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An important mechanism promoting species coexistence is conspecific negative density dependence (CNDD), which inhibits
conspecific neighbors by accumulating host-specific enemies near adult trees. Natural enemies may be genotype-specific and
regulate offspring dynamics more strongly than non-offspring, which is often neglected due to the difficulty in ascertaining
genetic relatedness. Here, we investigated whether offspring and non-offspring of a dominant species, Castanopsis eyrei,
suffered from different strength of CNDD based on parentage assignment in a subtropical forest. We found decreased recruitment
efficiency (proxy of survival probability) of offspring compared with non-offspring near adult trees during the seedling-sapling
transition, suggesting genotype-dependent interactions drive tree demographic dynamics. Furthermore, the genetic similarity
between individuals of same cohort decreased in late life history stages, indicating genetic-relatedness-dependent tree mortality
throughout ontogeny. Our results demonstrate that within-species genetic relatedness significantly affects the strength of CNDD,
implying genotype-specific natural enemies may contribute to population dynamics in natural forests.

genetic relatedness, conspecific negative density dependence, Janzen-Connell hypothesis, species coexistence, forest
dynamics plot, subtropical forest
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INTRODUCTION

As one of the key theories explaining species coexistence in

community ecology, the Janzen-Connell hypothesis (JCH)
has been addressed in various communities over half a
century (Connell, 1971; Janzen, 1970; Petermann et al.,
2008; Terborgh, 2020; Wright, 2002). The JCH explains
plant species coexistence by the suppression of conspecific
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recruits near adults due to attacks of specialist natural ene-
mies that are attracted by those adults and thus by freeing up
space for heterospecific individuals (Connell, 1971; Janzen,
1970). Empirical evidence shows that high densities of
conspecific adult neighbors can reduce seedling survival
(Chen et al., 2019; Eisenhauer, 2022; Johnson et al., 2014;
Liu and Zhang, 2020; Qin et al., 2020; Zhu et al., 2015),
which is also known as conspecific negative density de-
pendence (CNDD; Bagchi et al., 2014; Harms et al., 2000;
Johnson et al., 2012). Since pathogens and pests may be
genotype-specific during the co-evolutionary process with
host plants (e.g., Bergelson et al., 2001; Price et al., 2004),
conspecific neighbors from the same or different genotypes
may have different strength of CNDD on the target seedling.
While it has also been suggested that parent trees may exert
stronger negative effects on their offspring than non-off-
spring (Eck et al., 2019), this issue remains largely un-
explored in natural forests due to the difficulty in assessing
the parent-offspring relationship between individuals within
natural populations.
In contrast to the implicit assumption in most previous

studies that all recruits are equally impacted by their con-
specific neighboring adults (Johnson et al., 2014; Murphy et
al., 2017; Qin et al., 2020; Zhu et al., 2015), recent studies
indicate that the strength of CNDD does depend on the ge-
netic relatedness between focal seedlings and nearby con-
specific trees (Eck et al., 2019; Liu et al., 2015). For
example, shade-house experiments suggested that seedlings
growing in soils from putative mother trees or closely related
conspecifics had reduced performance and this negative ef-
fect disappeared after soil sterilization (Eck et al., 2019; Liu
et al., 2015), suggesting that genotype-specific soil patho-
gens mediate within-species negative effect from parent
trees. Similarly, Shao et al. (2018) also found that the growth
rate of focal trees in an early life stage was reduced when
surrounded by closely related conspecific individuals in a
tropical forest. However, although the influence of genetic
relatedness on CNDD has been documented in some studies,
the potential role of genetic relatedness in regulating the
recruitment pattern of natural populations remains unclear.
The ratio of offspring vs. non-offspring in the vicinity of

adult trees may be vital for the strength of CNDD due to the
presence of genotype-specific natural enemies. Compared
with non-offspring, offspring may share much more geno-
type-specific natural enemies with their parent trees and
suffer stronger negative parent-tree effects. Thus, in-
corporating parentage analysis and genetic relatedness
among individuals with a fully mapped tree census dataset
will provide new insights into the role of genotype-specific
natural enemies in promoting species diversity. However,
few studies have directly identified the parent-offspring re-
lationship for tree species in natural forests to test the re-
cruitment pattern of offspring as Janzen-Connell hypothesis

suggested (Steinitz et al., 2011).
Here, we investigated whether the offspring- and non-

