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a b s t r a c t

Analyses of spatial distributions in ecology are often influenced by spatial autocorrelation.

While methods to deal with spatial autocorrelation in Normally distributed data are already

frequently used, the analysis of non-Normal data in the presence of spatial autocorrelation

are rarely known to ecologists. Several methods based on the generalized estimating equa-

tions (GEE) are compared in their performance to a better known autoregressive method,

namely spatially simultaneous autoregressive error model (SSAEM). GEE are further used to

analyze the influence of autocorrelation of observations on logistic regression models. Orig-

inally, these methods were developed for longitudinal data and repeated measures models.

This paper proposes some techniques for application to two-dimensional macroecological

and biogeographical data sets displaying spatial autocorrelation. Results are presented for
ogistic regression

acroecological method

oran’s I

patial autocorrelation

both computationally simulated data and ecological data (distribution of plant species rich-

ness throughout Germany and distribution of the plant species Hydrocotyle vulgaris). While

for Normally distributed data SSAEM perform better than GEE, GEE provide far better results

than frequently used autologistic regressions and remove residual spatial autocorrelation

substantially when having binary data.

of statistical models (Anselin and Bera, 1998; Lennon, 2000;
. Introduction

ecently, it became obvious that spatial autocorrelation is
ften present in macroecological or biogeographical datasets.
his means that observations close to each other geograph-

cally are more likely to be similar than those far away from
ach other. One therefore might have a lack of independence
n a dataset. Even if we are not interested in analyzing the
patial structure within a dataset (i.e., the relationship of
he response to spatial variables such as longitude and lat-

tude) we should care for spatial autocorrelation as it can
esult in severe problems (Legendre, 1993; Legendre et al.,
002). The non-independence of outcomes represents a form
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of pseudoreplication and overestimates the effectively avail-
able degrees of freedom (Dutilleul, 1993; Legendre et al., 2002).
Situations with correlated observations are not unusual in
the statistical analysis of spatial data so that ordinary regres-
sion models are not appropriate. In particular, in geological
and ecological applications, responses of regression models
can be locally correlated in all geographical directions. There-
fore, spatial autocorrelation may result in an underestimation
of coefficients variances and incorrect parameter estimates
ipzig-Halle, Department Community Ecology (BZF), Germany.

(I. Kühn).

Haining, 2003).
For data with Normally distributed responses, spatially

autoregressive linear models are available and already used by
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ecologists (Lichstein et al., 2002; Dark, 2004; Kissling and Carl,
in press). Augustin et al. (1996) applied an autologistic method
to handle presence/absence data which was later widely used
by several authors (Wu and Huffer, 1997; Osborne et al., 2001;
Segurado and Araujo, 2004; Luoto et al., 2005). This method
can also be extended to other distributions (Haining, 2003).
Furthermore, binary spatial regression models for spatially
aggregated data have been proposed using spatial Markov ran-
dom fields (Pettitt et al., 2002). Bayesian estimation methods
are available using Markov chain Monte Carlo to approximate
the posterior distributions (Besag et al., 1991; Kühn et al.,
2006, for an application in ecology). The approach we present
here is based on generalized estimating equations which is an
extension of generalized linear models (GLM) (Liang and Zeger,
1986). This method allows for a correlation structure for longi-
tudinal (one-dimensional, e.g., time series) data analysis. This
special data layout is necessary when responses are measured
repeatedly on the same subject or unit across time. Therefore,
the GEE method takes into account correlations within these
units, while correlations between units can be assumed to be
zero. Such units or clusters can also occur in a spatial context,
i.e., as independent regions. A GEE approach for the analysis of
such kind of data was developed by Albert and McShane (1995).

