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ABSTRACT

Restoring temperate grasslands often necessitates the introduction of large quantities of seeds, a process that is regulated by
seed transfer zones in many countries. These zones are commonly delineated based on abiotic factors. Consequently, it remains
uncertain to what extent existing seed zones represent and thereby protect or erode the spatial distribution of genetic varia-
tion. Empirical data on the spatial genetic structure of grassland species are therefore essential to address this knowledge gap.
Moreover, as seed zones are increasingly expected to provide genotypes pre-adapted to climate change, such data can also inform
predictions of maladaptation and support the identification of suitable donor populations. Here, we focus on Galium album, a
widespread perennial grassland species, which we sampled systematically across Germany, with an average of one population
per 25X 25km area. Based on 8348 SNP loci, we analyzed the population genetic structure using Bayesian clustering. We identi-
fied four spatially coherent genetic clusters, which explained 2.43% of genomic variation but showed little congruence with cur-
rent seed zones. Yet, seed zones still capture a significant component of spatial genetic structure (1.92%), which is also reflected
in a significant isolation by distance among zones. Seed transfer practices are increasingly challenged by climate change, shift-
ing the adaptive requirements for populations. We performed a genotype-environment association analysis using redundancy
analysis, and estimated the genomic offset, that is, the genomic change required to maintain the current genotype-environment
relationship under climate change. The genomic offset was generally moderate across Germany, even under a pessimistic climate
scenario projected into the more distant future (SSP5-8.5, 2081-2100). For one of the few locations where the temporal genomic
offset slightly exceeded a previously proposed threshold, we identified suitable donor regions harbouring potentially pre-adapted
genotypes for targeted assisted migration, both within the same and in adjacent zones.

1 | Introduction alternatives (Diaz et al. 2019) and is considered a value in it-

self (e.g., White 2013). Grasslands are biodiversity record hold-
Biodiversity is essential for the continued existence of  erson spatial scales up to 50m? (Wilson et al. 2012) and cover
Nature's Contributions to People on which we depend without 40% of the global land surface (Bardgett et al. 2021). Land-use
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change threatens the extent of grasslands, 49% of which show
signs of degradation (Gang et al. 2014). In Europe, for example,
less than 25% of all grasslands are in a good state (European
Environment Agency 2020). As conservation alone cannot
revert these losses and maintain landscape multifunctional-
ity (Aronson and Alexander 2013; United Nations 2015), it is
vital to restore functional ecosystems (United Nations 2019;
Tamburini et al. 2022).

In recent decades, grassland restoration requires increasingly
large amounts of regional seeds. By definition, regional seeds
evolve in the region of their application and are therefore
adapted to the prevailing environmental conditions (Knapp
and Rice 1994; Bucharova et al. 2017). Moreover, the use of
regional seeds preserves existing spatial genetic differentia-
tion. A common tool to regulate the sourcing, production and
deployment of regional seeds is the use of seed transfer zones
(‘seed zones’ hereafter). They are defined as ‘geographical re-
gions within which plants can be moved with little or no con-
sequences for population fitness’ (Hufford and Mazer 2003).
When multiple sources from within a seed zone are mixed, a
balance can be struck between maintaining current regional
adaptation and increasing adaptability due to enhanced ge-
netic diversity (Bucharova et al. 2019). Seed zones allow the
development of a reliable and economically viable regional
seeds production industry, scaling up restoration efforts
(Zinnen et al. 2021).

The delineation of seed zones is challenging because of the gen-
eral lack of species-specific data on regional adaptation and ge-
netic structure. In the absence of such data, seed zones based
on ecoregions are commonly used (Ying and Yanchuk 2006;
Bower et al. 2014; Cevallos et al. 2020). However, it is often not
clear to which degree such provisional seed zones reflect the ac-
tual spatial genetic differentiation of plant populations. On one
hand, genetic differentiation can be overlooked; on the other
hand, provisional seed zones may be overly restrictive (Miller
et al. 2011; Heenan et al. 2023). To validate the use of provi-
sional seed zones or suggest improvements to them, it is thus
essential to describe patterns of genetic differentiation (Hufford
and Mazer 2003; Mijangos et al. 2015; Listl et al. 2018; Massatti
et al. 2020; Rossetto et al. 2023).

Climate change constitutes yet another challenge for seed zones
and the use of regional seeds. Local adaptation of populations
is formed by past natural selection, and thus inherently reflects
past conditions. To maintain adaptation in a changing climate,
the allele frequencies within populations will have to shift ei-
ther by natural selection from standing genetic variability or
by gene flow from other populations. Intuitively, as the genetic
shift required to maintain the same level of adaptation under
climate change increases, the likelihood that a population will
manage to adapt decreases (McKay et al. 2005). The magni-
tude of this genetic shift in time, required for local adaptation
to keep pace with climate change, is called temporal genomic
offset (Fitzpatrick and Keller 2015). The temporal genomic off-
set can be calculated using candidate adaptive loci and environ-
mental data from the present and projected future (Capblancq
et al. 2020; Gougherty et al. 2021). Where the temporal genomic
offset is high, populations might have difficulties adapting in
the future (Lachmuth, Capblancq, Prakash, et al. 2023). In the

context of ecological restoration and seed sourcing, the method
of genomic offset also enables the evaluation of the suitability of
donor sites for a given recipient site.

When local standing genetic variation is not sufficient to adapt to
changing conditions, suitable seed material can come from else-
where, either by natural gene flow or by human-mediated trans-
fer. Mixing multiple sources of seed from within a seed zone, as
is the case with regional admixture provenancing, could in some
cases provide genotypes suitable for restoration under climate
change (Bucharova et al. 2019). If the entire seed zone provides
no such climate-adjusted seeds, targeted assisted migration be-
yond the borders of seed zones might be needed (Lachmuth,
Capblancq, Keller, and Fitzpatrick 2023), although this method
is not without risks (Twardek et al. 2023; Rushing 2024, but see
McKone and Hernandez 2021).

The challenge posed to seed zones by climate change is espe-
cially evident when a legally binding system of seed zones for
grassland restoration is already in place, such as in Germany
(BNatschG 2009; ErMiV 2011). Its 22 zones (Figure 1A) apply to
all common and widespread grassland plant species (Bucharova
et al. 2019). The seed zones are largely based on previously
described ecoregions (Meynen and Schmithiisen 1953-1962),
which in turn are based on abiotic parameters such as geomor-
phology, geology and climate. However, it is unclear how well
the seed zones capture the existing genetic variation of natural
grassland populations and how suitable they are for climate
change-resilient restoration.

In this study, we used a comprehensive SNP dataset of samples
covering all of Germany to describe the patterns of genetic vari-
ation of Galium album, a common grassland herb. We thereby
built on previous findings based on a limited number of popu-
lations, where isolation by distance and relatively strong popu-
lation differentiation compared to other species had been found
(Durka et al. 2017). In addition, we expanded the approaches
for evaluating genomic offset and donor importance described
by Lachmuth, Capblancq, Prakash, et al. (2023). Based on these
approaches, our study addresses four questions: (1) To what ex-
tent do geography, environmental conditions and demographic
history shape the spatial genetic structure of G. album across
Germany? (2) How do the observed spatial genomic patterns
relate to the seed zones? (3) How much genomic turnover is nec-
essary for populations to adapt to future climates? (4) Where are
suitable donor populations for those locations where the tempo-
ral genomic offset is high?

2 | Materials and Methods
2.1 | Study Taxon

Galium album Mill. (Rubiaceae) is a tetraploid, perennial herb
and is considered to have originated from diploid G. mollugo
s.str. (Krendl 1967; Natali et al. 1995). While both species are
widely distributed across Europe, G. album is much more com-
mon in Germany (Fagerlind 1937; Jager 2016). G. album is self-
incompatible and obligately outcrossing (Crowe 1964), and the
flowers are predominantly pollinated by Syrphidae, Muscidae
and Larvivoridae (Ancev and Krendl 2011). Its seeds lack
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FIGURE1 | (A)German Seed zones (colours and numbers) and sampling sites (black dots). Shading represents elevation. (B) Principal Component
Analysis (PCA) of the 735 individuals in the final data set. Colours analogous to panel A. Centroids marked by seed zone number. Coloured line
segments point halfway from centroids of seed zones towards individuals. (C) Pairwise genetic differentiation between the 22 German seed zones (as

Fg;) as a function of geographical distance. r, Correlation coefficient; Mantel-p, p-value from Mantel test; b, slope of the linear regression.

dedicated dispersing structures. The species typically grows in
pastures and mesic grassland.

2.2 | Study Design and SNP Data Set

Here, we used the data set of Galium album from the project
RegioDiv, where volunteers had collected 985 leaf samples
from all across Germany (for detailed methods, see Durka
et al. 2025). For genotyping, we used the double digest restric-
tion site-associated DNA sequencing (ddRAD) protocol by
Peterson et al. (2012) with minor modifications. Libraries were
sequenced and co-dominant, biallelic, single-nucleotide poly-
morphism (SNP) markers were derived using dDocent (Puritz
et al. 2014; O'Leary et al. 2018). We filtered to a minimum allele
frequency of 0.05 and retained a single SNP per contig. Since a
comparative analysis with allelic frequencies based on raw allele
counts showed highly similar patterns of genetic structure and
differentiation among seed zones (Figure Al), we applied dip-
loid genotyping to allow for consistent and comparable analyses
across taxa in the RegioDiv project (Durka et al. 2025). Lastly, we
cleaned the data set (1) by removing individuals that had been
collected as G. album by mistake, using taxonomic reference

samples, and (2) by excluding loci that were responsible for batch
effects using OutFLANK (Whitlock and Lotterhos 2015). The
resulting data set consisted of 735 individuals originating from
534 sites, genotyped at 8348 loci. We identified putative cpDNA
loci by a BLAST search of the reference sequences obtained
from dDocent against the nt database of GenBank (accessed
31 March 2021), using the programme blastn (-db nt\-task
megablast\-evalue 1.0e-6). If not otherwise stated, all following
analyses were performed in R 4.3.1 (R Core Team 2023). We
identified clusters of individuals based on putative cpDNA loci
only using the ‘find.clusters’ function from the ‘adegenet’ pack-
age (Jombart 2008).

