be utilized for the adjustment of

frequencies. The subsequent analysis is done on these

frequency components x̂ s; fið Þ of the signals.

(2) Here, we introduce our method of detecting fluctua-

tions in the timing of the seasons. Phase analysis is

able to reveal how the frequency components x̂ s; fið Þ
are phase-shifted in relation to a normal annual

rhythm. Thus, in order to investigate seasonal

dynamics, phases [Eq. (3)–(5)] have to be calculated,

where x is to replace by x̂ s; fið Þ and f is to replace by

f0. In this way, phase relations of frequency compo-

nents x̂ s; fið Þ to an annual cycle are calculated. More

precisely, the calculated phase time series ux̂;fi s; f0ð Þ
reflect the time-dependent forerun of the components

x̂ s; fið Þ to the function cos 2pf0s½ �: To exemplify and to

realize what is meant for phases of functions at

different frequencies, one can compare the positions

of zeros. For fi ¼ f0; every zero of the component

x̂ s; f0ð Þ is compared to every zero of the cosine.

Whereas, for instance, for fi ¼ f1; every second zero

of the component x̂ s; f1ð Þ is compared to every zero of

the cosine. In a sense, the components x̂ s; fið Þ are

regarded as functions of frequency f0, and additional

zeros must be seen just as specific amplitudes rather

than nodes of oscillation.

(3) Having such phases calculated for both time series, it is

of particular interest whether a distinct temporal phase

difference will become apparent in the process. Phase

differences of two time series can be calculated by the

coherence phase [Eq. (6)]. If the phase difference

between two signals is constant over time, these signals

can be regarded as phase-locked. Waves characterized

by constant phase difference are referred to as coherent

waves, and periods of constant phase difference are

referred to as periods of synchronization (Cazelles and

Stone 2003; Pikovsky et al. 2001). Long-term syn-

chrony allows the assumption that both signals are

coupled, i.e. one signal reacts to the other, possibly with

a certain time lag. In order to detect scale-dependent

and inter-annual phase shifts, we apply Eq. (6) to the

seasonal phases ux̂;fi and uŷ;fi instead of x and y. In this

case, we have to calculate this coherence phase for an

appropriate low frequency, i.e. for a frequency lower

than one cycle per year. Phase shift can always be

converted into time shift. For this purpose, an appro-

priate frequency band has to be applied.

Our computations are based on a software package

housed in the R language (R version 2.11.1) and environ-

ment for statistical computing (R Development Core Team

2010). The tools for calculating wavelet transforms are

available in the package dplR (Bunn 2008). We used the

function morlet for Morlet wavelets.

3 Data

Vegetation activity has been well documented using two

independent methods for data collection, based on ground

observations and remote sensing measurements. Remote

sensing signals are satellite observations provided by, for

instance, the National Oceanic and Atmospheric Adminis-

tration’s Advanced Very High Resolution Radiometer

(NOAA/AVHRR). Signals observed by remote-sensing

techniques are available as so-called normalized difference

vegetation index (NDVI) values. This index exploits the

change in reflectance between the red and infra-red part of

the electromagnetic spectrum typically exhibited by vege-

tation. The NDVI thus reflects the part of photosynthetically

relevant radiation absorbed by plants. Using remote-sensing

indices, several authors were able to estimate the date of

green-up or the length of vegetation period for, e.g.,

deciduous forests (Badeck et al. 2004; White et al. 2003).

Roughly speaking, NDVI data reflect changes in leaf and

shoot growth and indicate the seasonal greenness of the

vegetation as seen from space.

NDVI values are available as daily signals in 1 9 1 km2

spatial resolution for the period 1989–2007. In a systematic

pre-processing of data, a general quality check is necessary

to identify missing data, outliers, and other errors in data

recording. Moreover, elimination from cloudy scenes and
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of directional and atmospheric effects necessitates further

corrections (Doktor et al. 2009). Therefore, a dynamic

filtering of raw satellite data was used to improve the

observational data. In the resulting dataset missing or faulty

observations are replaced by linear interpolation between

selected ‘true’ NDVI observations.

We focus on the seasonal activities of a temperate

deciduous forest. Because it would be a disadvantage if a

mixture of different species within the satellite scene has to

be analyzed, we try to concentrate our study on a single

species. This is possible for a large beech forest area

consisting of nearly pure stands of beech (Fagus sylvatica).