In macroecological or biogeographical datasets natural
clusters comply usually large regions as they represent bio-
geographical regions or so-called eco-regions (Korsch, 1999;
Metzger et al., 2005). Though such a natural structure might
exist, adjacent clusters would be neither absolutely indepen-
dent nor necessarily present at the desired scale. This is the
case, in particular, for lattice data, i.e., where maps are divided
into grid cells of arbitrary size. We apply the methods intro-
duced by Zeger and Liang (1986) by either having the entire
area as one cluster or making up artificial clusters combining
only a few grid cells. In the second case intra-cluster corre-
lations are incorporated, while inter-cluster correlations are
neglected. Therefore, potentially existing correlations among
adjacent grid cells which belong to different clusters will not
be used. We think, however, it is better to involve only those
autocorrelations within clusters and ignore those between
clusters than to completely ignore autocorrelation et all. We
can thus apply generalized estimating equations to gridded
datasets and analyze whether they produce more accurate
values.

We are only aware of a few studies in ecology that actu-
ally use GEE to correct for spatial autocorrelation (Gotway and
Stroup, 1997; Gumpertz et al., 2000; Augustin et al., 2005). But
the authors of the cited papers used the GEE method only for
examples of rather small sample size where data clustering is
neither naturally present nor artificially to impose. We are not
aware of any study that tests the performance of the method
for data of gridded maps and large sample size.

In this paper, we first give an overview of the theory. To
this aim we describe the GEE method and the use of stan-
dardized Pearson residuals and spatial correlograms. We then
apply the method to synthetic data with specified spatial cor-
relation and describe some aspects of implementation using

the free software R (R Development Core Team, 2006). For com-
parison we analyze several modelling techniques. The GEE
approach is especially suited for parameter estimation rather
than prediction (Augustin et al., 2005). Thus, we compared
2 0 7 ( 2 0 0 7 ) 159–170

results of several models regarding autocorrelation removal
and efficiency of parameter estimates. Real examples are pro-
vided for both Normal and binary macroecological datasets on
plant distribution in Germany. Our aim is to discuss several
GEE models in comparison to linear models (LM) and spatially
simultaneous autoregressive error models (SSAEM) for Normal
response variables and to standard generalized linear mod-
els and autologistic regression models (autologistic) for binary
response.

2. Statistical background

2.1. GEE method

Generalized estimating equations are an extension of general-
ized linear models and allow for correlated responses (Diggle
et al., 1995). Firstly, consider the score equation of generalized
linear models (Dobson, 2002; Myers et al., 2002).

D′V−1(y − �) = 0, (1)

where y is a vector of response variables. The expected
value � is given by � = g−1(Xˇ) with g−1 is the inverse of
the link function, X the matrix of predictors, and ˇ is the
vector of regression parameters. Furthermore, D′ is the trans-
posed matrix of D of partial derivatives D = ∂�/∂ˇ. Secondly,
note that the variance of the response can be replaced by a
variance–covariance matrix V which takes into account that
observations are not spatially independent. V−1 is the inverse
of matrix V given by

V = �A1/2RA1/2,

where A contains variances as usual in GLM, � the dispersion
parameter, and R is an additional matrix to incorporate the
correlation structure. For formal reasons the diagonal matrix
A is splitted up into two square roots of A. In case that R is
a specified matrix the score Eq. (1) can be used to estimate
the regression parameters ˇ in a similar way as in GLM. If
the parameters in R are not given, it will be necessary to esti-
mate all of them in an iterative procedure until convergence
is achieved. However, when the set of unknown parameters
is too large, this procedure may lead to convergence problems
and may not longer be applicable.

We are able to reduce the number of unknown parameters
if a cluster-specific model can be used. In this context, clusters
are groups with certain sets of observations. Cluster models
are models that recognize correlations within clusters, and
neglect correlations between them. The complexity of the
model can strongly be reduced by assuming the same kind
of spatial autocorrelation in all clusters. Eq. (1) can thus be
transformed into an equation of more practical value. For
this purpose, suppose the sample is split up into m clusters
and the complete dataset is ordered in a way that data of
specific clusters follow each other. So we obtain, e.g., for
the response variable y = (y′ , y′ , . . . , y′ ). Here the model
1 2 m

can be written in the form �j = g−1(x′
j
ˇ), j = 1, 2, . . . , m for

each cluster separately. Furthermore, with regard to each
cluster a variance–covariance matrix Vj exists containing
off-diagonal elements because of the dependence on intra-
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luster observations. The complete variance–covariance
atrix, however, will be obtained in a block diagonal form
= diag(V1, V2, . . . , Vm), since inter-cluster responses are

ssumed to be uncorrelated. As a consequence Eq. (1) yields
he so-called quasi-score equation

m

j=1

D′
jV

−1
j

(yj − �j) = 0, (2)

hich sums over all clusters. Here the matrix Vj has a
orresponding decomposition in the form

j = �A
1/2
j

RjA
1/2
j

.