2.3 | Environmental and Climate Data

To characterise present and future environmental site conditions,
we used climatic data from WorldClim2 (Fick and Hijmans 2017)
and soil data from SoilGrids 2.0 (Poggio et al. 2021). We chose
an Earth model that considers vegetation development (EC-
Earth3-Veg-LR, Smith et al. 2014). We assumed constant soil
conditions for the present and future. Accordingly, for the pres-
ent (1970-2000) and the future (2081-2100), we combined the 19
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bioclimatic and all 11 soil variables from SoilGrids250m 2.0 into
a common grid with 2.5" resolution. We excluded bio08 (mean
temperature of wettest quarter) and bio09 (mean temperature
of driest quarter) from further analysis, as they feature abrupt,
biologically meaningless changes in the landscape for the pres-
ent (1970-2000) in Germany. This exclusion is especially justi-
fied given that these variables are correlated with other variables
(e.g., biol5 and biol9). To explore the effect of climate change, we
first modelled the most extreme case under the worst available
emission scenario (SSP5-8.5) and the timeframe farthest into the
future (2081-2100). As the genomic offset was moderate even in
this rather extreme setting (see Section 3.2), we did not explore
less pessimistic scenarios, as their impact can be expected to be
even less severe.

To identify independent environmental variables associated
with genetic structure, we used the forward model selection
approach sensu Blanchet et al. (2008). A model of genetic vari-
ance was built by iteratively adding environmental variables to
the model, maximising the explained genetic variance with the
‘ordiR2step’ function from the ‘vegan’ package (Oksanen 2022).
The stopping criteria were p<0.01 (based on 1000 permuta-
tions), a decrease in adjusted R?, or surpassing the adjusted R?
of a full RDA with all environmental variables as explanatory
variables. The forward model selection process identified 12
environmental variables. We clustered the identified variables
according to the Spearman correlation coefficient using the
‘varclus’ function from the ‘Hmisc’ package (Harrell 2023), re-
sulting in eight branches below a Spearman correlation coeffi-
cient of 0.7 (Figure A2). We selected the most plausible variable
per branch for further analyses (Table 1).

TABLE 1 | Independent bioclimatic and soil variables from
WorldClim2 and SoilGrids 2.0, selected for their association with
genetic variation.

Variable name Description

isotherm2.7 BIO3: Isothermality (mean diurnal
temperature range divided by

annual temperature range)

prec.driest BIO17: Precipitation of the driest month

2.4 | Genetic Population Structure Analysis

If not stated otherwise, all genetic population structure analy-
ses have been performed on the full set of loci including those
identified as cpDNA. First, we visualised genetic relationships
of individuals via principal component analysis (function
‘elPCA’, package ‘adegenet’; Jombart 2008). We assessed popu-
lation structure using the model-based Bayesian clustering algo-
rithm of Admixture 1.3.0 (Alexander et al. 2009), which, given
a number of ancestral populations, assigns individuals to them
(‘genetic clusters’), allowing for admixture. We varied the pre-
scribed number of ancestral populations in Admixture's model
(K) from one to 22. We based our decision for the most plausible
(‘optimal’) number of clusters (Kopt) on both Admixture's cross
validation output (-cv flag) and biological plausibility: With in-
creasing number of K, we regard K as biologically plausible when
the newly added cluster is mostly geographically contiguous and
contains any individuals fully assigned to it (i.e., cluster mem-
bership g>0.9). We acknowledge that genetic structure is often
hierarchical and complex. There might be no ‘true’ number of
ancestral populations. We spatially interpolated Admixture's
Q-matrix across Germany using the ‘Krig’ function from the
‘fields’ package (Nychka et al. 2021). For visualisation as a map
we colour-coded the clusters, and visualised the highest g-value
per grid cell (hereafter referred to as ‘spatio-genetic groups”).

Overall genetic differentiation among seed zones was estimated
via an analysis of molecular variance (AMOVA) using the ‘poppr’
package (Kamvar et al. 2014) with the ‘ade4’ method (Dray and
Dufour 2007). For comparison, a second AMOVA was conducted
in which individuals were assigned to Kot spatio-genetic groups
according to spatial interpolation described above. Overall Fy
of seed zones was calculated using the ‘basic.stats’ function from
the ‘hierfstat’ package (Goudet 2005). Pairwise genetic differen-
tiation between seed zones was estimated as Fg; values applying
the ‘stamppFst’ function from the ‘stampp’ package (Pembleton
et al. 2013). In order to test for isolation by distance (IBD), we
correlated the matrix of pairwise Fg; values with a matrix of
geodesic distances between mean coordinates of the sites in a
given seed zone, testing for significance with a Mantel test. We
used partial redundancy analysis (pRDA) to estimate the inde-
pendent relative influence of geography, demographic history
and environment on allelic frequencies. For geography, we used
the plain geographic coordinates of the sampling sites; for de-
mographic history, the ancestry coefficients from Admixture at
K, .; and for environment, the selected environmental variables
(Table 1) at the sampling sites. Since RDA is sensitive to miss-
ing values, we imputed missing genotypes using the ‘impute’
function from the ‘LEA’ package (Frichot and Francois 2015)
with the number of ancestral populations equal to Kopt. We then
calculated a full model including geography, environment and
demographic history as explanatory variables to obtain the total
explained variance (Table 2). To isolate the effects of the explan-
atory variables, we calculated models for each variable sepa-
rately, each with the remaining variables as co-variables.

2.5 | Adaptive Landscape and Genomic Offset

For the calculation of adaptive indices and genomic offsets,
we largely followed Capblancq and Forester (2021). To identify

prec.seas BIO15: Precipitation seasonality
prec.warmest BIO18: Precipitation of
the warmest quarter
temp.seas BIO4: Temperature seasonality
bdod Bulk density of the oven-
dry fine earth fraction
cfvo Volumetric content of fragments
larger than 2mm in the whole soil
clay Soil clay content in the fine
earth fraction (%, 0-5m)
ocd Organic carbon density
soc Soil organic carbon content in the
fine earth fraction (g/kg, 0-5cm)
4 of 22
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TABLE 2 | Variance partitioning using pRDA. G: allele frequencies of the full set of loci; geo: coordinates of the sampling site; demo: demographic
history given as Admixture's Q-matrix at K=4; env: environmental variables. Significant p values with «=0.05 are shown in bold.

Model Formulae Prop. of explained variance Prop. of total variance P
Full model G ~env+geo+str 1 0.071 0.001
Pure environment G~env | (geo+str) 0.328 0.023 0.001
Pure demographic history G ~str | (env+geo) 0.102 0.007 0.477
Pure geography G~geo | (env+str) 0.205 0.015 0.001
Confounded 0.365 0.026

candidate adaptive loci based on genotype-environment as-
sociation, we used four methods: pcadapt, LFMM, RDA and
Gradient Forest (Figure A3). First, we used pcadapt (Luu
et al. 2017) to identify candidate adaptive loci by detecting SNPs
that show unusually strong correlation with population struc-
ture. This population structure was inferred from the first two
principal components of overall genetic variation. Second, we
applied latent factor mixed models (LFMMs) based on an exact
least-squares approach to identify loci showing significant cor-
relations with environmental gradients, while accounting for
population genetic structure using the LEA package (Frichot
and Francois 2015). The environmental gradients were de-
scribed by the bioclim variables and the soil variables as selected
above. We then ran the ‘Ifmm?2’ function with the number of
latent factors equal to Kot The p values for the association be-
tween loci and environmental variables were obtained using the
‘Ifmm?2.test’ function for the full set of environmental variables.
To correct for false discovery rate, only loci with significant g-
values (¢ < 0.05) were retained (Benjamini and Hochberg 1995).
Third, we used redundancy analysis (RDA) to model SNP al-
lelic frequencies by environmental predictors, while accounting
for demographic history. The function ‘rdadapt’ then identifies
outliers in environmental space based on Mahalanobis dis-
tances (Capblancq et al. 2018), incorporates an inflation factor
(Francois et al. 2016) and calculates g-values. We retained loci
with g <0.05. Lastly, for the application of Gradient Forest (Ellis,
Smith and Pitcher 2012), we removed major population struc-
ture effects from the SNP data by calculating residuals from a
linear regression of SNP allelic frequency on the first two princi-
pal components of overall genetic variation. We fit the Gradient
Forest model with these residuals as a response and the same
environmental variables as above as predictors, using 1000 boot-
strapped trees. As an ad hoc threshold, we then considered the
top 5% of loci most strongly associated with the environment as
putative adaptive loci.

We evaluated the effect of the choice of candidate adaptive loci
on downstream patterns of genomic offset by comparing the
results of using (1) the four loci identified by more than one
method, (2) the 143 loci identified by any method, and (3) all loci
(Figure A4). As the differences were negligible, we opted for the
conservative approach to keep only the four loci identified by
more than one method. Indeed, genome-wide loci with low di-
versity may predict genotypes at candidate adaptive loci (Bertin
et al. 2020) and genome-wide variation may be more relevant
to conservation than any putatively adaptive variation we may
identify (Kardos et al. 2021; Bruxaux et al. 2024, but see e.g.,
Dauphin et al. 2020).

We calculated an adaptively enriched RDA, by describing allele
frequencies of candidate adaptive loci per sampling site with
environmental variables (Capblancq and Forester 2021). Using
this RDA, an adaptive index can be calculated. Adaptive indices
are per-RDA-axis values that sum up the environmental values
of a given grid cell, weighted by the association of the envi-
ronmental variables with the respective RDA axis. Calculated
for all grid cells across our study area, the resulting ‘adaptive
landscape’ shows a linear combination of the environmental
variables that is relevant to the loci associated with that axis.
The adaptive landscape is interpreted as genomic turnover due
to changing environmental conditions. In a procedure sim-
ilar to Steane et al. (2014), the adaptive index is calculated as
Adaptive Index, , = ¥ a; b; with , RDA axis; ¢, grid cell; i, en-
vironmental variable; a, the variable's loading; b, standardised
value of variable. Following Capblancq and Forester (2021), we
calculated the adaptive index for the first two RDA axes, which
captured most of the variance explained by the adaptively en-
riched RDA (Figure A5). Using projected environmental condi-
tions, we calculated adaptive indices for the future as well.

Genomic offsets are distances in the adaptively enriched envi-
ronmental space sensu Steane et al. (2014). Therefore, given this
space, a genomic offset can be calculated between any two points
in space and time for which environmental data is available.
Lachmuth, Capblancq, Prakash, et al. (2023) distinguish spa-
tial offsets between different locations in the same time period,
temporal (local) offsets within one location between different
time periods (Fitzpatrick and Keller 2015), and spatio-temporal
offsets across space and time. We calculated the temporal off-
set for each grid cell between its present (1970-2000) and fu-
ture (2081-2100) conditions using the ‘genomic_offset’ function
from Capblancq and Forester (2021) with the first two RDA
axes. These temporal genomic offsets represent how large the
climate change-induced disruption of genotype-environment
associations is expected to be for a given grid cell. We trans-
formed each temporal genomic offset into a z’-score by adapting
the standardisation procedure of the offsetEnsembleR package
(https://github.com/SusanneLachmuth/offsetEnsembleR)—
originally formulated for Gradient Forest outputs—to our RDA-
based offsets, thereby situating each cell's future-present offset
within the empirical distribution of all contemporary spatial
offsets in the study area (Germany). This reference distribu-
tion of all contemporary, spatial genomic offsets represents the
present-day environmental variation relevant to the adaptation
of G. album populations. The z’-scores follow the Empirical Rule
(Ross 2017), that is, a z’-score of 1 corresponds to the 68th per-
centile of the reference distribution of all spatial contemporary
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genomic offsets, a z’-score of 2 corresponds to the 95th percen-
tile. However, the z’-scores have no meaning in terms of stan-
dard deviations of the reference distribution (hence z’ instead of
z like in Lachmuth, Capblancq, Prakash, et al. 2023).