offspring recruits suffered different effects from conspecific
adults in a subtropical forest. To attain this goal, we used 12
microsatellite markers to quantify the genetic relatedness (i.
e., parent-offspring relationship) for seedlings, saplings, ju-
veniles and adults of the most dominant tree species Casta-
nopsis eyrei (Fagaceae; Figure S1 in Supporting
Information) in a 24-ha subtropical evergreen broad-leaved
forest dynamics plot (FDP). We hypothesize that (1) the
distance of the peak recruitment of offspring will shift away
from parent trees with ontogeny due to high mortality of
offspring near the parent tree during the seedling-sapling and
sapling-juvenile transitions (Hypothesis 1, Figure 1A), (2)
offspring recruits will suffer from a stronger negative impact
near their parent trees than non-offspring recruits due to the
genetic-relatedness-dependent CNDD (Hypothesis 2, Figure
1B), and (3) genetic similarity between individuals of same
cohort will decrease across life stages because of genetic-
relatedness-dependent tree mortality (Hypothesis 3).

RESULTS

Shifts in the offspring recruitment distance with life
stages

Overall, 400 mother trees were assigned to 1,204 offspring
(268 seedlings, 388 saplings, 548 juveniles, Table S1 in
Supporting Information) of which 864 were assigned to a
single parent and 340 offspring to parent pairs with the
nearest parent considered as the mother tree while with the
other parent as the father tree. The offspring recruitment
patterns within 80 m from mother trees significantly shifted
from seedling to sapling rather than from sapling to juvenile
(Figure 2). These patterns were evident as sampling area
showed no significant effects on recruitment patterns across
five sampling scales for both sapling offspring (F4,773=1.04,
P=0.400) and juveniles (F4,1047=0.451, P=0.772).
The mean recruitment distances of seedlings, saplings and

juveniles were 40.6±2.6 m (SE) (range 1.4–253.4 m), 60.6±
2.7 m (2.3–312.3 m) and 59.1±2.1 m (1.4–264.8 m), re-
spectively (Figure S2 in Supporting Information). The re-
cruitment distance significantly increased from seedling to
sapling stage (Tukey multiple-comparisons test, P<0.001),
but did not differ between saplings and juveniles (Tukey
multiple-comparisons test, P=0.881). The distances of peak
recruitment increased from 11.0 m for seedlings to 21.4 and
23.9 m for saplings and juveniles (Figure S2 in Supporting
Information).
For the offspring recruitment distance from father tree, 340

offspring were assigned to 188 fathers with a mean distance
of 77.8 m (Figure S3 in Supporting Information). The father-
offspring distance did not differ between seedlings and
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saplings (Tukey multiple-comparisons test, P=0.053), sap-
lings and juveniles (Tukey multiple-comparisons test,
P=0.167). The effective pollen dispersal distance from father
tree to mother tree of 340 offspring ranged from 4.7–335.8 m
with a mean of 47.2 m (Figure S4 in Supporting Informa-
tion).

Adult effects on offspring and non-offspring

In the three core areas, 854 offspring (201 seedlings, 270
saplings, 383 juveniles) were assigned to 212 mother trees,
including 206 offspring assigned to paired parents. The
offspring/non-offspring ratio was higher for seedlings as
compared with saplings and juveniles within 20 m to the
mother tree (Figure S5A in Supporting Information). The
offspring/non-offspring ratio was also higher for seedlings as
compared with saplings and juveniles within 20 m to the
father tree (Figure S5B in Supporting Information), but the
differences were quite small (only from 0.011 to 0.013).
Considering there were only 26 offspring (18 seedlings, 4
saplings, and 4 juveniles) within 20 m to the father tree and
the effects from the mother tree (the mean distances of the
mother and father tree to 26 offspring were 7.6 m and

13.0 m, respectively) could not be excluded, only the effect
of mother trees on offspring and non-offspring was evaluated
in further analyses.
Although the patterns of recruitment efficiency (RE, the

recruit ratio of early life stage to the later) varied with Core
Plots (Figure S6 in Supporting Information), genetic relat-
edness (offspring and non-offspring) and life stages were
important in determining the overall REs (Figure 3). For the
seedling-sapling transition, the REs of both offspring and
non-offspring increased with the distance from the focal trees
as predicted by the JCH and the REs of offspring were sig-
nificantly lower than that of non-offspring within 40 m from
the focal tree Figure 3A and Figure S7A in Supporting In-
formation, P<0.01 for all distance groups except P<0.05 for
the 0–5 m group when removing effects from non-off-
spring’s own mother trees and the 20–40 m group when all
non-offspring were included). For the sapling-juvenile tran-
sition, there were no significant difference in REs between
offspring and non-offspring along the distance from mother
trees except for the 10–20 m and 40–80 m distance classes
(Figure 3B and Figure S7B in Supporting Information).