f correlation parameters are not given or datasets are large,
q. (2) is the preferable form in comparison to Eq. (1). But it has
eriously to be checked if applications to gridded datasets from
acroecology are allowed since there is no natural clustering

Hosmer and Lemeshow, 2000; Myers et al., 2002). Fortunately,
stimates of regression parameters are fairly robust against
isspecification of the correlation matrix (Dobson, 2002).

.2. Residual autocorrelation

ne can define a vector r of standardized residuals for GEE
odels

= R−1/2A−1/2(y − g−1(Xb)), (3)

here b is the estimate of ˇ and R−1/2 = (R−1)
1/2

(Lumley, 1996).
o this end we decompose the inverse symmetric correlation
atrix R−1 into a product of two symmetric matrices R−1/2

sing the singular-value decomposition of a matrix. These
tandardized residuals are Pearson residuals standardized by
he working correlation. They should be spatially independent
f the used correlation structure is true. We will analyze these
esiduals by means of spatial correlograms and compare the
esults to those of Pearson residuals of GLM.

For this purpose we use Moran’s I (e.g., Lichstein et al., 2002)
iven by

=
(1/S)

∑

i

∑

h

wih(ri − rmean)(rh − rmean)

(1/n)
∑

i

(ri − rmean)2
. (4)

ere one has to introduce “lag distance” intervals for the spa-
ial structure under consideration. The factor wih is a weight
hat equals one if the distance of the variables ri and rh belongs
o this interval and zero otherwise. S is the sum of weights for a
iven interval and n is the total number of residuals. If there is
o spatial autocorrelation, the expected value of I is −1/(n − 1),
hich can be approximated by 0 if n is large.

.3. Simulations
imulations were performed to check the models for autocor-
elation effects. For this purpose regular grids were generated.
he number of grid cells is 32 × 32 and the cells were assumed

o be square. Values for two Normally distributed predic-
7 ( 2 0 0 7 ) 159–170 161

tors were randomly generated, and linearly combined using
specified parameters (intercept and two slopes). In addition,
Normally distributed errors ε ∼ N(0, 1) were randomly gen-
erated. The vector of errors was multiplied by the Cholesky
decomposition of a variance–covariance matrix. This proce-
dure creates correlated Normal random errors. Finally, we
are able to simulate correlated responses. On one hand Nor-
mal responses are given as the sum of linear component and
correlated errors. On the other hand the following steps trans-
form these correlated Normal variables into correlated binary
outcomes: (1) scale to get a marginally standard Normal distri-
bution, (2) transform by their cumulative distribution function
to get a uniform distribution, and (3) use the inverse transform
method to get binomial responses (Ross, 1997).

The correlation matrix includes specified spatial autocor-
relation depending on the distances between the points of
measurements (e.g., centre points of grid cells). In our case
this correlation is assumed to be equal for each pair of equal
distance. In this way we have introduced an isotropic spatial
autocorrelation structure by the following exponential func-
tion

˛ = ˛dih
1 . (5)

Here dih is the distance between centre points of grid cells and
˛1 is the correlation parameter for nearest neighbours. Note
that two scale parameters are necessary for binary response
data. The first one ensures the correct fit in case of uncor-
related errors. To check the fit GLM regressions for 1000
simulated datasets are performed. The second scale param-
eter has to preserve the specified error variance when the
correlation is incorporated.