In the absence of common garden data, z=1 has been suggested
as a reasonable not-to-exceed threshold above which plant
performance is likely to decrease substantially (Lachmuth,
Capblancq, Keller, and Fitzpatrick 2023). Accordingly, we used
z'=1 as a threshold to identify areas in Germany where the
genotype-environment association of G. album is expected to
be severely disrupted by climate change. For a selected site for
which adaptive disruption is predicted, we calculated a spatio-
temporal ‘donor offset’ to identify suitable climate-adjusted
donor sites. This donor offset is equivalent to the entries in the
scaled offset matrix from Lachmuth, Capblancq, Keller, and
Fitzpatrick (2023). Accordingly, we defined suitable donor sites
as those with a donor offset of z’ <1 between their current con-
ditions and the projected future conditions of the recipient site.

3 | Results
3.1 | Genetic Population Structure

A total of 4.76 X 10° sequence reads, that is, on average 4.83 X 10°
reads per sample, were used for SNP detection and genotyping,
resulting in 4.28 x10° raw SNPs. After filtering, 8348 biallelic
SNPs of 735 samples originating from 534 sites remained, with
16.6% of missing data.

Out of 8348 loci, we identified 24 as putatively belonging to
cpDNA. Individuals clustered into three distinct cpDNA groups
(Figures A6 and A7). All groups were present across Germany,
with Group 1 (blue) predominating in the northeast, Group 2
(yellow) predominating in the southwest and Group 3 (green)
being mostly restricted to Central Germany (Figure A8). All fol-
lowing results stem from the full set of 8348 loci including those
identified as cpDNA.

The clustering results of the Admixture analysis at K=2 dis-
tinguished the north-east of Germany from the southwest
(Figure 2, Figure A9). Many individuals were fully assigned
(@>0.9) to either genetic cluster, and the zones were often
dominated by one cluster (e.g., zone 03 dominated by blue,
zone 07 dominated by red). However, mixture and admixture
were found in other zones (e.g., zones 01, 04, 05). The statisti-
cally optimal solution as per cross-entropy analysis was K=3
(Figure A10). At this level, the westernmost parts of zones
07, 09 and 10 were separated from the initial south-western
cluster. At K =4, the initial north-eastern blue cluster was sub-
divided latitudinally into a northern (green) and a southern
(blue) part, with the transition cutting through zones 06, 04
and 22 (Figure 3). At K=35, the newly defined cluster lacked
sufficient non-admixed individuals (Figure 2), and substan-
tial spatial incoherences of the clusters emerged (Figure A9).
Therefore, we regarded four clusters (north, south, west and
central) as the most plausible solution (Kopt=4). In this solu-
tion, the clusters are mostly spatially coherent in northern,
central and southern Germany, and the fourth cluster predom-
inates in a narrow band along the western border, suggesting
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potential genetic continuity with populations in adjacent
countries. The corresponding spatio-genetic groups rarely
concur with the seed zones (Figure 3). More than half of the
zones encompassed multiple spatio-genetic groups, indicating
within-zone genetic heterogeneity (Figure 3).

Partial redundancy analysis (pRDA, Table 2) attributed ge-
netic variation to geographic location (coordinates), the se-
lected environmental variables (five bioclimatic variables
and five soil variables), or demographic history (the ancestry
coefficients at K =4, Table 2). The full model including all
three variable sets explained 7% of all genetic variation (‘ex-
plained variance’ hereafter). Environment alone accounted
for most of the genetic variance (33%), corresponding to 2%
of the total variance. Geography alone accounted for 21% of
explained variance, and demographic history alone explained
the least with 10% of explained variance. The remaining 36%
of explained variance was confounded between the three sets
of variables.

The seed zones were genetically differentiated (Figure A1l).
Principal component analysis (PCA) corroborated this finding,
since the seed zone centroids were clearly separated in the ordi-
nation (Figure 1B, Figure A12). Individual samples across the
zones had large genetic overlap. Some zones were more genet-
ically heterogeneous (e.g., 09, 21) than others (e.g., 03, 13), as
indicated by differences in sample spread. The first axis corre-
sponded to a west—east gradient, while the second axis differ-
entiated northern from southern populations. A western group
including zones 07 and 09 stood slightly apart from the main
cluster. Significant genetic differentiation was also detected by
AMOVA, where the zones accounted for 1.92% of the total vari-
ance (®g;=0.019, Table Al). Spatio-genetic groups reflecting
the coloured cluster areas in Figure 3 explained 2.43% of genetic
variance. The global Fg,-value among zones was 0.0096 and all

253 pairwise Fy-values were significant (Figure A11). We also
found a significant pattern of isolation by distance between the
zones, with a slope of 0.007 Fg;/100km and 41.2% of explained
variance (Figure 1C).

3.2 | Adaptive Index and Genomic Offset

We used four methods for finding genotype-environment asso-
ciations, which together identified 147 loci, 143 of which were
identified by one method only. Pcadapt identified 17 loci, LFMM
seven, RDA 121 and Gradient Forest two loci (Figure A3). We
considered the four loci that were identified by more than one
method as candidate adaptive loci (see Section 2.5). The adap-
tively enriched RDA was calculated with the allele frequencies
at the candidate adaptive loci as response variables and the
environmental variables previously selected as explanatory
variables. The first axis of the adaptively enriched RDA was
positively associated with the precipitation of the driest month,
the precipitation of the warmest quarter of the year, isothermal-
ity, soil clay content and soil organic carbon density (Table A2,
Figure A13). Accordingly, lower adaptive indices were found for
the drier and sandier northeast of Germany, while higher values
were found for mountain ranges (Figure A14). The adaptive in-
dices of the first axis for the projected future suggested that pop-
ulations of G. album will need to adapt to drier warm seasons
by the end of the century. The second axis of the adaptively en-
riched RDA mainly represented the seasonality of temperature
and precipitation. Correspondingly, the adaptive landscape of
the second axis showed a continentality gradient that increases
to the southeast. For the projected future, it suggested mostly a
requirement to adapt to reduced seasonality and potentially an
overall wetter summer.

When converted to z’-scores, the temporal genomic offsets
ranged from <0.01 to 1.01 (Figure 4A), with a tendency to in-
crease towards the southwest. They were highest in and around
the Western German uplands in seed zones 07, 09, 10, 11 and
21. Accordingly, populations of G. album in these regions
are expected to experience higher disruption in genotype-
environment associations (GEA) under projected future condi-
tions, potentially leading to excess maladaptation in the future
that may surpass the populations’ adaptive potential. Two grid
cells (< 1%o of all cells, see black arrows in Figure 4A) in zone
10 (Black Forest) exceeded the ad hoc not-to-exceed threshold of
z'=1 and were therefore formally considered vulnerable to pro-
jected future conditions. We randomly chose one of these cells
as an exemplary seed recipient cell and calculated the future
climate-adjusted donor suitability of all cells (Figure 4B). Most
of zone 10 itself was a suitable donor area, as were mountain
ranges of the southwest of Germany. Most low-elevation areas,
especially the dry and sandy northeast, were unsuitable donors.

4 | Discussion

We used a data set of SNP loci to infer geographic genetic
structure in Galium album, a common plant of European
grasslands, within Germany. We found significant isolation
by distance and four biologically plausible and spatially co-
herent genetic clusters, potentially representing ancestral
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phylogeographic groups. According to partial redundancy
analysis, genomic variation was mostly attributed to a
combination of the predictors, followed by environmental
conditions and geography alone, and to a lesser extent to de-
mographic history. The genetic structure only partially aligns
with the legally binding grassland seed zones in Germany. We
identified four candidate adaptive loci potentially conveying
environmental adaptation, and used them to estimate malad-
aptation of the populations under projected future conditions.
Under a relatively pessimistic climate scenario, we found that
the genomic offset remained below the ad hoc not-to-exceed
threshold across nearly the entire study area. For one location
predicted to experience maladaptation, we used the genomic
offset to identify suitable climate-adjusted donor areas.

4.1 | Genetic Structure

The structure of total genetic diversity in Galium album is
shaped mostly by environmental factors and geography, and
to a lesser extent by demographic history. These factors ex-
plained 33%, 21% and 10% of the explained variance, respec-
tively (Table 2). A substantial part of the explained genetic
variance (36%) was confounded among these factors, which is
common for this type of data (Legendre 1993; Sork et al. 2016;
Markova et al. 2023).

Environmental conditions (climate and soil) were the strongest
individual predictor for genetic variance, accounting for 33% of
the explained variance and 2.3% of the total genetic variance.
Since this variance is uniquely attributable to environmental
factors, unconfounded by demographic history or geographic
distance, it likely reflects adaptive processes. Other studies have
found higher proportions of total genetic variance explained

exclusively by environmental conditions (Sork et al. 2016;
Capblancq and Forester 2021; Chen et al. 2023), sometimes by
an order of magnitude (Temunovié et al. 2020; Jiang et al. 2025).
However, direct comparisons between studies have to be exam-
ined with caution: differences in organismal life history (e.g.,
woody species vs. herbaceous), the number and selection of
environmental variables, geographic scale, sampling density,
and the number of retained SNPs all influence the proportion
of variance attributable exclusively to environmental predictors.

Variation at adaptive candidate loci specifically was most
strongly associated with precipitation, isothermality and several
soil variables. The adaptive landscapes of the present reflect this
pattern, suggesting adaptation to a warmer, drier climate and
sandier soil in the north-east and wetter, less continental con-
ditions in the west, especially in the mountain ranges (RDA1
in Figure Al4). According to the second axis of the adaptive
landscape, populations may be adapted to greater temperature
seasonality in the increasingly continental southeast. It should
be noted, however, that the second axis explained substantially
less genetic variance than the first.

