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Less than eight (and a half) mis-
conceptions of spatial analysis

ABSTRACT

Spatial analyses are indispensable analyt-

ical tools in biogeography and macroe-

cology. In a recent Guest Editorial,

Hawkins (Journal of Biogeography, 2012, 39,

1–9) raised several issues related to spatial

analyses. While we concur with some

points, we here clarify those confounding

(1) spatial trends and spatial autocorrela-

tion, and (2) spatial autocorrelation in the

response variable and in the residuals. We

argue that recognizing spatial autocorre-

lation in statistical modelling is not only a

crucial step in model diagnostics, but that

disregarding it is essentially wrong.
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INTRODUCTION

Recently, Hawkins (2012) discussed the use

of spatial analyses, describing �Eight (and a

half) deadly sins of spatial analysis�. Recog-

nition of all nine issues raised by Hawkins

(2012) is important within regression anal-

yses. However, few of these issues are actu-

ally related to spatial analyses. For these

cases, the paper unfortunately features sev-

eral common misconceptions, some of

which have been previously outlined by

Fortin & Dale (2009). We would like to

comment on those issues in a spatial context

that to our reading deserve clarification,

especially some statements regarding spatial

analyses that are likely to be misunderstood,

due to a confusion of spatial scale, collin-

earity of predictors and statistical tools.

WHAT ARE —SPATIAL MODELS ?

ANALYTICAL TOOLS AND

SPATIAL SCALE

Unfortunately, but not untypically for an

opinion paper, Hawkins� (2012) paper lacks

a clear definition of what the author means

by �spatial model�, an omission leading to

logical inconsistencies. First, in the section

�Spatial regression is best�, spatial models in

general are discredited. Later, Hawkins

praises �eigenvector filtering� (a spatial

modelling technique: Diniz-Filho et al.,

2003; Dray et al., 2006; Griffith & Peres-

Neto, 2006) and describes hierarchical par-

titioning based on trend-surface regression,

a method which uses geographical location

as a predictor (Legendre, 1990, 1993; Bor-

card et al., 1992), but which does not rep-

resent spatial autocorrelation, and

eventually he recommends the use of clas-

sification and regression trees (Breiman

et al., 1998), which are clearly not spatial

models, for spatial analyses. All of these

approaches are tools serving different pur-

poses and recognizing space at different

scales and in different ways. We therefore

first need to clarify at which spatial scale

processes are acting, defining whether they

are relevant at a neighbourhood scale

(locations around each data point location),

at intermediate distances (within the region

or biome), or only across the full extent of a

(not necessarily biogeographical) study

demonstrating large-scale spatial trends.

Spatial autocorrelation (SA) is the phe-

nomenon that adjacent regions are more

related than distant regions (Tobler, 1970).

There is, however, a more or less constant

relationship between spatial resolution, ex-

tent and the area of influence of SA; inde-

pendent of scale, autocorrelation effects

usually do not reach beyond a few grain sizes

(resolution pixels) from a focal location

(Dormann, 2007). As such, SA is a neigh-

bourhood-scale issue, whereas spatial trends

concern much larger regions (in relation to

resolution and extent of a study; Scheiner

et al., 2000). There are many methods

available to account for the non-indepen-

dence of spatially autocorrelated data (Dor-

mann et al., 2007; Carl et al., 2008; Beale

et al., 2010), of which �spatial eigenvector

filtering� is just one, but possibly not the best,

as it tends to overfit the independent spatial

signal in analyses (Gilbert & Bennett, 2010).

At intermediate scales, non-stationarity

(the point raised by Hawkins in the section

�The world is stationary�) becomes an

important issue. It describes the phenome-

non that a regression coefficient may vary

across space. Geographically weighted

regression (Fotheringham et al., 2002) is

one of the methods of choice to quantify

and visualize non-stationarity. It does not,

however, account for SA, nor is it able to

deal with nonlinear relationships (due to

non-uniqueness of regression estimates) or

make predictions outside the study area

(Hothorn et al., 2011). Methods accounting

for non-stationarity and SA include, for

example, wavelet-revised regressions (Carl &

Kühn, 2010) or a specific non-stationary

extension of boosted regression trees

(Bühlmann & Hothorn, 2007; Hothorn

et al., 2011).