2.4. Software details

Our computations are based on software packages in the
computer language R (R Development Core Team, 2006). The
tools for SSAEM and autologistic computations are available
in package spdep (Bivand et al., 2006) with functions named
errorsarlm and autocov−dist. Here the calculations were carried
out for 8 and 4 neighbours, respectively. The tools for calculat-
ing GEEs are available in package gee (Carey et al., 2006) with
function named gee (Liang and Zeger, 1986; Zeger and Liang,
1986) and in package geepack (Yan, 2004) with function named
geese (Yan, 2002; Yan and Fine, 2004).

2.5. Fitting GEE models

In our case of spatial dependence the following correlation
structures are used in GEE models:

1. Fixed. The correlation structure is completely specified by
the user and will not change during an iterative procedure.

2. Quadratic. Correlation parameters are to be estimated. But
one can require that certain parameters must be equal.
We set correlations to be equal within a cluster if the

corresponding grid cells are of equal distances. It follows
that for instance a square cluster of 2 × 2 square grid cells
is completely characterized by 2 correlation parameters
according to the 2 possible distances between these cells.
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Table 1 – Results for 1000 randomly simulated 32 × 32 datasets with Normally distributed responses

Method a Mean(b0) Mean(b1) Mean(b2) Var(b0) Var(b1) Var(b3)

LM −0.9970 2.9959 −2.0005 0.0660 0.0236 0.0242
GEE exch. 2 × 2 1 −1.0011 2.9967 −1.9972 0.0451 0.0138 0.0136
GEE quadr. 2 × 2 2 −1.0038 2.9985 −1.9963 0.0424 0.0128 0.0126
GEE exch. 3 × 3 1 −1.0014 2.9976 −1.9984 0.0477 0.0149 0.0157
GEE quadr. 3 × 3 5 −1.0007 2.9983 −1.9999 0.0408 0.0114 0.0113
GEE exch. 4 × 4 1 −1.0007 2.9961 −1.9970 0.0516 0.0167 0.0165
GEE quadr. 4 × 4 9 −1.0034 2.9960 −1.9945 0.0523 0.0170 0.0165
GEE fixed 0 −0.9994 2.9968 −2.0003 0.0356 0.0096 0.0094
SSAEM −0.9980 2.9971 −2.0008 0.0388 0.0105 0.0105

b0, s
ˇ2 = −
Means and variances for estimated regression parameters (intercept =
for different methods. The real parameters are ˇ0 = −1, ˇ1 = 3, and
estimated in GEE models.

These 2 correlation parameters are equal for all clusters.
This imposes an isotropic correlation structure on each
cluster.

3. Exchangeable. All correlations within clusters are equal such
that only one parameter is to be iteratively estimated. It is
the same one for all clusters.

We use the fixed structure to solve Eq. (1) where no clus-
tering is necessary. In ecological applications we have good
reasons to assume that the correlation decreases with increas-
ing spatial distance. Therefore, we use the function (5) for
computation of correlation parameters ˛ for fixed structure.
The parameter ˛1 is estimated by Moran’s I (4) at distance
interval lag = 1 from the GLM residuals. This estimate is
substituted in the GEE procedure so that all correlation param-
eters are given.

Furthermore, we use the structures exchangeable and
quadratic to solve the cluster model of Eq. (2). Note that clusters
combine some grid cells into a so-called neighbourhood. This
can easily be done by an additional lattice with a mesh size of
several grid cells. All grid cells within such a mesh are joined
into a cluster. Here these clusters are, in general, of square

shape. As we have pointed out above, it is necessary to take
into consideration the influence of clustering data. Thus, dif-
ferent values for square cluster units were chosen: 2 × 2, 3 × 3
and 4 × 4-clusters. Note that clusters need not to be complete.

Table 2 – Results for 1000 randomly simulated 32 × 32 datasets

Method a Mean(b0) Mean(b1)

GLM −1.0162 2.9990
GEE exch. 2 × 2 1 −1.0168 3.0006
GEE quadr. 2 × 2 2 −1.0177 2.9984
GEE exch. 3 × 3 1 −1.0094 2.9970
GEE quadr. 3 × 3 5 −1.0084 2.9909
GEE exch. 4 × 4 1 −1.0034 2.9960
GEE quadr. 4 × 4 9 −1.0030 2.9918
GEE fixed 0 −1.0132 3.0002
Autologistic −4.7609 5.5820

Means and variances for estimated regression parameters (intercept = b0, s
for different methods. The real parameters are ˇ0 = −1, ˇ1 = 3, and ˇ2 = −
estimated in GEE models.
lope of first predictor = b1, slope of second predictor = b2) compared
2. The number a gives the number of correlation parameters to be

Usually, there are several fragments at the outside margin of
the map.