The selected observation area is a grid cell (upper left

corner: 51�0601200N, 10�2203500E, altitude 445 m a.s.l.)

of about 1 km2 in a beech forest located in Germany

(Hainich). The Hainich site is located in western Thuringia.

It is a national park that has not been managed regularly for

about 40 years. Since the forest was managed as coppice-

with-standards forest or selection forest before (instead of

age-class forest), only single trees were removed. Thus to

date the stand has been uneven-aged with old dominant

trees (Skomarkova et al. 2006).

Weather data are provided by the German Meteorolog-

ical Service (DWD) for distributed stations (WebWerdis,

http://werdis.dwd.de/werdis/start_js_JSP.do). Daily mean

values of air temperature were taken from a weather station

close to the Hainich site, that is Leinefelde (51�230N,

10�180E, altitude 356 m a.s.l.), for the period 1989–2007.

4 Results

Figure 1a depicts the vegetation phenology based on daily

NDVI satellite observations. Figure 2a displays the time

series of daily mean temperature for the same period. In the

plots below, we show frequency components oscillating at

different frequencies for both time series (Figs. 1b–e, 2b–e).

The applied frequencies are marked by corresponding

periods, i.e. by parts of the period length of one year.

For Germany, the hottest temperatures of the season are

typically experienced in July. On average, NDVI data reach

their maximum value on the 194th day of the year, whereas

the highest temperature is measured on the 200th day of the

year. Therefore, NDVI reaches its maximum already before

the average daily temperature has peaked. Quantifying shifts

in relation to the first day of the following year, this means

that the maximum of average daily NDVI is 365 - 194 =

171 days in advance, whereas the corresponding value of

temperature is 365 - 200 = 165 days in advance. As a

consequence, each calculated phase shift as function of time

is expected to fluctuate around its mean value. By means of

the results for scale-dependent phase analysis of NDVI and

temperature time series, we are able to quantify fluctuations

in the timing of the seasons and phase shifts in relation to the

normal annual rhythm (Fig. 3). Wavelet analysis shows how

the phases evolve over time. The phase shifts are each indi-

cated in days for time shift, i.e. shift in relation to the first day

of the following year. On average, the phase of temperature

has a smaller value for time shift than the phase of NDVI

values at each period. Regarding the course of the year,

however, events of satellite observations occur a few days

earlier than temperature events, as expected for this case.

Another issue has to be considered when analyzing the

relation between NDVI and temperature phases (Fig. 3). On

closer inspection, a striking similarity between NDVI and

temperature phase functions becomes apparent. Obviously,

NDVI phases compared to temperature phases show these

phases matched but shifted. The shifts seem to be constant in

case of specific periods and outside of a zone affected by edge

effects. Roughly speaking, the curves are phase locked

between the years 1994 and 2003, whereas the first and the

last five years are likely affected by edge effects. At first sight

this seems to be in conflict with specifications given by

Torrence and Compo (1998) for such intervals. According to

the authors, the so-called cone of influence would span, for

instance, approximately 1.4 years for Morlet wavelets of a

one year period. The error caused by a discontinuity at the

edge would drop by a factor e�2 within this cone. We would

like to point out that in our case however, the analysis is

carried out with repeated applications of wavelet transforms.

The functions under consideration for phase analysis are

influenced by edge effects themselves. Moreover, our method

requires higher accuracy in calculation of wavelet transforms.

Therefore, we expect a much longer interval. In order to study

more precisely the influence of edge effects, this cone is

assessed by means of simulated data. Seasonal phases of an

undisturbed sinusoidal oscillation feature intervals where the

function is not constant and thus visualize the region in which

edge effects become noticeable (Fig. 3). The outcome of this

is that the interval is 4–5 years. It is slightly different

depending on for which function the phase is calculated.

Functions of lower period have higher values for the ampli-

tudes near the edges due to the discontinuities at the end-

points. Therefore, they transfer inflated values to the phase

calculation and cause a longer range of edge effects than

others. Figure 3 illustrates that, inside the cone of influence,

oscillations may be out of phase. However, outside the cone

of influence, phases can be found to occur time-delayed and

one phase seems to be the delayed copy of the other one.