Geography, represented by spatial distances, was another no-
table predictor for total genetic variance, accounting for 21% of
the explained variance and 1.5% of the total genetic variance
(Table 2)—a higher proportion than in most of the studies men-
tioned above (Sork et al. 2016; Temunovic et al. 2020; Capblancq
and Forester 2021; Chen et al. 2023; Jiang et al. 2025). Exclusive
explanatory power of geography is consistent with the ex-
pectation that gene flow declines with increasing spatial dis-
tance, producing a pattern of isolation by distance (Hutchison
and Templeton 1999). Indeed, we observed significant IBD in
Galium album (Figure 1C), corroborating earlier findings based
on AFLP markers and a more limited population set (Durka
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et al. 2017). Nevertheless, disentangling the specific contribu-
tion of restricted gene flow to genetic variation remains chal-
lenging, as geographic distance is inherently confounded with
both demographic history and environmental heterogeneity
(Orsini et al. 2013). In G. album, limited gene flow is plausible
given that it relies on insect pollination and barochory.

Demographic history was the weakest individual predictor, ac-
counting for 10% of explained variance. We hypothesise there
were at least two distinct ancestral lineages of G. album that
may have colonised Central Europe from east to west. The spa-
tial differentiation between these hypothetical lineages (K=2 in
Figure A9) is supported by the cpDNA group distribution, where
haplotype Group 2 predominates in the southwest, while Groups
1 and 3 occur primarily in the northeast and Central Germany,
respectively (Figure A8), consistent with major postglacial mi-
gration routes. Similar patterns of postglacial recolonisation
from both the west and the east were documented in other spe-
cies, resulting in a longitudinal suture zone in Central Europe
(Taberlet et al. 1998; Hewitt 1999).

We observed admixture in the ancestry coefficients, that is, indi-
viduals that were largely or entirely assigned to a genetic cluster
that was not predominant in their region (e.g., red in zones 01,
06 and 08, blue in zone 11, Figure 2). Correspondingly, some in-
dividuals belonged to a cpDNA haplotype group uncommon in
their region, sometimes occurring several hundred kilometres
from the core range of the haplotype group (Figure AS8). A likely
explanation for this is human-mediated dispersal: G. album is a
species of seminatural, agriculturally used meadows and seeds
could have been carried over long distances by livestock or agri-
cultural machinery (Fischer et al. 1996). Moreover, G. album has
been sown as part of seed mixtures for grassland restoration,
and non-regional material may have spread into the seminatural
sites that we sampled (e.g., Gemeinholzer et al. 2020).

4.2 | Seed Zones

When considered as populations, seed zones were significantly
genetically differentiated with a global F;. 0of 0.018 and explained
1.9% of the total observed genetic variance according to AMOVA
(Table A1). This value is comparable to other SNP-based studies
on grassland plant species: For example, Michalski et al. (2017)
found a global Fgy; of 0.090 in Arrhenatherum elatius among
eight locations from Italy to Sweden, and Conrady et al. (2022)
found pairwise F; values from 0.016 to 0.143 (average 0.056)
between regions in five grassland species. These F values are
much smaller than values reported in older studies that used
markers with loci selected for their differentiating capability,
like AFLP or microsatellites: A previous study on G. album in
the same region using AFLP markers detected 14.8% of genetic
variability explained by the region (Durka et al. 2017). Indeed,
explained genetic variance is highly dependent on the marker
type used (Ai et al. 2014). The genetic differentiation that we
found between the seed zones is thus not negligible.

Although the seed zones (Figure 1A) are genetically differen-
tiated, they only partially reflect the spatio-genetic groups we
identified (Figure 3), and seed zone borders rarely align with the
borders of the spatio-genetic groups. At K=4, more than half

of the zones encompass more than one spatio-genetic group.
For instance, the north-south elongated western spatio-genetic
group was spread across western parts of six seed zones (red at
K =4, Figure 3), while no zone was fully dominated by it. All in
all, a substantial part of within-species genetic variation in G.
album is not covered by the current system of seed zones. This
is common when seed zones are based on environmental prox-
ies instead of genetic data (Massatti et al. 2020, however, see
Miller et al. 2011), as are most seed zones (e.g., Bower et al. 2014;
Cevallos et al. 2020; Riviére et al. 2022). The current system
therefore bears the danger of homogenising a part of the exist-
ing genetic variance. Nonetheless, our IBD and RDA analyses
suggest that genetic differentiation correlates with geographic
distance and environmental distance. Consequently, seed zones
defined by environmental criteria still capture a part of genetic
differentiation, particularly at larger spatial scales. They reflect
regional adaptation as well, at least to a certain extent (Kramer
et al. 2015; Bucharova et al. 2017). Thus, ecoregions are still use-
ful proxies for genetic variation in the absence of genetic data
and when more detailed seed zones are impractical.

The four spatio-genetic groups (Figure 3) explained substan-
tially more genetic variation than the 22 seed zones (Table Al).
Consequently, one could argue that it would be sufficient to have
four seed zones for G. album. However, these zones would then
span several hundred kilometres of a diverse adaptive land-
scape (Figure A14). In a species with significant isolation by
distance, seed transfer based on a few large zones may homo-
genise and distort genetic differences within zones. This could
be more problematic than using the current, smaller seed zones.
Additionally, the seed zones in Germany are generalised, that
is, they apply to all grassland plant species, which requires a
compromise across species, sacrificing parts of species-specific
differentiation (St. Clair and Johnson 2004; Prasse et al. 2010).
Therefore, smaller seed zones such as those in place are more
likely to capture within-species diversity across multiple species.

4.3 | Adaptive Requirements for the Future

With ongoing climate change, existing adaptation of some plant
populations lags behind the rapidly changing environmental
conditions (Wilczek et al. 2014; Anderson and Wadgymar 2020).
We used the temporal genomic offset to identify areas where
populations of G. album will potentially experience elevated
disruption of genotype-environment associations in the future.
We adapted the standardisation of genomic offsets introduced
by Lachmuth, Capblancq, Prakash, et al. (2023) and Lachmuth,
Capblancq, Keller, and Fitzpatrick (2023) to RDA-based ge-
nomic offset (Capblancq and Forester 2021). Surprisingly, only
a negligible part (0.007%) of the study area exceeded the ad hoc
threshold of z'=1 in their temporal genomic offset, even under
the most pessimistic scenario. Above z'=1, it is increasingly un-
likely that adaptation will keep pace with the change in environ-
mental conditions (Lachmuth, Capblancq, Prakash, et al. 2023),
in our case with regard to the period 2081-2100. Areas where
G. album populations exceeded the z'=1 threshold were rare
and small (Figure 4A), which may reflect that a grassland plant
species as common and widespread as G. album has substan-
tial genetic variation, conferring sufficient adaptive potential for
even drastic environmental change. While the dry season might
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become drier in Central Europe, other seasons may become wet-
ter (IPCC 2021), potentially benefiting some species (Dolezal
et al. 2022). Moreover, land-use change rather than climate
change is responsible for most grassland degradation in Europe
(Liu et al. 2019). While most populations of G. album across
Germany are predicted to face no major adaptive disruptions,
isolated exceedances such as in zone 10 (Black Forest) suggest
that even an otherwise resilient species like G. album may face
localised maladaptation risks.

Asan example of practical relevance, we identified suitable donor
areas for one location in zone 10 (Black Forest) which exceeds the
temporal genomic offset threshold of z’=1. We used the entries
in the scaled offset matrix from Lachmuth, Capblancq, Keller,
and Fitzpatrick (2023) and Lachmuth, Capblancq, Prakash,
et al. (2023) as a ‘donor offset’, demonstrating its utility to iden-
tify candidate donor populations for a given recipient site. In the
present climate, zone 10 occupies one extreme of the adaptively
enriched environmental space, characterised by milder dry sea-
sons and low seasonality (Figure A14). In the future, this shifts
towards more severe dry periods and more seasonality, which
negatively impacts grasslands (Fischer et al. 2020). These condi-
tions can be found in other parts of zone 10 today, as well as in
a few other low-mountain ranges outside of zone 10 in the west
of Germany, making them suitable donors (blue in Figure 4B).
This suggests that the only climate-vulnerable populations that
we identified can receive climate-adjusted material from within
the same zone if the right donor sites are chosen.

Genomic offset analysis offers a means of assessing the potential
vulnerability of populations to climate change. The present anal-
ysis provides an essential first step toward assessing the effec-
tiveness of the current German seed zones for restoration under
climate change. Future research should widen the scope of the
analysis across multiple species relevant to restoration. This would
enable identification of common patterns and a broader assess-
ment of generalised seed zones. However, genomic offset analyses
should not serve as the sole basis for management decisions. One
limitation is that the genomic offset-based donor suitability does
not account for any genomic variation beyond the selected loci. As
a result, in the presence of isolation by distance, out of two loca-
tions with equal donor suitability, the one closer to the recipient
site should be preferred. Moreover, independent validation of these
results is needed (Rellstab et al. 2021), for instance through com-
mon gardens and climate manipulation experiments. Common
gardens would allow the definition of a case-specific empirical z-
score threshold, beyond which population performance declines
too much (Lachmuth, Capblancq, Keller, and Fitzpatrick 2023).
When these limitations are addressed, the genomic offset can help
identify areas vulnerable to environmental change and provide
valuable guidance for climate-adjusted seed transfer in restoration.

Author Contributions

Johannes Hofner: conceptualization (equal), formal analysis (lead),
investigation (supporting), methodology (equal), writing - original
draft (lead), writing - review and editing (equal). Anna Bucharova:
conceptualization (supporting), investigation (supporting), writing -
review and editing (equal). Walter Durka: conceptualization (equal),
data curation (lead), formal analysis (supporting), investigation (equal),

methodology (equal), project administration (lead), writing — review
and editing (equal). Stefan G. Michalski: conceptualization (equal),
formal analysis (equal), investigation (equal), methodology (lead), proj-
ect administration (supporting), writing - review and editing (equal).

Acknowledgements

We thank the RegioDiv Consortium for the collection of the samples. We
thank Ina Geier and Martina Herrmann for DNA extraction and library
preparation. The RegioDiv Project was funded by the German Federal
Agency for Nature Conservation (BfN) with funds from the Federal
Ministry for the Environment (BMUYV) (FKZ 3520 82 06A-AW, Modul
2).J.H. was kindly supported by the Flexpool mechanism of iDiv funded
by the German Research Foundation (DFG-FZT 118, 202548816). Open
Access funding enabled and organized by Projekt DEAL.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Demultiplexed raw sequence data are available in the European
Nucleotide Archive (ENA) at EMBL-EBI under accession numbers
PRJEB71395 (https://www.ebi.ac.uk/ena/browser/view/PRJEB
71395) and PRJEB94855 (https://www.ebi.ac.uk/ena/browser/view/
PRJEB94855). Accession numbers of samples used and a genotype-
containing R object are accessible under the following doi: https://doi.
0rg/10.5281/zenodo.17094223.