All models under consideration are summarized in the first
column of Table 1. The number of correlation parameters to
be estimated in GEE models is given in the second column.

3. Application to simulated data

In Tables 1 and 2 we show the efficiency of parameter esti-
mates. Table 1 presents results for 1000 randomly generated
datasets of sample size 32 × 32. All simulated datasets were
created with Normally distributed responses and equal regres-
sion parameters. The real parameters are ˇ0 = −1,ˇ1 = 3, and
ˇ2 = −2. This table provides the averaged estimates of regres-
sion parameters for different methods. We note that all means
for intercept and slopes fit very well. However, we recog-
nize differences in the variances. The maximum values for
variances and, therefore, the lowest efficiency for parameter
estimates can clearly be found for LM. The GEE fixed model has
the least variances. This is, however, not surprising due to the
simulated datasets. Here fixed correlation means that we know

the correlation function because the same exponential func-
tion (5) was used in simulation and evaluation. SSAEM models
are almost as good as GEE fixed models. Furthermore, the vari-
ances of cluster models are always clearly smaller than the

with binary distributed responses

Mean(b2) Var(b0) Var(b1) Var(b3)

−1.9840 0.2365 0.2454 0.1603
−1.9847 0.1560 0.2090 0.1246
−1.9815 0.1547 0.2097 0.1238
−1.9862 0.1554 0.2075 0.1254
−1.9809 0.1446 0.2060 0.1183
−1.9919 0.1616 0.2069 0.1260
−1.9873 0.1641 0.2093 0.1314
−1.9832 0.1440 0.2015 0.1170
−3.7207 0.5217 0.2475 0.2724

lope of first predictor = b1, slope of second predictor = b2) compared
2. The number a gives the number of correlation parameters to be



e c o l o g i c a l m o d e l l i n g 2 0 7 ( 2 0 0 7 ) 159–170 163

F erate
d

o
e
t

b
c
G
c
d
d
ˇ

b
a

d
t
t
u
T
a
o

ig. 1 – The average of residual autocorrelation for 1000 gen
istributed.

nes of LM. The GEE quadr. 3 × 3 model provides the largest
fficiency gain among the cluster models under considera-
ion.

In Table 2 corresponding results are given for datasets with
inary responses. As for Normal data, we can draw the con-
lusion that variances decrease in GEE models compared to
LM. The GEE quadr. 3 × 3 model provides the largest effi-
iency gain among the cluster models as above for Normal
ata. Note that efficiency gains and reduced bias in stan-
ard error estimators result in more accurate inferences on
. However, the autologistic regression showed a very strong
ias identifying such models as worse performer than the GEE
pproaches.

To know to what extent spatial autocorrelation is well
escribed by GEE models we calculated Moran’s I values for
he standardized residuals by Eq. (4) and compared them to
hose of LM residuals. In Fig. 1 we present the average of resid-

al autocorrelation for 1000 generated datasets of size 32 × 32.
he responses are Normally distributed. These correlograms
re calculated for the first 10 lag distance intervals. The first
ne, i.e., lag = 1 was chosen so that in all 8 cardinal directions
d datasets of size 32 × 32. The responses are Normally

nearest neighbours were included which means that there are
8 nearest neighbours at most (i.e., queen’s neighbourhood). In
Fig. 1 eight plots are given. In all plots LM results and confi-
dence bands are the same, while the other models differ. As
can be seen, the average correlation for nearest neighbours is
about 0.53 in LM. SSAEM and also the GEE models essentially
reduce the levels of autocorrelation. The GEE fixed model is
nearly as good as SSAEM. Both are better than cluster models,
in particular, for lag = 1. For GEE with exchangeable correlation
structure, the Moran’s I for lag = 1 increases with cluster size,
while for GEE with quadratic correlation structure, the 3 × 3
clusters are best and 4 × 4 clusters worst.