At a large scale, spatial trends frequently

co-vary with environmental gradients. This

is the domain in which trend-surface

regression and hierarchical partitioning

(Legendre, 1990; Borcard et al., 1992) are

widely used [note that �large scale� refers to

the length of a gradient relative to the study

region rather than absolute spatial dis-

tances; the reference study of Borcard et al.

(1992) analyses an area of only 25 m2].

Contrary to several claims in the (non-sta-

tistical) literature, the trend-surface regres-

sion method does not account for small-

scale SA.

IS SPATIAL AUTOCORRELATION

A PROBLEM IN STATISTICAL

ANALYSES?

With regard to ordinary least squares (OLS),

Hawkins (2012, p. 2) claims that �OLS

regression coefficients, except with respect

to estimating standard errors of coefficients,

are not biased by spatial autocorrelation�.
Some of the references he cites to support

this claim are Cressie (1993) (a lengthy book

devoted largely to the statistically correct

analysis of spatial data), Fortin & Dale

(2005) and Dutilleul (1993). We cannot find

any support in either Cressie (1993) or
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Fortin & Dale (2005) for this point, while

Dutilleul (1993, p. 305) appears to state the

exact opposite of what Hawkins is claiming:

�[SA] produces a bias in the estimation of

correlation coefficients�. Other references

cited (including his own work) also claim

that which Hawkins claims, but they do not

present it beyond anecdotal evidence. A

study not finding SA to affect regression

estimates is not the same as proving OLS

estimates to be unaffected by SA! In con-

clusion, we could not trace a reference for

this claim (and we consider for the main

reason that it is fundamentally wrong).

Anselin and colleagues (Anselin, 1988;

Anselin & Florax, 1995; Anselin & Bera,

1998) as well as the (caricature reality)

simulations of Dormann et al. (2007), Carl

& Kühn (2007, 2008) or Beale et al. (2010)

clearly demonstrated that SA does affect

coefficient estimates. Claiming that nature is

more complex than these simulations misses

the point: either OLS estimates are unbi-

ased, and subsequently they are also unbi-

ased in simplified simulations, or they are

not.

Hawkins (2012, p. 2) continues �Some

workers are concerned with precision in

OLS, which if they run simulations can

cause some sample slopes to be far from the

true slope by chance. However, this will only

occur with small sample sizes and is actually

a problem of insufficient data due to poor

study design rather than a problem arising

from spatial autocorrelation�. Such a state-

ment is ill-founded: even sample sizes of

several hundred or thousand can result in

unstable parameter estimates and even

changes in the sign of a slope (Kühn, 2007;

Kühn et al., 2009).

To drive our point home, Hawkins� claim

that statisticians widely agree that OLS

regression is unbiased (p. 2) can be coun-

tered by a quote from Beale et al. (2010, co-

authored by the statistician David Elston)

stating the opposite: �If the true regression

coefficients are close to zero, then a decrease

in estimation precision will lead to an in-

creased chance of obtaining an estimate

with a larger absolute value [...]. [...]

strengthening autocorrelation [results] in an

increasing tendency for Ordinary Least

Squares estimates to be larger in magnitude

than Generalized Least Squares estimates�
(p. 249). Even in his own work (e.g. Bini

et al., 2009), Hawkins has seen the effect of

spatial vs. non-spatial models. If OLS was

indeed shown not to affect estimates, why

then were there differences (even if in

unpredictable ways) between spatial and

non-spatial models?

WHAT IS AFFECTED IN

STATISTICAL ANALYSES IN THE

PRESENCE OF SPATIAL

AUTOCORRELATION?