Therefore, it is not enough to calculate phase differences in

relation to the annual cycle. Instead, an additional study of

phase locking over a longer period would be conducive.
In order to check whether the phase difference between

seasonal phases of NDVI and temperature time series is

constant over time, the results for the coherence phases

computed for the 4–5� year frequency band are presented
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in Fig. 4. The analysis is based on deliberately shortened

time series due to the edge effects. Obviously, at the one

year period, phase locking does not exist. For seasonal

phases, however, it becomes apparent that the phase

difference is almost constant over time. The two time

series appear to be phase-locked with a lag of approxi-

mately 300 days. This becomes most evident at the

1/8 year period. Therefore, in an effort to understand

coherence of temperature and NDVI oscillations, a scale-

dependent analysis seems to be relevant. To support this

assumption, we additionally run a calculation ignoring

the step where the time series are decomposed in fre-

quency components and applying the two last steps of

our method to the original time series. As expected for

this case, the result indicates that there is no constant

phase relationship between temperature and NDVI

observations and that this approach is comparable to that

of the one year period.
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Fig. 1 a Time series of vegetation phenology based on daily NDVI satellite observations in the Hainich National Park, Thuringia, Germany.

b–e Its components resulting from a time–frequency analysis of the normalized series at different periods, i.e., parts of the period length of one year
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In order to prove that this phase locking indeed exists at

least at the 1/8 year period, the hypothesis that the phase

differences UðsÞ presented in Fig. 4 can be regarded as

constant over time should be confirmed or rejected in terms

of scale. Therefore, we need to evaluate the strength of

phase synchronization using an appropriate statistic. Alle-

feld and Kurths (2004) proved that the mean resultant

length (MRL)

MRL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðUðsÞÞh i2þ sinðUðsÞÞh i2

q
;

where \[ is the temporal average, is a measure of the

concentration of the underlying distribution. On the one

hand, for oscillations of perfect phase synchronization, i.e.

in case that their phase difference is constant over the

whole time interval of interest, MRL is one. On the other

hand, the MRL tends to zero for oscillations of increasingly

asynchronous modifications and parts (Paluš and Novotná

2006). These characteristics can be utilized for statistical

testing. For this purpose, the MRLs are calculated for both
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Fig. 2 a Time series of daily mean temperature data (�C) in Leinefelde, close to the Hainich National Park, Thuringia, Germany. b–e Its

components resulting from a time–frequency analysis of the normalized series at different periods, i.e., parts of the period length of one year
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phase differences of seasonal phases (Fig. 4) and phase

differences of 1,000 sets of randomly generated data. For

the latter ones, all phases must be randomly generated,

whereas amplitudes, frequencies, and autocorrelations of

original data need to be preserved (Paluš and Novotná

2011). Because, in general, the MRL for synchronized

processes will be larger than for unsynchronized processes,

the probability P of a random occurrence of MRL (ran-

domly generated data) C MRL(original data) should be

smaller than 0.05. If so, the phase locking would be sig-

nificant. The results for such probabilities P in terms of

period are summarized in Table 1. Our findings confirm the

hypothesis that phase locking exists at the 1/8 year period.

Since the phase synchronization is significant only in case

of the 1/8 year period, the results also indicate the impor-

tance of scale-dependent analyses.

5 Discussion

Morlet wavelets can serve as a helpful tool for decom-

posing time series with respect to time and period. Using

such decompositions for a combined concept of phase and

coherence analysis of bivariate time series, we are able to

detect their inter-annual variations of phases and to decide

whether there is any scale-dependent phase-locking. By

applying this approach to temperature and NDVI time

series, we are able to identify a coherent phase emerging at

the 1/8 year period. It enables us to measure a time shift of

about one year.

Our findings are supported by several authors indicating

that, for deciduous trees, climate variables such as tem-

perature influence the phenological timing of the following

year. Obviously, this relationship is linked by photosyn-

thetic processes as well as accumulation and depletion of

carbohydrate reserves.

Gough et al. (2010) pointed out that thermal regulation

of growing season length and duration of the photosyn-

thetic period may have important consequences for the

periodicity of seasonal tissue non-structural carbohydrates

(NSC) cycles in temperate deciduous forests. They exam-

ined how shifts in accumulation of degree days relate to

cycling processes of net primary production (NPP) and

gross primary production (GPP) and how those relate to

seasonal fluctuations in tissue NSC. In particular, they were

able to demonstrate the coupling of temperature regulated

carbon assimilation processes with temporal changes in

NSC concentrations in aspens and oaks. Barbaroux and
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Fig. 3 Seasonal phases for NDVI data (dotted lines) and temperature