The application to the average of residual autocorrelation
for 1000 generated datasets of binary responses is shown in
Fig. 2. Again, in all plots GLM results and confidence bands are
the same, while GEE models differ. As for Normal data the fixed
correlation structure is a good way to minimize autocorrela-

tion. However, fixed structure means known structure in the
case of simulated data as mentioned above. But also the GEE
models with exchangeable and quadratic correlation structure
are better than GLM. As we can see from our simulation, the
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erate
Fig. 2 – The average of residual autocorrelation for 1000 gen
distributed.

level of autocorrelation of these GEE models is half or less of
the autocorrelation of GLM if nearest neighbours are taken
into account. The best cluster model seems to be the GEE
quadratic 3 × 3 model as above in Tables 1 and 2. Here nearest
neighbour correlation is reduced to about 0.09. The efficiency
of the autologistic method in reducing spatial autocorrelation
is comparable to the GEE fixed model.

For both distributions we can say that larger clusters have
better fits for larger lags, but the nearest neighbour correlation
will not be described in a better way. The GEE quadratic 3 ×
3 models seem to be optimal. Thus, we reduce our further
investigations to the study of 2 × 2 and 3 × 3 clusters.

Next we have to take into account that the pooling of grid
cells in clusters is not naturally predetermined by the data
structure. In our case neighbouring grid cells are combined
to adjacent clusters of defined size. Aggregation depends on
the initial point that is arbitrarily chosen by the user. This

implies that the choice of neglected inter-cluster correlations
is arbitrary as well. Nevertheless, the number of neglected cor-
relations is almost completely specified by cluster size and
sample size and the degree of arbitrariness is diminished as
d datasets of size 32 × 32. The responses are binary

the number of clusters gets large. In Fig. 3 we present the resid-
ual autocorrelation averaged over all possible cluster settings
(characterized by all possible translations leading to different
settings compared to the original one). The calculations used
an example of a generated 32 × 32 dataset per distribution. As
can be seen, the errors are small even for 3 × 3 cluster models
at small lag distance.

For Normal data we expect that the autocorrelation incor-
porated in the simulated data is completely absorbed in the
response variable and is therefore detectable by Moran’s I from
the GLM residuals. In particular, for the GEE fixed model it
is important to see how good ˛1 is estimated by Moran’s I.
Moreover, for all methods which require the estimation of cor-
relation parameters, these estimates can be compared to the
true ones used in the simulation. We give the comparison of
true and estimated correlation parameters for 4 different sim-
ulation scenarios (Table 3). Instead of Eq. (5) we used a modified

exponential function

˛ = ˛
(dv

ih
)

1 , (6)
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Fig. 3 – The residual autocorrelation averaged over different cluster settings. The responses of the arbitrarily chosen 32 × 32
dataset are (a) Normally and (b) binary distributed.

Table 3 – Comparison of true and estimated correlation parameters for 4 different simulation scenarios

Method ˛1 v Mean(˛2×2) Mean(˛3×3) Mean(˛4×4)

(1)
True values 0.400 0.600 0.375 0.307 0.258
GEE fixed 0.382 0.699 – – –
GEE exch. – – 0.355 0.288 0.235
GEE quadr. – – 0.356 0.287 0.235

(2)
True values 0.600 0.600 0.578 0.514 0.463
GEE fixed 0.542 0.714 – – –
GEE exch. – – 0.516 0.452 0.385
GEE quadr. – – 0.517 0.450 0.386

(3)
True values 0.600 1.000 0.562 0.452 0.367
GEE fixed 0.590 1.048 – – –
GEE exch. – – 0.554 0.444 0.355
GEE quadr. – – 0.555 0.441 0.357