Changes in genetic structure across life stages

Spatial genetic structures with significantly positive auto-
correlations were observed across life stages at distance
classes up to 40 m (P=0.001, Figure 4) except for seedlings
in the 5–10 m distance class. The strength of spatial genetic
autocorrelation between recruits decreased with distance for
all life stages. Seedlings presented a significantly stronger
spatial genetic structure than that of saplings (t2=23.115,
P=0.001) and juveniles (t2=39.710, P=0.001) in the 0–5 m
distance class (Table S2 in Supporting Information).

DISCUSSION

Our results of the present study on the dominant tree species
C. eyrei support all the three hypotheses, that is, (1) peak
recruitment distances of offspring shift away from mother
trees over life stages, (2) offspring have significantly lower
recruitment efficiencies than non-offspring in the vicinity of
mother trees, and (3) genetic similarity between recruits
within 5 m distance significantly decreases from seedlings to
saplings and juveniles. These results provide clear evidence
that genetic relatedness can influence the strength of CNDD.
Seed dispersal is an important determinant in seedling

establishment, affecting the genetic structure and diversity of
plant populations (Berens et al., 2013; Dow and Ashley,
1996; Hardy et al., 2019; Harms et al., 2000). Escaping away
from parent trees and other conspecific adults may increase
the probability of per capita seedling recruitment and sur-
vival when strong CNDD is present (Harms et al., 2000). In

Figure 1 The expected consequences of negative effect from parent trees
on offspring and non-offspring mediated by genotype-specific natural
enemies. A, The unimodal recruitment curves of offspring seedlings
(green), saplings (blue) and juveniles (orange) as a function of distance
from the parent trees. The unimodal recruitment curves are results of the
probability of effective seed dispersal (dashed line) and the probability of
survival (dotted line) of offspring. B, The different survival probability of
offspring (red) and non-offspring (blue) as a function of distance from the
parent trees.
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our study, the recruitment distance of C. eyrei to the parent
tree in the forest plot increased from seedlings to late life
stages. The peak recruitment distances of offspring were
much larger than the mean crown diameter of adult C. eyrei
(~7 m, pers. obs.) (Figure S2 in Supporting Information).
Given that 25.4%, 3.4%, and 3.3% of seedling, sapling, and
juvenile offspring distributed within 10 m to the mother tree,
it seems that seedlings recruiting near their mother trees have
a high mortality rate.
Genotype-specific natural enemies (e.g., pathogens) to-

gether with dispersal limitation have been recently suggested
as potential key drivers in promoting coexistence of plant
species (Comita and Stump, 2020; Eck et al., 2019; Liu et al.,
2015; Stump and Comita, 2020). Assuming dispersal lim-
itation of genotype-specific natural enemies and that they
cannot hitchhike on the dispersal units of plants, it is likely
that they find offspring close to parent trees more easily than
further away. Furthermore, because enemies are genotype-
specific at least to some degree, non-offspring recruits close
to conspecific adults should be less attacked. In our study, we
found a stronger CNDD on offspring near the parent tree
relative to non-offspring for C. eyrei during the seedling-
sapling transition (Figure 3A, Figure S5A and Figure S7A in
Supporting Information), implying genotype-specific natural
enemies may have been responsible for the observed spatial
pattern of tree recruitment in natural forests. Our findings are

in line with results from previous studies which showed that
soil-borne pathogens from closely related conspecifics may
reduce seedling performances (Eck et al., 2019; Liu et al.,
2015). Our study elucidated the parent-offspring relationship
for individuals at multiple spatial scales and life stages with
explicit spatial information, which allowed us to detect an
obvious reduction of recruitment efficiencies of offspring
across life stages. The calculation of REs in the present study
is based on static data from only one survey and further long-
term monitoring on offspring and non-offspring cohorts will
be helpful to find the real recruitment efficiencies of those
cohorts and their responses to CNDD.
There are two possible mechanisms for the observed

within-species genetic-relatedness-dependent CNDD. First,
trees of different genotypes can host specific pathogens
(Cordier et al., 2012; Purahong et al., 2016) and have dif-
ferent pathogen susceptibilities (Bruns et al., 2012), and the
shared pathogens and similar pathogen susceptibility be-
tween parents and offspring will account for genetic-relat-
edness-dependent CNDD. Second, it may be that the
genetically related recruits tended to utilize similar resources
and offspring may face stronger competition from parent
trees and siblings than non-offspring (Cheplick, 1992). Si-
milar to competitive exclusion of ecologically similar spe-
cies in local habitats (Webb et al., 2002), the stronger
competition between genetically related offspring and parent