data (dashed lines). Different components marked by different

periods are used for both NDVI and temperature data. Phase shifts

are indicated in days for time shift, i.e., days in forerun to the

following year. Seasonal phases of simulated data of an undisturbed

sinusoidal oscillation (solid lines) visualize the region in which edge

effects become noticeable. The dot–dashed lines indicate this cone of
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Fig. 4 Phase differences between seasonal phases of NDVI and

temperature time series and, for comparison, phase difference

between phases of the original undecomposed NDVI and temperature

time series

Table 1 Statistical significance of the phase synchronization in terms

of period

Period P value

1 Year period 0.612

1/2 Year period 0.077

1/4 Year period 0.051

1/8 Year period 0.024*

Undecomposed 0.085

The results for P values of the MRL test statistic are listed for phase

differences of seasonal phases (and, for comparison, phases of

undecomposed time series)

A significance level of P \ 0.05 is indicated with asterisk
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Bréda (2002) examined seasonal fluctuations of NSC

reserves (starch and soluble sugars), i.e. variations in NSC

for beech and oak trees during a season. For beech, the

study was carried out in a state forest in France (altitude

300 m). They observed a decrease in the concentration of

sugars from March to June (i.e., until maximum leaf area

index) and an increase in NSC concentration from June to

October (i.e., until the start of leaf fall). Several studies

revealed a relation between carbohydrate storage from the

past year and growth in the present year in temperate

deciduous forests. Especially for beech: Skomarkova et al.

(2006) investigated the variability of radial growth int. al.

in tree rings and analyzed the influence of climatic vari-

ables and carbohydrate storage on these parameters. They

found, in particular, for the Hainich site in Germany that a

certain part of the tree-ring width in a given year is

explained by the growth conditions in the previous year.

Moreover, Čufar et al. (2008) who studied beech trees at a

typical forest site near Ljubljana, found tree-ring widths

positive affected by the temperature of the previous

November. This hypothesis is confirmed by Campioli et al.

(2011). They investigated the same stand located in France

as Barbaroux and Bréda (2002). The stand is composed of

90 % young beech. They showed that the air temperature

of the previous year significantly correlates to the NPP–

GPP ratio of wood and that lag effects between years play

an important role. Since NPP and GPP relate to absorbed

photosynthetically active radiation there is also a close

relationship to remotely sensed NDVI profiles (Sjöström

et al. 2011; Goward and Huemmrich 1992; Mariappan

2010).

Because most of the studies analyzed only individual

beech trees over a short time span, there has been a need

for a reliable and robust method to measure time lags

between years. Moreover, there are no systematic investi-

gations for answering the question: Which changes in the

temperature regime at which time scales and for which

shifts are the key drivers that strongly affect the growing

season? Regarding these issues, our method is able to

provide novel insight into the complex relationship

between temperature and vegetation phenology of beech

forests. Our method revealed that certain phase differences

between temperature and NDVI observations are almost

constant over time. It concerns mainly seasonal changes in

temperature and NDVI cycle in respect of the normal

annual rhythm.

6 Conclusion

Assessing the influence of drivers such as temperature on

the phenological timings of plants requires the develop-

ment of a method comparing phenological data and

correlated drivers for different temporal shifts and at dif-

ferent time scales. We use Morlet wavelets to decompose

signals into their frequency components. In addition, we

calculate phase shifts of seasonal components in relation to

the annual cycle and inter-annual phase differences of

bivariate time series. Therefore, wavelet transforms pro-

vide a very appropriate tool to study the issue of periods

when temperature has a potential influence on plant

growing. As an example, vegetation phenology data based

on satellite observations and appropriate temperature data

are investigated. For a beech forest in the Hainich site in

Germany, the two time series appear to be phase-locked

with a time shift of approximately 300 days. In an effort to

understand coherence of temperature and NDVI oscilla-

tions, we can first state that the more coherence is uniform,

the more coupling between both signals is likely. Second,

for the beech forest under consideration, this phase syn-

chrony is significant at the 1/8 year period. Therefore, our

study reveals that certain temperature fluctuations in rela-

tion to the normal annual cycle and arising during a

1–2 month period are likely coupled with phenological

events in the following year. In particular, we support the

assumption that a certain part of growing for beech trees is

explained by the growth conditions in the previous year

(Čufar et al. 2008; Skomarkova et al. 2006).

We believe that our analyses and results are promising for

further studies of the influence of climatic drivers on the

phenological timings of plants. Since identifying and quan-

tifying of such interactions is a challenge, the method can be

recommended for application to a wide range of bivariate

time series of sufficient length and temporal resolution.
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