(4)
True values 0.800 1.000 0.776 0.700 0.631
GEE fixed 0.772 1.082 – – –
GEE exch. – – 0.752 0.664 0.592
GEE quadr. – – 0.753 0.662 0.594
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where an additional parameter v is responsible for the range
of autocorrelation. For the GEE fixed model, v is estimated by
the following formula: v = log(log ˛5/ log ˛1)/ log 5. The param-
eters ˛1 and ˛5 are estimated by the Moran’s I (4) of GLM
residuals at distance intervals lag = 1 and lag = 5, respec-
tively. In Table 3 we present the average of estimates for 100
generated datasets per scenario. Moreover, the correlation
parameters are averaged per cluster. As can be seen, the devia-
tions are small even for strong (˛1 = 0.8) or long-range (v = 0.6)
autocorrelation.

4. Application to the flora of Germany

In this section we apply the GEE methods to real macroeco-
logical datasets. We relate environmental variables to plant
species distribution in Germany. Information on species dis-
tribution is available from FLORKART (see www.floraweb.de)
which contains species location in a grid of 2995 grid cells.
The cells of this lattice are 10′ longitude ×6′ latitude, i.e., about
11 km × 11 km, and therefore almost square cells. We selected
species data for two regression models which differ in the
response variable.

1. A dataset has been built with the Normally distributed
number of all plant species found per grid cell (and ranging
from 0 to nearly 1200).

2. A dataset for logistic regression has been chosen with
binary distributed responses for presence/absence of the
plant species Hydrocotyle vulgaris (see Fig. 4(a)).

We only choose two environmental variables (see Fig. 4(b
and c)): (1) the average altitude (in 100 m units) per grid cell
was calculated after the ARCDeutschland500 dataset, scale
1:500,000, provided by ESRI. (2) Mean annual temperature
based on a 1 km2 grid scale was provided by the “Deutscher

Wetterdienst, Department Klima und Umwelt”. Recording
period for temperature data was 1951–1980.

We analyzed both datasets by the methods described above
regarding the residual autocorrelation and the regression

Fig. 4 – Distribution of data across Germany for (a) presence/abse
altitude ranging from 0 (light) to nearly 18.23 (dark) (in 100 m un
(dark) (in ◦C).
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parameters ˇ. Here we used the cluster models with cluster
sizes: 2 × 2 and 3 × 3, according to our conclusions from sim-
ulated data. In fact, 4 × 4 clusters lead to matrices V which are
misspecified, i.e., not positive definite. In the GEE fixed model,
we found better fits for long-range autocorrelation when cor-
relations are computed by the modified exponential function
(6).

Residual autocorrelations are presented in Fig. 5. All plots
for Normal data of plant species richness in Germany (Fig. 5(a))
include the LM results and confidence bands for compar-
ison. The calculations for confidence intervals were based
on a Moran’s I statistic of regression residuals. The corre-
sponding software is provided in package spdep (Bivand et
al., 2006). The results for binary data for presence/absence
of Hydrocotyle vulgaris are presented in Fig. 5(b). Here cal-
culations for confidence bands are no longer applicable.
Moreover, GEE fixed did not yield results due to large matrices
and thus computational problems. In that case the clus-
tering of datasets is indispensable. For Normal data GEE
fixed and SSAEM reduce the correlation to nearly zero. The
cluster model which reduced residual autocorrelation best
was GEE quadratic 3 × 3 in the case of Normal data. In the
case of binary data the GLM autocorrelation is 0.2 at lag =
1 and thus rather small. Here all cluster models are of
similar quality. Among the models, the GEE quadratic 3 × 3
model yields the minimal autocorrelation at lag = 1, while
GEE exchangeable 3 × 3 yields the minima at lag = 2 and lag =
3.