Figure 2 Recruitment pattern shifts across life stages for offspring of Castanopsis eyrei. A, Observed (blue) vs. expected (black) sapling distribution
estimated from the seedling distribution. B, Observed (orange) vs. expected (black) juvenile recruitment distribution estimated from the sapling distribution.
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trees will lead to a lower RE near parent trees. Although both
mechanisms may contribute, the first interpretation is sup-
ported by shade-house experiments with tropical and sub-
tropical trees in previous studies (Eck et al., 2019; Liu et al.,
2015) and it is also suggested that competition for resources
among plant individuals are quite weak during the seedling
stage (Forrister et al., 2019; Paine et al., 2008).
The changes of spatial genetic structure in a plant popu-

lation across life stages may provide insights into the roles of
gene dispersal, micro-environmental selection, and mating
patterns in shaping spatial genetic pattern and help to un-
derstand the mechanisms driving population dynamics
(Jones and Hubbell, 2006; Michalski and Durka, 2007). In
our study, C. eyrei displays a significant decrease in genetic
similarity for the seedling-sapling transition (Figure 4). This

result is consistent with changes of spatial genetic structure
of a tropical tree species Prunus africana, with decreased
spatial genetic structure from seed and seedling to older ju-
venile stages (Berens et al., 2014). The low RE of offspring
and decreased genetic similarity for the seedling-sapling
transition near the mother trees will, in turn, enable seedlings
of genotype distinct to the adult tree have higher survival
rates and maintain a higher genetic diversity in the overall
tree population. Considered that high genetic diversity in a
population is helpful for plant adaptation to various abiotic
environments and could also dilute and inhibit genotype
specific pathogens (Ehlers et al., 2016; Leimu et al., 2006),
the genetic-relatedness-dependent CNDD found in our study
may enhance plant adaptation to both abiotic and biotic en-
vironments through the enhanced population genetic di-

Figure 3 Recruitment efficiency (RE, the recruit ratio of early life stage to the later) of seedling-sapling (A) and sapling-juvenile (B) transitions along the
distance from the focal trees for Castanopsis eyrei (removing effects from non-offspring’s own mother trees). The blue and red solid circles are mean REs of
offspring and non-offspring, respectively, in each distance class generated by 10,000 bootstrap replicates. Only non-offspring whose own mother trees located
at ≥80 m away were considered. The error bars are 95.0% bootstrap confidence intervals. Difference in REs between offspring and non-offspring is
significant if their 95.0%, 99.0% or 99.9% confidence intervals do not overlap the other’s mean separately. The asterisks above error bar represents significant
differences between offspring and non-offspring at α=0.05 (*), 0.01 (**) or 0.001 (***) based on 95.0%, 99.0% or 99.9% confidence intervals, respectively.
Different upper and lower-case letters indicate significant differences between distance groups for offspring and non-offspring at α=0.05, respectively.
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versity.
Overall, our findings provide field evidence for the re-

lationship between genetic relatedness and neighborhood
interactions, namely, that the effects of CNDD between
plants have a strong “genetic signal”. Our results indicate
that CNDD depends on both genetic relatedness and spatial
distance to conspecific adults, and the strength of that de-
pendence and the consequent negative effects decreased
from seedling to later life stages. These results coupled with
other studies focused on seedling performance with different
soil sources (Eck et al., 2019; Liu et al., 2015) imply that the
genetic relatedness of plant hosts, genotype-specific ene-
mies, and seed dispersal ability may jointly regulate the
strength of CNDD. Further research on the interaction be-
tween genotype-specific enemies and their host plants is
essential to fully understand the underlying mechanisms of
CNDD.

MATERIALS AND METHODS

Study site

The study was conducted in a 24-ha subtropical evergreen
broad-leaved forest dynamics plot (FDP; 29°15′6″–29°15′
21″ N, 118°07′1″–118°07′24″ E; 446.3–714.9 m altitude) at
Gutianshan National Nature Reserve in Zhejiang province,
China (Legendre et al., 2009). This FDP is part of the Chi-
nese Forest Biodiversity Monitoring Network (CForBio) and

the Forest Global Earth Observatory (ForestGEO; Davies et
al., 2021). The FDP is 400 m×600 m in area and divided into
600 grids of 20 m×20 m. All tree individuals with DBH
(diameter at breast height) ≥1 cm were tagged, measured,
spatially mapped and identified to species since 2005 and
censused every 5 years (Legendre et al., 2009). Seedling
plots (5 m×5 m each) in every second 20 m×20 m grid were
set in 2012, where all seedlings with DBH<1 cm and height
≥10 cm were tagged, measured, and mapped.