We believe that within the arguments pre-

sented by Hawkins (2012), he has con-

founded the occurrence of SA in the raw

data with SA in the residuals. If the spatial

autocorrelation of an ecological response

variable is caused by autocorrelated predic-

tor variables (such as climate, land use,

topography, human population densities or

virtually any other spatial predictor), we are

not alarmed. Of course we do not wish to

remove this effect of such predictors. When

all relevant predictor variables are included

in �non-spatial� models, the residuals will

not be autocorrelated. Under these rare

conditions autocorrelation is neither an

artefact nor a problem. SA in the residuals

is, however, a serious problem, because it

(1) indicates the violation of an indepen-

dence assumption of any statistical model,

be it regression or CART (classification and

regression trees), resulting in incorrect error

probabilities; and (2) can seriously affect

coefficient estimates. For observational data

that do not result from orthogonal experi-

mental design, it is crucial to accommodate

non-independence arising from data colla-

tion and data structure. Indeed, it is very

easy to get the wrong impression without

proper statistical control. A substantial part

of macroecological papers may (hesitantly)

be deemed worthless because they get the

statistics wrong, with unknown implications

for the conclusions. Therefore it is necessary

to embrace SA in statistical models in order

to understand it, rather than rely on our

(often incorrect) intuition. We fear that

researchers without the statistical know-how

will follow the message given by Hawkins

(2012), choosing not to bother with com-

plicated analyses, and will thereby degrade

the already lax standard of the trade. Field

ecologists have spent years collecting data,

do we now want superficial statistics to

generate wrong conclusions? Ecological data

are among the most complicated statistical

data on earth. But what shall we do? Put our

heads in the sand? Let us rather hope that

we churn out fewer papers but adhere to

statistical assumptions and more robust,

generalizable conclusions, such as most of

the papers Hawkins himself has already

contributed to science (e.g. Hawkins et al.,

2007). Statistics do not need to be compli-

cated per se, but they need to be appropri-

ate. Let us not forget the second half of the

sentence paraphrased from Einstein: �A

model should be as simple as possible, but

no simpler!�

HOW TO PROCEED?

The points addressed above show some of

the difficulties of being a statistical ecologist.

Not every brilliant ecologist is necessarily a

superb statistician and as data, and the sta-

tistics they require, tend to become ever-

more complex, it is crucial to bridge this gap

by interdisciplinary collaboration. More-

over, it is crucial to be very specific about

the meaning of technical terms, as in dif-

ferent contexts they have different meanings

and can be a source of grave misunder-

standings.

First, and largely for the context of this

paper, we would like to propose a definition

for �spatial ecological process�: �A spatial

ecological process is a process acting in

space and being somehow affected by spatial

distance.� Typical examples could be dis-

persal, migration, territorial behaviour or

zone-of-influence-type competition. In

contrast, spatial distance does not play any

role for non-spatial ecological processes (for

example: within-site population dynamics,

growth response to environmental condi-

tions).

Second, specifying a (statistical) model

properly is crucial to produce sound and

valid results:

1. CARTs are more flexible and allow for

threshold effects (in contrast to standard

generalized linear models, GLMs). Single

CARTs overfit (Hastie et al., 2009), there-

fore their extended versions (boosted

regression trees: Ridgeway, 1999; Elith et al.,

2006; random forests: Breiman, 2001) are

nowadays more commonly used in ecology.

Nevertheless, we need to be aware that they

cannot account for spatial processes on any

scale per se, unless explicitly specified

(Hothorn et al., 2011).

2. Ecologically relevant predictors (causal

rather than substitute predictors) should be

used, possibly with spatial and⁄or temporal

lags. We agree with Hawkins (2012) that

including proxy variables such as spatial

trends in an analysis (or removing the effect

of such variables from a response variable)

can be harmful. Spatial trends can even

integrate across several important ecological

variables and are hence a combination of

them, making them much �better� predictors

than the ecologically meaningful variables

and masking their effect.

3. Despite all care and experience, some

important predictors are likely to be missing

(e.g. prey availability for predators, soil
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moisture for plants). If no better proxy

variables are available, we should attempt to

replace them with some spatial surrogate

variable (e.g. spatial eigenvector maps

(SEVM)⁄spatial filters or even trend-surface

regression), but in such a way that they do

not correlate with causal predictors already

included. SEVMs and alike should hence be

built from residuals (e.g. Kühn et al., 2009),

not from raw data (as practised in many

current biogeographical spatial analyses).

4. Spatial residual plots (maps of residuals)

should be reported as part of the analysis to

demonstrate the absence of spatial pattern

after the analysis. Any pattern remaining is a

violation of the assumption of independence

of data points and necessitates an appro-

priate method! Such maps are an opportu-

nity for understanding pattern in ecological

data. Mapping the spatial distribution of

spatial autocorrelation (Diniz-Filho & Bini,

2005; Kühn et al., 2006, 2009) can facilitate

the identification of important spatial pro-

cesses not included in the analysis. Mapping

the autocorrelation structure can hence im-

prove models and generate new hypotheses,

even if SA is itself not sufficient to claim the

effect of a specific process (Dormann, 2009).