References

Ai, B., M. Kang, and H. Huang. 2014. “Assessment of Genetic Diversity
in Seed Plants Based on a Uniform 7t Criterion.” Molecules 19, no. 12:
20113-20127. https://doi.org/10.3390/molecules191220113.

Alexander, D. H., J. Novembre, and K. Lange. 2009. “Fast Model-Based
Estimation of Ancestry in Unrelated Individuals.” Genome Research 19,
no. 9: 1655-1664. https://doi.org/10.1101/gr.094052.109.

Ancev, M., and F. Krendl. 2011. “Galium sect. Leiogalium (Rubiaceae)
in the Bulgarian Flora.”

Anderson, J. T., and S. M. Wadgymar. 2020. “Climate Change Disrupts
Local Adaptation and Favours Upslope Migration.” Ecology Letters 23,
no. 1: 181-192. https://doi.org/10.1111/ele.13427.

Aronson, J., and S. Alexander. 2013. “Ecosystem Restoration Is Now a
Global Priority: Time to Roll Up Our Sleeves.” Restoration Ecology 21,
no. 3: 293-296. https://doi.org/10.1111/rec.12011.

Bardgett, R. D., J. M. Bullock, S. Lavorel, et al. 2021. “Combatting Global
Grassland Degradation.” Nature Reviews Earth and Environment 2, no.
10: 720-735. https://doi.org/10.1038/s43017-021-00207-2.

Benjamini, Y., and Y. Hochberg. 1995. “Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing.” Journal
of the Royal Statistical Society. Series B, Statistical Methodology 57, no.
1: 289-300.

Bertin, A., M. L. Espinosa, C. A. Bustamante, A. J. Troncoso, and N.
Gouin. 2020. “Genome-Wide Genetic Diversity Yields Insights Into
Genomic Responses of Candidate Climate-Selected Loci in an Andean
Wetland Plant.” Scientific Reports 10, no. 1: 16851. https://doi.org/10.
1038/541598-020-73976-3.

Blanchet, F. G., P. Legendre, and D. Borcard. 2008. “Forward Selection
of Explanatory Variables.” Ecology 89, no. 9: 2623-2632. https://doi.org/
10.1890/07-0986.1.

BNatschG. 2009. “Gesetz iiber Naturschutz und Landschaftspflege
(Bundesnaturschutzgesetz - BNatSchG).” Bundesgesetzblatt Teil I 51:
2542-2579.

10 of 22

Ecology and Evolution, 2025

85U8017 SUOWIWIOD BAIEa.D 8|qeol[dde aup Aq peusenob ae so e YO 8sn JO Sa|n 10} A%eud1T8ulUO 8|1 UO (SUORIPUOO-pUB-SWBIW0 A8 | 1M ARIq 1 BulUO//SANY) SUORIPUOD Pue SWe 1 8y} 89S *[6202/60/G2] U0 A%eid1T8ulluO A8]IM ‘BN Wz - Zoyw eH Aq 25Tz, '€899/200T OT/I0p/u0d"Aa i Areiq1jeuljuo//sdny Wwoiy papeojumod ‘0T ‘5202 ‘85225702


https://www.ebi.ac.uk/ena/browser/view/PRJEB71395
https://www.ebi.ac.uk/ena/browser/view/PRJEB71395
https://www.ebi.ac.uk/ena/browser/view/PRJEB94855
https://www.ebi.ac.uk/ena/browser/view/PRJEB94855
https://doi.org/10.5281/zenodo.17094223
https://doi.org/10.5281/zenodo.17094223
https://doi.org/10.3390/molecules191220113
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1111/ele.13427
https://doi.org/10.1111/rec.12011
https://doi.org/10.1038/s43017-021-00207-2
https://doi.org/10.1038/s41598-020-73976-3
https://doi.org/10.1038/s41598-020-73976-3
https://doi.org/10.1890/07-0986.1
https://doi.org/10.1890/07-0986.1

Bower, A. D., J. B. S. Clair, and V. Erickson. 2014. “Generalized
Provisional Seed Zones for Native Plants.” Ecological Applications 24,
no. 5: 913-919. https://doi.org/10.1890/13-0285.1.

Bruxaux, J., W. Zhao, D. Hall, et al. 2024. “Scots Pine — Panmixia and
the Elusive Signal of Genetic Adaptation.” New Phytologist 243, no. 3:
1231-1246. https://doi.org/10.1111/nph.19563.

Bucharova, A., O. Bossdorf, N. Holzel, J. Kollmann, R. Prasse, and
W. Durka. 2019. “Mix and Match: Regional Admixture Provenancing
Strikes a Balance Among Different Seed-Sourcing Strategies for
Ecological Restoration.” Conservation Genetics 20, no. 1: 7-17. https://
doi.org/10.1007/s10592-018-1067-6.

Bucharova, A., S. Michalski, J. M. Hermann, et al. 2017. “Genetic
Differentiation and Regional Adaptation Among Seed Origins Used
for Grassland Restoration: Lessons From a Multispecies Transplant
Experiment.” Journal of Applied Ecology 54, no. 1: 127-136. https://doi.
0rg/10.1111/1365-2664.12645.

Capblancq, T., M. C. Fitzpatrick, R. A. Bay, M. Exposito-Alonso, and
S. R. Keller. 2020. “Genomic Prediction of (Mal)adaptation Across
Current and Future Climatic Landscapes.” Annual Review of Ecology,
Evolution, and Systematics 51, no. 1: 245-269. https://doi.org/10.1146/
annurev-ecolsys-020720-042553.

Capblancq, T., and B. R. Forester. 2021. “Redundancy Analysis: A
Swiss Army Knife for Landscape Genomics.” Methods in Ecology and
Evolution 12, no. 12: 2298-2309. https://doi.org/10.1111/2041-210X.
13722.

Capblancq, T., K. Luu, M. G. B. Blum, and E. Bazin. 2018. “Evaluation
of Redundancy Analysis to Identify Signatures of Local Adaptation.”
Molecular Ecology Resources 18, no. 6: 1223-1233. https://doi.org/10.
1111/1755-0998.12906.

Cevallos, D., A. Bede-Fazekas, E. Tanacs, et al. 2020. “Seed Transfer
Zones Based on Environmental Variables Better Reflect Variability
in Vegetation Than Administrative Units: Evidence From Hungary.”
Restoration Ecology 28, no. 4: 911-918. https://doi.org/10.1111/rec.
13150.

Chen, T., J. Xu, L. Wang, et al. 2023. “Landscape Genomics Reveals
Adaptive Genetic Differentiation Driven by Multiple Environmental
Variables in Naked Barley on the Qinghai-Tibetan Plateau.” Heredity
131, no. 5-6: 316-326. https://doi.org/10.1038/s41437-023-00647-0.

Conrady, M., C. Lampei, O. Bossdorf, W. Durka, and A. Bucharova.
2022. “Evolution During Seed Production for Ecological Restoration? A
Molecular Analysis of 19 Species Finds Only Minor Genomic Changes.”
Journal of Applied Ecology 59, no. 5: 1383-1393. https://doi.org/10.1111/
1365-2664.14155.

Crowe, L. K. 1964. “The Evolution of Outbreeding in Plants.” Heredity
19, no. 3: 435-457.

Dauphin, B., R. O. Wiiest, S. Brodbeck, et al. 2020. “Disentangling the
Effects of Geographic Peripherality and Habitat Suitability on Neutral
and Adaptive Genetic Variation in Swiss Stone Pine.” Molecular Ecology
29, no. 11: 1972-1989. https://doi.org/10.1111/mec.15467.

Diaz, S., J. Settele, E. S. Brondizio, et al. 2019. “Pervasive Human-
Driven Decline of Life on Earth Points to the Need for Transformative
Change.” Science 366, no. 6471: eaax3100. https://doi.org/10.1126/scien
ce.aax3100.

Dolezal, J., J. Altman, V. Jandov4, et al. 2022. “Climate Warming and
Extended Droughts Drive Establishment and Growth Dynamics in
Temperate Grassland Plants.” Agricultural and Forest Meteorology 313:
108762. https://doi.org/10.1016/j.agrformet.2021.108762.

Dray, S., and A.-B. Dufour. 2007. “The ade4 Package: Implementing the
Duality Diagram for Ecologists.” Journal of Statistical Software 22, no.
4:1-20. https://doi.org/10.18637/jss.v022.i04.

Durka, W., S. G. Michalski, K. W. Berendzen, et al. 2017. “Genetic
Differentiation Within Multiple Common Grassland Plants Supports

Seed Transfer Zones for Ecological Restoration.” Journal of Applied
Ecology 54, no. 1: 116-126. https://doi.org/10.1111/1365-2664.12636.

Durka, W., S. G. Michalski, J. Hofner, et al. 2025. “Assessment of
Genetic Diversity Among Seed Transfer Zones for Multiple Grassland
Plant Species Across Germany.” Basic and Applied Ecology 84: 50-60.
https://doi.org/10.1016/j.baae.2024.11.004.

Ellis, N., S. J. Smith, and C. R. Pitcher. 2012. “Gradient Forests:
Calculating Importance Gradients on Physical Predictors.” Ecology 93,
no. 1: 156-168. https://doi.org/10.1890/11-0252.1.

ErMiV. 2011. “Verordnung ueber das Inverkehrbringen von Saatgut
von  Erhaltungsmischungen  (Erhaltungsmischungsverordnung),
Bundesgesetzblatt 1.  Bundesministerium  fiir =~ Erndhrung,
Landwirtschaft und Verbraucherschutz.”

European Environment Agency. 2020. “State of Nature in the EU.”
https://www.eea.europa.eu/publications/state-of-nature-in-the-eu-2020.

Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. “Analysis of
Molecular Variance Inferred From Metric Distances Among DNA
Haplotypes: Application to Human Mitochondrial DNA Restriction
Data.” Genetics 131, no. 2: 479-491. https://doi.org/10.1093/genetics/
131.2.479.

Fagerlind, F. 1937. “Embryologische, zytologische und bestdiubungs-
experimentelle Studien in der Familie Rubiaceae nebst Bemerkungen
iiber einige Polyploiditdtsprobleme.”

Fick, S. E., and R. J. Hijmans. 2017. “WorldClim 2: New 1-Km Spatial
Resolution Climate Surfaces for Global Land Areas.” International Journal
of Climatology 37, no. 12: 4302-4315. https://doi.org/10.1002/joc.5086.