Sampling and DNA extraction

Castanopsis eyrei (Champ. ex Benth.) Tutch. (Fagaceae) is
an evergreen, monoecious and anemophilous dominant tree
species (Huang et al., 1999; Mao et al., 2016) that grows up
to 35 m and has a maximum recorded DBH of 95 cm in the
FDP. C. eyrei usually begins to produce seeds at DBH
>14 cm (pers. obs.) and more than 10,700 individuals with
DBH ≥1 cm were recorded in the FDP in 2010. Seeds of C.
eyrei are dispersed by gravity and animals (Du et al., 2009).
In June and July of 2014, we collected leaf tissue from all
mapped individuals within three core plots (core 1: 100 m×
100 m, core 2 and 3: 120 m×120 m; Figure S1 in Supporting
Information), which represent three main habitat types (i.e.,
low valley, low ridge and high ridge; Chen et al., 2010). In
order to include as much parents as possible, additional
adults and seedlings in extended area were also collected
(Figure S1 in Supporting Information). See Appendix S1 in
Supporting Information for additional context. In total, we
sampled 3,054 individuals, including 1,224 adults (DBH
>14 cm), 871 juveniles (2 cm<DBH ≤14 cm), 585 saplings
(1 cm≤DBH≤2 cm), and 374 seedlings. All leaves were
dried with silica gel before DNA extraction.
We extracted DNA from dry leaf tissue using the Tiangen

Plant Genomic DNA kit (TIANGEN Biotech Co., Ltd,
Beijing, China) and performed PCRs according to a modified
protocol described by Ueno et al., (2009), using 12 nuclear
microsatellite markers (Table S3 in Supporting Information).
All PCR products were analyzed using an ABI 3730 se-
quencer (Applied Biosystems, USA) and the alleles were
scored using GeneMapper Version 4.0 (Applied Biosystems,
Beijing, China).

Genetic analyses

As C. eyrei has a strong sprouting capability (Ye et al., 2017),
we identified root sprouts (clonal ramets) using the R
package RClone (Arnaud-haond and Belkhir, 2007) while
considering the identity analysis results conducted in CER-
VUS 3.0.7 (Kalinowski et al., 2007; Appendix S1 in Sup-
porting Information). Fifty-two putative root sprouts were
removed and a total of 3,002 individuals (366 seedlings, 576
saplings, 857 juveniles and 1,203 adults) were included in

Figure 4 Correlogram of spatial genetic structure for recruits of Casta-
nopsis eyrei in three life stages, seedlings (green line), saplings (blue line)
and juveniles (orange line), in a subtropical forest. Data points represent the
observed genetic correlation coefficient (r) between paired individuals
within each distance class. Error bars indicate the 95% confidence intervals
estimated from bootstrapping 1,000 times. Solid symbols represent sig-
nificant spatial genetic structure in the distance class for each life stage
(P=0.001). The asterisks above error bar represents significant differences
between seedling- and two later life stages in 0–5 m distance class
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the downstream analyses. The number of alleles ranged from
12 to 43 across the 12 microsatellite markers, giving a total
of 285 alleles and low null allele frequencies (0 to 0.0969,
Table S3 in Supporting Information) by using CERVUS
3.0.7 (Kalinowski et al., 2007). The combined exclusion
probabilities across the 12 microsatellite loci for the first
parent and parent pair were both 0.9999, which validates the
effectiveness of markers used in the parentage analyses. The
parentage analyses were performed using CERVUS 3.0.7
(Kalinowski et al., 2007). The parent-pairs and single parents
were assigned based on critical values of LOD (the logarithm
of the likelihood-odds ratio; Kalinowski et al., 2007) ob-
tained through simulations at a 99% confidence level. The
simulation parameters were as follows: 100,000 runs, 60%
sampled candidate parents, and a 5% genotyping error rate.
All 1,203 adult trees were used as candidate parents and all
other parameters of simulations were set as default values. A
single identified parent and the closer parent within an
identified parent pair was considered as the mother tree,
since seed dispersal in general is strongly declining with
distance and offspring are more likely to grow around their
mother trees (Millerón et al., 2013).