Maps of SA should therefore complement

maps of uncertainty and maps of ignorance

in biogeographical analyses (Rocchini et al.,

2011).

Hawkins highlighted several important

problems with macroecological analyses,

including a lack of ecological understanding

of the system, improperly formulated

hypotheses, inappropriate data and confus-

ing analyses. To sum up our response, we

agree with several of the points he touches

upon, but we disagree that we can abandon

the central assumptions of statistical analysis.
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Are multiple regression models
of spatially structured data to
be trusted?

Kühn & Dormann (2012) raise several issues

in their response to my guest editorial on

spatial analysis (Hawkins, 2012), and I am

naturally tempted to respond in detail,

defending the points of view expressed in

the original essay. However, as all of their

points with respect to spatially explicit

regression are already in the literature, I

anticipated most of Kühn & Dormann�s
(2012) criticisms when I wrote the article,

and several sections were also revised during

the editorial process to deal with some of

these same arguments following a very

thorough and helpful external review by

Dormann. Therefore, I think the best use of

journal space is to suggest that rather than

continue a tit-for-tat exchange of detailed

responses, interested workers should read

Kühn & Dormann�s (2012) defence of spa-

tial modelling and then read (or re-read) my

original essay with their comments in mind.

We actually agree on many issues, and the

primary element that readers should con-

sider when evaluating the counter-argu-

ments is that Kühn & Dormann (2012) are

defending the position that spatial structure

generates bias, and that spatially explicit

multiple regression methods will give a

better answer than ordinary least squares

(OLS) regression. This misses the point of

my editorial, which was that no multiple

regression method is dependable when

applied to the types of data biogeographers

normally analyse.

The real problem with the analysis of

spatially structured, non-experimental data

is not model fitting, it is the ecological

inference of those models and the

unavoidable uncertainty in evaluating par-

tial regression coefficients generated by all

forms of multiple regression. I believe that

the various reasons this is true are clearly

articulated in my editorial. If readers are not

convinced by my arguments, or they really

believe I was advocating that spatial auto-

correlation be ignored rather than evaluated

for understanding spatial structure, they can

use spatial autoregression or related meth-

ods to control for spatial autocorrelation

statistically and trust in their models

(assuming they can demonstrate that the

structure of the data does not violate the

assumptions of the method used). As I

wrote the first time around, this argument

about the best form of regression and the

problem of spatial autocorrelation is a dis-

traction that does not address the real issues

we face in the field. I understand that not

everyone agrees. The alternative points of

view are now in the biogeographical litera-

ture, and workers can decide for themselves

how they want to proceed. Given that

spatial autoregression and non-spatial

regression generate similar results in the

majority of real data sets, and given that in

no cases can partial regression coefficients

be interpreted as effects, we can probably

disagree on which form of a widely misused

method we prefer without doing any

insurmountable harm to the field.
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What�s on your boots: an
investigation into the role we
play in protist dispersal

ABSTRACT

D. M. Wilkinson (2010, Journal of Bioge-

ography, 37, 393–397) suggested that

anthropogenic dispersal is an understud-

ied and potentially important factor in

terrestrial protist biogeography. We

investigated human footwear as a poten-

tial vector of dictyostelids, a diverse

group of amoebae that includes both

geographically restricted and cosmopoli-

tan species. Eighteen pairs of boots were

examined and dictyostelids were isolated

from nearly all samples larger than 5.0 g.

In total, six dictyostelid isolates were

recovered, corresponding to four species

– Dictyostelium minutum, D. sphaeroceph-

alum, D. leptosomopsis and a new species,

Polysphondylium sp. 1. Myxogastrid amoe-

bae and acrasid-like aggregations were also

observed. Thus anthropogenic dispersal of

naked amoebae appears to occur. The pos-

sible role of variations in dictyostelid fruit-

ing body morphologies in dispersal

potential is also discussed. These results

support Wilkinson�s proposal and suggest
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