Fischer, F. M., K. Chytry, J. Té&Sitel, J. Danihelka, and M. Chytry. 2020.
“Weather Fluctuations Drive Short-Term Dynamics and Long-Term
Stability in Plant Communities: A 25-Year Study in a Central European
Dry Grassland.” Journal of Vegetation Science 31, no. 5: 711-721. https://
doi.org/10.1111/jvs.12895.

Fischer, S. F., P. Poschlod, and B. Beinlich. 1996. “Experimental
Studies on the Dispersal of Plants and Animals on Sheep in Calcareous
Grasslands.” Journal of Applied Ecology 33, no. 5: 1206-1222.

Fitzpatrick, M. C., and S. R. Keller. 2015. “Ecological Genomics Meets
Community-Level Modelling of Biodiversity: Mapping the Genomic
Landscape of Current and Future Environmental Adaptation.” Ecology
Letters 18, no. 1: 1-16. https://doi.org/10.1111/ele.12376.

Francois, O., H. Martins, K. Caye, and S. D. Schoville. 2016. “Controlling
False Discoveries in Genome Scans for Selection.” Molecular Ecology 25,
no. 2: 454-469. https://doi.org/10.1111/mec.13513.

Frichot, E., and O. Francois. 2015. “LEA: An R Package for Landscape
and Ecological Association Studies.” Methods in Ecology and Evolution
6, no. 8:925-929. https://doi.org/10.1111/2041-210X.12382.

Gang, C., W. Zhou, Y. Chen, et al. 2014. “Quantitative Assessment of
the Contributions of Climate Change and Human Activities on Global
Grassland Degradation.” Environmental Earth Sciences 72, no. 11:
4273-4282. https://doi.org/10.1007/s12665-014-3322-6.

Gemeinholzer, B., J. Reiker, C. M. Miiller, and V. Wissemann. 2020.
“Genotypic and Phenotypic Distinctness of Restored and Indigenous
Populations of Pimpinella saxifraga L. 8 or More Years After Restoration.”
Plant Biology 22: 1092-1101. https://doi.org/10.1111/plb.13174.

Goudet, J. 2005. “HIERFSTAT, a Package for R to Compute and Test
Hierarchical F-Statistics.” Molecular Ecology Notes 5: 184-186. https://
doi.org/10.1111/j.1471-8286.2004.00828.x.

Gougherty, A. V., S. R. Keller, and M. C. Fitzpatrick. 2021.
“Maladaptation, Migration and Extirpation Fuel Climate Change
Risk in a Forest Tree Species.” Nature Climate Change 11, no. 2:
166-171.

Harrell, F. E., Jr. 2023. “Hmisc: Harrell Miscellaneous.” https://CRAN.
R-project.org/package=Hmisc.

11 of 22

85U8017 SUOWIWIOD BAIEa.D 8|qeol[dde aup Aq peusenob ae so e YO 8sn JO Sa|n 10} A%eud1T8ulUO 8|1 UO (SUORIPUOO-pUB-SWBIW0 A8 | 1M ARIq 1 BulUO//SANY) SUORIPUOD Pue SWe 1 8y} 89S *[6202/60/G2] U0 A%eid1T8ulluO A8]IM ‘BN Wz - Zoyw eH Aq 25Tz, '€899/200T OT/I0p/u0d"Aa i Areiq1jeuljuo//sdny Wwoiy papeojumod ‘0T ‘5202 ‘85225702


https://doi.org/10.1890/13-0285.1
https://doi.org/10.1111/nph.19563
https://doi.org/10.1007/s10592-018-1067-6
https://doi.org/10.1007/s10592-018-1067-6
https://doi.org/10.1111/1365-2664.12645
https://doi.org/10.1111/1365-2664.12645
https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1111/2041-210X.13722
https://doi.org/10.1111/2041-210X.13722
https://doi.org/10.1111/1755-0998.12906
https://doi.org/10.1111/1755-0998.12906
https://doi.org/10.1111/rec.13150
https://doi.org/10.1111/rec.13150
https://doi.org/10.1038/s41437-023-00647-0
https://doi.org/10.1111/1365-2664.14155
https://doi.org/10.1111/1365-2664.14155
https://doi.org/10.1111/mec.15467
https://doi.org/10.1126/science.aax3100
https://doi.org/10.1126/science.aax3100
https://doi.org/10.1016/j.agrformet.2021.108762
https://doi.org/10.18637/jss.v022.i04
https://doi.org/10.1111/1365-2664.12636
https://doi.org/10.1016/j.baae.2024.11.004
https://doi.org/10.1890/11-0252.1
https://www.eea.europa.eu/publications/state-of-nature-in-the-eu-2020
https://doi.org/10.1093/genetics/131.2.479
https://doi.org/10.1093/genetics/131.2.479
https://doi.org/10.1002/joc.5086
https://doi.org/10.1111/jvs.12895
https://doi.org/10.1111/jvs.12895
https://doi.org/10.1111/ele.12376
https://doi.org/10.1111/mec.13513
https://doi.org/10.1111/2041-210X.12382
https://doi.org/10.1007/s12665-014-3322-6
https://doi.org/10.1111/plb.13174
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://cran.r-project.org/package=Hmisc
https://cran.r-project.org/package=Hmisc

Heenan, P. B., W. G. Lee, M. S. McGlone, et al. 2023. “Ecosourcing for
Resilience in a Changing Environment.” New Zealand Journal of Botany
62: 1-26. https://doi.org/10.1080/0028825X.2023.2210289.

Hewitt, G. M. 1999. “Post-Glacial Re-Colonization of European Biota.”
Biological Journal of the Linnean Society 68, no. 1-2: 87-112. https://doi.
org/10.1111/§.1095-8312.1999.tb01160.x.

Hufford, K. M., and S. J. Mazer. 2003. “Plant Ecotypes: Genetic
Differentiation in the Age of Ecological Restoration.” Trends in Ecology
& Evolution 18, no. 3: 147-155. https://doi.org/10.1016/S0169-5347(03)
00002-8.

Hutchison, D. W., and A. R. Templeton. 1999. “Correlation of Pairwise
Genetic and Geographic Distance Measures: Inferring the Relative
Influences of Gene Flow and Drift on the Distribution of Genetic
Variability.” Evolution 53, no. 6: 1898-1914. https://doi.org/10.1111/J.
1558-5646.1999.TB04571.X.

IPCC. 2021. Climate Change 2021: The Physical Science Basis, edited
by V. Masson-Delmotte, P. Zhai, A. Pirani, et al. Cambridge University
Press. https://doi.org/10.1017/9781009157896.

Jager, E. J. 2016. Rothmaler-Exkursionsflora von Deutschland.
Gefippflanzen: Grundband. Springer-Verlag.

Jiang, Q., Y. Shen, L. Wu, et al. 2025. “Genomic Signatures of Local
Adaptation to Precipitation and Solar Radiation in Kiwifruit.” Plant
Diversity, in press. https://doi.org/10.1016/j.pld.2025.02.003.

Jombart, T. 2008. “Adegenet: A R Package for the Multivariate Analysis
of Genetic Markers.” Bioinformatics 24, no. 11: 1403-1405. https://doi.
org/10.1093/bioinformatics/btn129.

Kamvar, Z. N., J. F. Tabima, and N. J. Griinwald. 2014. “Poppr: An R
Package for Genetic Analysis of Populations With Clonal, Partially
Clonal, and/or Sexual Reproduction.” PeerJ 2014, no. 1: 1-14. https://
doi.org/10.7717/peer;j.281.

Kardos, M., E. E. Armstrong, S. W. Fitzpatrick, et al. 2021. “The Crucial
Role of Genome-Wide Genetic Variation in Conservation.” Proceedings
of the National Academy of Sciences of the United States of America 118,
no. 48: 2104642118.

Knapp, E. E., and K. J. Rice. 1994. “Starting From Seed.” Ecological
Restoration 12, no. 1: 40-45. https://doi.org/10.3368/er.12.1.40.

Kramer, A. T., D. J. Larkin, and J. B. Fant. 2015. “Assessing Potential
Seed Transfer Zones for Five Forb Species From the Great Basin Floristic
Region, USA.” Natural Areas Journal 35, no. 1: 174-188. https://doi.org/
10.3375/043.035.0119.

Krendl, F. 1967. “Cytotaxonomie der Galium mollugo-Gruppe
in Mitteleuropa (Zur Phylogenie der Gattung Galium, VIIL).
Osterreichische Botanische Zeitschrift 114, no. 4-5: 508-549. https://doi.
0rg/10.1007/BF01373103.

Lachmuth, S., T. Capblancq, S. R. Keller, and M. C. Fitzpatrick. 2023.
“Assessing Uncertainty in Genomic Offset Forecasts From Landscape
Genomic Models (and Implications for Restoration and Assisted
Migration).” Frontiers in Ecology and Evolution 11: 1155783. https://doi.
org/10.3389/fevo.2023.1155783.

Lachmuth, S., T. Capblancq, A. Prakash, S. R. Keller, and M. C.
Fitzpatrick. 2023. “Novel Genomic Offset Metrics Integrate Local
Adaptation Into Habitat Suitability Forecasts and Inform Assisted
Migration.” Ecological Monographs 94: €1593. https://doi.org/10.1002/
ecm.1593.

Legendre, P. 1993. “Spatial Autocorrelation: Trouble or New
Paradigm?” Ecology 74, no. 6: 1659-1673. https://doi.org/10.2307/
1939924.

Listl, D., P. Poschlod, and C. Reisch. 2018. “Do Seed Transfer Zones
for Ecological Restoration Reflect the Spatial Genetic Variation of the
Common Grassland Species Lathyrus pratensis?” Restoration Ecology
26, no. 4: 667-676. https://doi.org/10.1111/rec.12613.

Liu, Y., Z. Zhang, L. Tong, et al. 2019. “Assessing the Effects of
Climate Variation and Human Activities on Grassland Degradation
and Restoration Across the Globe.” Ecological Indicators 106: 105504.
https://doi.org/10.1016/j.ecolind.2019.105504.

Luu, K., E. Bazin, and M. G. B. Blum. 2017. “Pcadapt: An R Package
to Perform Genome Scans for Selection Based on Principal Component
Analysis.” Molecular Ecology Resources 17, no. 1: 67-77. https://doi.org/
10.1111/1755-0998.12592.

Markova, S., H. C. Lanier, M. A. Escalante, et al. 2023. “Local
Adaptation and Future Climate Vulnerability in a Wild Rodent.” Nature
Communications 14, no. 1: 7840. https://doi.org/10.1038/s41467-023-
43383-z.

Massatti, R., R. K. Shriver, D. E. Winkler, B. A. Richardson, and J. B.
Bradford. 2020. “Assessment of Population Genetics and Climatic
Variability Can Refine Climate-Informed Seed Transfer Guidelines.”
Restoration Ecology 28, no. 3: 485-493. https://doi.org/10.1111/rec.13142.