Statistical analyses

To test if the offspring recruitment patterns shifts away from
their mother trees across ontogeny (seedlings, saplings, and
juveniles) as the Janzen-Connell hypothesis predicts, we first
calculated the frequency distribution of offspring from the
mother tree with 5 m distance intervals for each life stage.
The proportion of seedlings in each distance group was then
multiplied by the total number of saplings to obtain an
“expected” number of saplings in each distance group based
on the simple assumption that if all seedlings are equal,
sapling density should be directly proportional to seedling
density (Swamy et al., 2011). Similarly, the “expected”
number of juveniles in each distance group were obtained by
multiplying the total number of juveniles by the proportion
of saplings in each distance group. The expected frequency
distribution of offspring within 80 m was compared with the
observed distribution using a chi-square test. We then fitted
recruitment kernels for the three life stages with Gaussian
kernel using the density function in the R package stats,
separately. Tukey multiple-comparisons were performed to
compare the differences of recruitment distances (mother-
offspring distances) and father-offspring distances among
life stages using the TukeyHSD function in the R package
stats. To test the influence of sampling scales on the re-
cruitment pattern of offspring, we selected 47 20 m×20 m
grids with seedling plots in three core areas (Figure S1 in
Supporting Information) and resampled saplings (and juve-
niles) with known mother trees in those grids at four scales
(5 m×5 m, 10 m×10 m, 15 m×15 m, and 20 m×20 m). The

recruitment patterns of sapling (and juvenile) offspring
across four scales and all core areas were compared by using
analysis of variance.
To explore the negative effects of focal adult trees on their

offspring and non-offspring along the distance from focal
trees, we used recruitment efficiency (RE) as a proxy vari-
able of survival probability, which was calculated as the ratio
of recruit number at later to earlier stage. Recruits of three
life stages around the focal trees were grouped separately
into offspring and non-offspring relative to the focal trees
based on the parentage analysis. The non-offspring whose
mother trees located within 80 m from them were removed
from the calculation of RE to eliminate effects from non-
offspring’s own mother trees. Then, the ratios of sapling/
seedling and juvenile/sapling in specific distance intervals
(circular or annular area) from the focal trees were calculated
for offspring and non-offspring separately to obtain the RE at
that distance interval (Swamy et al., 2011). All mother trees
in core areas were used as focal trees in this analysis. We
chose distance classes in geometric sequence (0–5 m,
5–10 m, 10–20 m, 20–40 m and 40–80 m), and calculated
RE of the recruits within each distance class as follows:

RE W N N= × / ,ij A j i

where REij stands for the recruitment efficiency of recruits
during the transition from life stage i to j in each distance
class, Ni and Nj are the total numbers of recruits in life stage i
and j in each distance classes respectively, and WA is a
coefficient for area correction which is the ratio of sampling
area of life stage i to j. We calculated 95%, 99%, and 99.9%
confidence intervals of RE using the percentile method by
bootstrapping 10,000 times of focal trees using boot package
in R (Canty and Ripley, 2021; Davison and Hinkley, 1997).
Difference in REs between offspring and non-offspring and
distance classes is significant (α=0.05, 0.01, and 0.001) if
their confidence intervals do not overlap the other’s mean
(Searle and Chen, 2020).
To explore the changes of fine scale spatial genetic struc-

ture across ontogeny, we performed spatial autocorrelation
analysis for the recruits of three life stages (seedlings, sap-
lings and juveniles) and analyzed the differences in spatial
genetic structure between life stages using the nonparametric
heterogeneity tests (Smouse et al., 2008) implemented in the
program GenAlEx 6.51b2 (Peakall and Smouse, 2006;
Peakall and Smouse, 2012). The genetic autocorrelation
coefficient, r, was calculated for all paired samples falling
within specific distance class and 95% confidence intervals
for r were estimated by 999 bootstraps. The squared paired-
sample t-test statistic “t2” between life-stages for each dis-
tance class were calculated using 999 permutations to esti-
mate the significance of genetic heterogeneity across
ontogeny (Smouse et al., 2008). Distance classes were de-
fined to ensure a minimum of 50 sample pairs of each life
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stage at each distance class (0–5 m, 5–10 m, 10–40 m and
40–80 m).
The sample sizes of adults, seedlings, saplings, and juve-

niles in different analyses were provided in Tabel S1 in
Supporting Information.
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