McKay, J. K., C. E. Christian, S. Harrison, and K. J. Rice. 2005. ““How
Local Is Local?” - A Review of Practical and Conceptual Issues in the
Genetics of Restoration.” Restoration Ecology 13, no. 3: 432-440. https://
doi.org/10.1111/j.1526-100X.2005.00058.x.

McKone, M. J., and D. L. Hernandez. 2021. “Community-Level
Assisted Migration for Climate-Appropriate Prairie Restoration.”
Restoration Ecology 29, no. 7: el3416. https://doi.org/10.1111/rec.
13416.

Meynen, E., and J. Schmithiisen. 1953-1962. Handbuch der natur-
rdumlichen Gliederung Deutschlands, Erdkunde. Selbstverlag der
Bundesanstalt fiir Landeskunde. https://doi.org/10.3112/erdkunde.
1955.04.09.

Michalski, S. G., A. V. Malyshev, and J. Kreyling. 2017. “Trait Variation
in Response to Varying Winter Temperatures, Diversity Patterns
and Signatures of Selection Along the Latitudinal Distribution of the
Widespread Grassland Plant Arrhenatherum elatius.” Ecology and
Evolution 7, no. 9: 3268-3280. https://doi.org/10.1002/ece3.2936.

Mijangos, J. L., C. Pacioni, P. B. S. Spencer, and M. D. Craig. 2015.
“Contribution of Genetics to Ecological Restoration.” Molecular Ecology
24, no. 1: 22-37. https://doi.org/10.1111/mec.12995.

Miller, S. A., A. Bartow, M. Gisler, K. Ward, A. S. Young, and T. N.
Kaye. 2011. “Can an Ecoregion Serve as a Seed Transfer Zone? Evidence
From a Common Garden Study With Five Native Species.” Restoration
Ecology 19, no. 201: 268-276.

Natali, A., J.-F. Manen, and F. Ehrendorfer. 1995. “Phylogeny of the
Rubiaceae-Rubioideae, in Particular the Tribe Rubieae: Evidence From
a Non-Coding Chloroplast DNA Sequence.” Annals of the Missouri
Botanical Garden 82, no. 3: 428. https://doi.org/10.2307/2399892.

Nychka, D., R. Furrer, S. Sain, et al. 2021. Fields: Tools for Spatial Data.
University Corporation for Atmospheric Research. https://github.com/
dnychka/fieldsRPackage.

Oksanen, J. 2022. “Vegan: Community Ecology Package.” R Package
Version 2.6-4.

O'Leary, S. J., J. B. Puritz, S. C. Willis, C. M. Hollenbeck, and D. S.
Portnoy. 2018. “These Aren't the Loci You're Looking for: Principles of
Effective SNP Filtering for Molecular Ecologists.” Molecular Ecology 27,
no. 16: 3193-3206. https://doi.org/10.1111/mec.14792.

Orsini, L., J. Vanoverbeke, I. Swillen, J. Mergeay, and L. de Meester.
2013. “Drivers of Population Genetic Differentiation in the Wild:
Isolation by Dispersal Limitation, Isolation by Adaptation and Isolation
by Colonization.” Molecular Ecology 22, no. 24: 5983-5999. https://doi.
org/10.1111/mec.12561.

Pembleton, L. W., N. O. I. Cogan, and J. W. Forster. 2013. “StAMPP: An
R Package for Calculation of Genetic Differentiation and Structure of
Mixed-Ploidy Level Populations.” Molecular Ecology Resources 13, no. 5:
946-952. https://doi.org/10.1111/1755-0998.12129.

12 of 22

Ecology and Evolution, 2025

85U8017 SUOWIWIOD BAIEa.D 8|qeol[dde aup Aq peusenob ae so e YO 8sn JO Sa|n 10} A%eud1T8ulUO 8|1 UO (SUORIPUOO-pUB-SWBIW0 A8 | 1M ARIq 1 BulUO//SANY) SUORIPUOD Pue SWe 1 8y} 89S *[6202/60/G2] U0 A%eid1T8ulluO A8]IM ‘BN Wz - Zoyw eH Aq 25Tz, '€899/200T OT/I0p/u0d"Aa i Areiq1jeuljuo//sdny Wwoiy papeojumod ‘0T ‘5202 ‘85225702


https://doi.org/10.1080/0028825X.2023.2210289
https://doi.org/10.1111/j.1095-8312.1999.tb01160.x
https://doi.org/10.1111/j.1095-8312.1999.tb01160.x
https://doi.org/10.1016/S0169-5347(03)00002-8
https://doi.org/10.1016/S0169-5347(03)00002-8
https://doi.org/10.1111/J.1558-5646.1999.TB04571.X
https://doi.org/10.1111/J.1558-5646.1999.TB04571.X
https://doi.org/10.1017/9781009157896
https://doi.org/10.1016/j.pld.2025.02.003
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.1093/bioinformatics/btn129
https://doi.org/10.7717/peerj.281
https://doi.org/10.7717/peerj.281
https://doi.org/10.3368/er.12.1.40
https://doi.org/10.3375/043.035.0119
https://doi.org/10.3375/043.035.0119
https://doi.org/10.1007/BF01373103
https://doi.org/10.1007/BF01373103
https://doi.org/10.3389/fevo.2023.1155783
https://doi.org/10.3389/fevo.2023.1155783
https://doi.org/10.1002/ecm.1593
https://doi.org/10.1002/ecm.1593
https://doi.org/10.2307/1939924
https://doi.org/10.2307/1939924
https://doi.org/10.1111/rec.12613
https://doi.org/10.1016/j.ecolind.2019.105504
https://doi.org/10.1111/1755-0998.12592
https://doi.org/10.1111/1755-0998.12592
https://doi.org/10.1038/s41467-023-43383-z
https://doi.org/10.1038/s41467-023-43383-z
https://doi.org/10.1111/rec.13142
https://doi.org/10.1111/j.1526-100X.2005.00058.x
https://doi.org/10.1111/j.1526-100X.2005.00058.x
https://doi.org/10.1111/rec.13416
https://doi.org/10.1111/rec.13416
https://doi.org/10.3112/erdkunde.1955.04.09
https://doi.org/10.3112/erdkunde.1955.04.09
https://doi.org/10.1002/ece3.2936
https://doi.org/10.1111/mec.12995
https://doi.org/10.2307/2399892
https://github.com/dnychka/fieldsRPackage
https://github.com/dnychka/fieldsRPackage
https://doi.org/10.1111/mec.14792
https://doi.org/10.1111/mec.12561
https://doi.org/10.1111/mec.12561
https://doi.org/10.1111/1755-0998.12129

Peterson, B. K., J. N. Weber, E. H. Kay, H. S. Fisher, and H. E. Hoekstra.
2012. “Double Digest RADseq: An Inexpensive Method for de Novo SNP
Discovery and Genotyping in Model and Non-Model Species.” PLoS One
7, no. 5: €37135. https://doi.org/10.1371/journal.pone.0037135.

Poggio, L., L. M. de Sousa, N. H. Batjes, et al. 2021. “SoilGrids
2.0: Producing Soil Information for the Globe With Quantified
Spatial Uncertainty.” Soil 7, no. 1: 217-240. https://doi.org/10.5194/
s0il-7-217-2021.

Prasse, R., D. Kunzmann, and R. Schroder. 2010. Entwicklung und
praktische Umsetzung naturschutzfachlicher Mindestanforderungen an
einen Herkunftsnachweis fiir gebietseigenes Wildpflanzensaatgut krauti-
ger Pflanzen Abschlussbericht, Deutsche Bundesstiftung Umwelt, 1-168.
Institut fiir Umweltplanung, Leibniz-Universitdt Hannover.

Puritz, J. B., C. M. Hollenbeck, and J. R. Gold. 2014. “dDocent: A
RADseq, Variant-Calling Pipeline Designed for Population Genomics of
Non-Model Organisms.” PeerJ 2: e431. https://doi.org/10.7717/peerj.431.

R Core Team. 2023. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing.

Rellstab, C., B. Dauphin, and M. Exposito-Alonso. 2021. “Prospects
and Limitations of Genomic Offset in Conservation Management.”
Evolutionary Applications 14, no. 5: 1202-1212. https://doi.org/10.1111/
eva.13205.

Riviére, S., D. Provendier, S. Malaval, et al. 2022. “Structuring Supply
Chains of Native Plant Material of Wild and Local Provenance in
France: A Contribution to Ecological Restoration and Nature-Based
Solutions.” Nature-Based Solutions 2: 100035. https://doi.org/10.1016/j.
nbsj.2022.100035.

Ross, S. M. 2017. Introductory Statistics. Academic Press.

Rossetto, M., J. Bragg, D. Brown, M. van der Merwe, T. C. Wilson, and
J.-Y. S. Yap. 2023. “Applying Simple Genomic Workflows to Optimise
Practical Plant Translocation Outcomes.” Plant Ecology 224: 803-816.
https://doi.org/10.1007/s11258-023-01322-4.

Rushing, N. 2024. “Benefits of Assisted Gene Flow Diminish With
Latitudinal Distance Between Populations in Chamaecrista fasciculata.”
Restoration Ecology 32, no. 3: €14058. https://doi.org/10.1111/rec.14058.

Smith, B., D. Warlind, A. Arneth, et al. 2014. “Implications of
Incorporating N Cycling and N Limitations on Primary Production in
an Individual-Based Dynamic Vegetation Model.” Biogeosciences 11, no.
7:2027-2054. https://doi.org/10.5194/bg-11-2027-2014.

Sork, V. L., K. Squire, P. F. Gugger, S. E. Steele, E. D. Levy, and A. J.
Eckert. 2016. “Landscape Genomic Analysis of Candidate Genes for
Climate Adaptation in a California Endemic Oak, Quercus lobata.”
American Journal of Botany 103, no. 1: 33-46. https://doi.org/10.3732/
ajb.1500162.

St. Clair, B., and R. Johnson. 2004. “Structure of Genetic Variation and
Implications for the Management of Seed and Planting Stock.”

Steane, D. A., B. M. Potts, E. McLean, et al. 2014. “Genome-Wide Scans
Detect Adaptation to Aridity in a Widespread Forest Tree Species.”
Molecular Ecology 23, no. 10: 2500-2513.

Taberlet, P., L. Fumagalli, A. G. Wust-Saucy, and J. F. Cosson. 1998.
“Comparative Phylogeography and Postglacial Colonization Routes in
Europe.” Molecular Ecology 7, no. 4: 453-464.

Tamburini, G., G. Aguilera, and E. Ockinger. 2022. “Grasslands
Enhance Ecosystem Service Multifunctionality Above and Below-
Ground in Agricultural Landscapes.” Journal of Applied Ecology 59, no.
12: 3061-3071. https://doi.org/10.1111/1365-2664.14302.

Temunovié, M., P. Garnier-Géré, M. Mori¢, et al. 2020. “Candidate
Gene SNP Variation in Floodplain Populations of Pedunculate Oak
(Quercus robur L.) Near the Species’ Southern Range Margin: Weak
Differentiation Yet Distinct Associations With Water Availability.”
Molecular Ecology 29, no. 13: 2359-2378. https://doi.org/10.1111/mec.
15492.

Twardek, W. M., J. J. Taylor, T. Rytwinski, et al. 2023. “The Application
of Assisted Migration as a Climate Change Adaptation Tactic: An
Evidence Map and Synthesis.” Biological Conservation 280: 109932.
https://doi.org/10.1016/j.biocon.2023.109932.

United Nations. 2015. “Resolution adopted by the General Assembly on
25 September 2015.” https://upload.wikimedia.org/wikipedia/commo
ns/d/d5/N1529189.pdf.

United Nations. 2019. Resolution Adopted by the General Assembly on 1
March 2019 - 73/284. United Nations Decade on Ecosystem Restoration
(2021-2030).

White, P. S. 2013. “Derivation of the Extrinsic Values of Biological
Diversity From Its Intrinsic Value and of Both From the First Principles
of Evolution.” Conservation Biology 27, no. 6: 1279-1285. https://doi.
org/10.1111/cobi.12125.

Whitlock, M. C., and K. E. Lotterhos. 2015. “Reliable Detection of Loci
Responsible for Local Adaptation: Inference of a Null Model Through
Trimming the Distribution of Fy,.” American Naturalist 186: S24-S36.
https://doi.org/10.1086/682949.

Wilczek, A. M., M. D. Cooper, T. M. Korves, and J. Schmitt. 2014.
“Lagging Adaptation to Warming Climate in Arabidopsis thaliana.”
Proceedings of the National Academy of Sciences 111, no. 22: 7906-7913.
https://doi.org/10.1073/pnas.1406314111.

Wilson, J. B., R. K. Peet, J. Dengler, and M. Pirtel. 2012. “Plant Species
Richness: The World Records.” Journal of Vegetation Science 23, no. 4:
796-802. https://doi.org/10.1111/j.1654-1103.2012.01400.x.

Ying, C. C., and A. D. Yanchuk. 2006. “The Development of British
Columbia's Tree Seed Transfer Guidelines: Purpose, Concept,
Methodology, and Implementation.” Forest Ecology and Management
227,no. 1-2: 1-13. https://doi.org/10.1016/j.foreco.2006.02.028.

Zinnen, J., L. M. Broadhurst, P. Gibson-Roy, T. A. Jones, and J. W.
Matthews. 2021. “Seed Production Areas Are Crucial to Conservation
Outcomes: Benefits and Risks of an Emerging Restoration Tool.”
Biodiversity and Conservation 30, no. 5: 1233-1256. https://doi.org/10.
1007/s10531-021-02149-z.

13 of 22

85U8017 SUOWIWIOD BAIEa.D 8|qeol[dde aup Aq peusenob ae so e YO 8sn JO Sa|n 10} A%eud1T8ulUO 8|1 UO (SUORIPUOO-pUB-SWBIW0 A8 | 1M ARIq 1 BulUO//SANY) SUORIPUOD Pue SWe 1 8y} 89S *[6202/60/G2] U0 A%eid1T8ulluO A8]IM ‘BN Wz - Zoyw eH Aq 25Tz, '€899/200T OT/I0p/u0d"Aa i Areiq1jeuljuo//sdny Wwoiy papeojumod ‘0T ‘5202 ‘85225702


https://doi.org/10.1371/journal.pone.0037135
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.7717/peerj.431
https://doi.org/10.1111/eva.13205
https://doi.org/10.1111/eva.13205
https://doi.org/10.1016/j.nbsj.2022.100035
https://doi.org/10.1016/j.nbsj.2022.100035
https://doi.org/10.1007/s11258-023-01322-4
https://doi.org/10.1111/rec.14058
https://doi.org/10.5194/bg-11-2027-2014
https://doi.org/10.3732/ajb.1500162
https://doi.org/10.3732/ajb.1500162
https://doi.org/10.1111/1365-2664.14302
https://doi.org/10.1111/mec.15492
https://doi.org/10.1111/mec.15492
https://doi.org/10.1016/j.biocon.2023.109932
https://upload.wikimedia.org/wikipedia/commons/d/d5/N1529189.pdf
https://upload.wikimedia.org/wikipedia/commons/d/d5/N1529189.pdf
https://doi.org/10.1111/cobi.12125
https://doi.org/10.1111/cobi.12125
https://doi.org/10.1086/682949
https://doi.org/10.1073/pnas.1406314111
https://doi.org/10.1111/j.1654-1103.2012.01400.x
https://doi.org/10.1016/j.foreco.2006.02.028
https://doi.org/10.1007/s10531-021-02149-z
https://doi.org/10.1007/s10531-021-02149-z

Appendix A

TABLE A1 | Results from two AMOVAs, one based on current seed zones and one based on the spatio-genetic groups (Figure 3, see Section 2).
AMOVA have been calculated using the R-package ‘poppr’ (Kamvar et al. 2014) with the ‘ade4’ method (Dray and Dufour 2007). In AMOVA, statistics
are F-statistic analogues calculated in an ANOVA-like procedure with pairwise haplotype distances (Excoffier et al. 1992). Accordingly, higher
values of @ indicate higher differentiation between populations. The ® values correspond to @, (population-total), ® ;¢ (individual-population) and
@, (individual-total), respectively.

df Sigma % [ P

Between seed zones 21 19.7617 1.9 0.019 0.001
Within seed zones 713 27.5088 2.7 0.027 0.001
Within samples 735 983.3779 95.4 0.046 0.001
Total 1469 1030.6484 100

Between spatio-genetic groups 3 25.2158 2.4 0.024 0.001
Within spatio-genetic groups 731 28.281 2.7 0.028 0.001
Within samples 735 983.3779 94.8 0.052 0.001
Total 1469 1036.8746 100

TABLE A2 | Loadings of the first three axes of the adaptively enriched redundancy analysis (RDA) used for the genomic offset.

RDA1 RDA2 RDA3
prec.driest 0.72 —0.09 0.17
soc 0.03 -0.35 0.42
temp.seas -0.19 0.85 -0.19
ocd 0.64 —-0.01 0.38
bdod -0.18 0.22 —0.42
clay 0.65 0.24 -0.49
cfvo 0.38 —-0.01 —0.46
prec.seas -0.17 0.56 0.41
prec.warmest 0.51 0.38 0.55
isotherm2.7 0.52 0.16 —-0.01
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FIGURE A1 | Principal Coordinates Analysis (PCoA) of G. album individuals (A) with diploid genotyping as used in all downstream analyses and
(B) based on allele frequencies from raw reads. The y-axis of (A) has been inverted to match (B) and the main PCA (Figure 1B). The @ values from
the corresponding AMOVA are 0.056 and 0.060 for diploid genotyping and allelic dosage, respectively. The similarity of these values and of (A) and
(B) illustrates that proceeding with diploid genotyping for methodological compatibility is justified.
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FIGURE A2 | Correlation dendrogram of variables identified by the forward model selection approach based on the Spearman correlation coeffi-
cient. The red line indicates the cutoff at p?=0.7, used to keep only uncorrelated variables. According to the cutoff, only one branch has redundancies

(bio19, biol4 and biol2). Of that branch, we kept biol4 as it was identified first by the forward selection procedure. Red strikethrough designates
discarded variables.
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FIGURE A3 | Venn diagram of the candidate adaptive loci identified by four different methods: pcadapt, LFMM, RDA and Gradient Forest. We
used the four loci identified by more than one method for the calculation of the ‘adaptively enriched’ RDA (Capblancq and Forester 2021).
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FIGURE A4 | Comparison of the patterns of genomic offset resulting from different sets of candidate adaptive loci: Loci identified by more than

one of the four methods (pcadapt, LFMM, RDA and Gradient Forest), loci identified by at least one method, and all loci. Due to the similarity of the
results, we used the most conservative set of the four loci that were identified by more than one method.
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FIGURE A5 | Scree plot of eigenvalues of the adaptively enriched RDA.
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FIGURE A6 | Bayesian Information Criterion (BIC) output from adegenet: : find.clusters () runon individuals with the putative cpDNA
loci only.
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FIGURE A7 | Principal Component Analysis (PCA) of all individuals (A) using only the 24 loci identified as cpDNA, and (B) using all loci and
individuals (cf. Figure A12A). The cpDNA haplogroups identified by k-means from panel (A) are colour-coded.
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the clusters and spatio-genetic groups correspond to those in Figure 3.
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FIGURE A10 | Cross-entropy plot to determine the statistically optimal number of ancestral populations for the Admixture analysis.
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FIGURE A1l | Matrix of genetic differentiation (as Fg;) between the German seed zones. The differentiation values are colour-coded as indicated
by the colour bar on the right. All values were significant (p <0.05).
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FIGURE A12

FIGURE A13

Principal Component Analysis (PCA) of all individuals using all loci, showing PC1 and PC3.
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Biplots of Redundancy Analysis (RDA) showing loci and the selected environmental variables along the first two axes. Percentages

on the axes represent their proportion of explained variance. (A) RDA used as one of the four methods to identify candidate adaptive loci. In this
RDA, all genotypes are the response matrix, and the selected environmental variables are the explanatory matrix, with the Admixture ancestry co-
efficients at K opt =4 (‘demographic history’) as conditioning variables (G ~envldemo). Loci scores rescaled x20 for readability. The orange dots rep-
resent the loci that have been identified as candidate adaptive loci by more than one method. (B) Adaptively enriched RDA with the adaptive loci as

the response matrix and the selected environmental variables as the explanatory matrix (G.adapt ~ env). This RDA is the basis for adaptive indices

and genomic offsets.
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FIGURE A14 | The adaptive index of the first two RDA axes across the study area (adaptive landscape, unweighted by eigenvalues), calculated
with environmental values of the present (1970-2000) and the projected future (2081-2100, EC-Earth3-Veg, SSP5-8.5). The adaptive index can be
understood as the value on an axis in an environmental space that is warped according to its association with candidate adaptive loci (‘adaptively
enriched space’, Capblancq and Forester 2021). Horizontal bars on the right: Loadings of the axes with the selected environmental variables with bars
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to the left showing the magnitude of negative loadings and bars to the right showing positive loadings.
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