Moreover, we compared the regression coefficients for the
two predictors: altitude (Altit.) and temperature (Temp.). We
deliberately chose two collinear predictors to test the abil-
ity of the models to discriminate between them and find the
correct one. Species richness is usually a function of energy
(i.e., temperature) (Currie, 1991; Hawkins et al., 2003) while
Hydrocotyle vulgaris is distributed in the lowlands in Northern
Germany due to specific environmental parameters different

to temperature (Haeupler and Schönfelder, 1989; Benkert et
al., 1996). Note that the assumption of isotropic spatial auto-
correlation is reasonable for such regression models. There is
no overall favoured direction in our data since neither wind,

nce (dark/light) of the plant species Hydrocotyle vulgaris, (b)
its) and (c) temperature ranging from −0.5 (light) to 10.5

http://www.floraweb.de
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ig. 5 – Autocorrelation of residuals (a) for Normal data of pl
resence/absence of Hydrocotyle vulgaris in Germany.

ater currents, soil transports nor any routes of migration
onstantly follow one certain direction across the area of
nalysis.

For Normal data the slopes for altitude and temperature

ecrease with increasing cluster size and the smallest slopes
an be found for GEE quadratic 3 × 3, GEE fixed and SSAEM
Table 4). Note that the very small coefficients of altitude for
EE fixed and SSAEM are no longer significant. These mod-

Table 4 – Parameters for regression coefficients under
various models for Normal data of plant species
richness in Germany

Method Intercept Altit. Temp.

GLM −57.2 31.2*** 78.7***

GEE exch. 2 × 2 27.7 25.8*** 69.4***

GEE quadr. 2 × 2 36.0 25.6*** 68.5***

GEE exch. 3 × 3 87.2 20.4*** 63.4***

GEE quadr. 3 × 3 165.5** 18.1*** 54.6***

GEE fixed 211.8*** 3.3 47.7***

SSAEM 230.0*** 0.8 51.6***

∗∗ Significant: 0.001 < p < 0.01.
∗∗∗Significant: p < 0.001.
pecies richness in Germany and (b) for binary data for

els were found to be optimal for reducing autocorrelation (see
Fig. 5(a)).

The results for binary data for presence/absence of Hydro-
cotyle vulgaris are given in Table 5. Here all GEE cluster models
provide similar values for the slopes. GEE fixed did not yield

results (see above). The GEE exchangeable 3 × 3 model provides
the smallest absolute values. Note that in GEE models the
regression parameters for temperature are not significant. The

Table 5 – Parameters for regression coefficients under
various models for presence/absence of Hydrocotyle
vulgaris in Germany

Method Intercept Altit. Temp.

GLM 5.57*** -1.09*** −0.40***

GEE exch. 2 × 2 3.93** −1.04*** −0.22
GEE quadr. 2 × 2 4.04*** −1.04*** −0.24
GEE exch. 3 × 3 3.75** −0.98*** −0.22
GEE quadr. 3 × 3 3.80** −1.00*** −0.22
Autologistic −2.18** −0.19*** −0.01

∗∗ Significant: 0.001 < p < 0.01.
∗∗∗Significant: p < 0.001.
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results of the autologistic model are always very different to
the ones of the GEE models.

5. Discussion

We presented a strategy for including autocorrelation in logis-
tic regression models. We compared spatially simultaneous
autoregressive error models (Cressie, 1993; Anselin and Bera,
1998) and autologistic regression models with generalized
estimating equations. GEEs offer valuable methods for eco-
logical applications. Paradis and Claude (2002) introduced a
theoretical framework to correct phylogenetic autocorrela-
tion using this method which was applied by Duncan and
Blackburn (2004). In a spatial context, this method was used
by Lennon et al. (2003) and Augustin et al. (2005). Neverthe-
less, our study is the first one that we are aware of which tests
the performance for data of gridded maps and large sample
size.

Autologistic regression is a more often used approach to
analyze spatially autocorrelated binary data (Augustin et al.,
1996; Wu and Huffer, 1997; Osborne et al., 2001; Segurado and
Araujo, 2004; Luoto et al., 2005). However, estimating autolo-
gistic regression models is very time consuming, and do not
correct for the available degrees of freedom. Furthermore, the
incorporated covariable is the mean of the predicted values
in the neighbourhood. This spatial covariate is at least poten-
tially highly correlated with the response variable. Due to this,
problems in model selection can arise (Dalgaard, 2002) as the
autologistic variable might interfere with important ecolog-
ical variables by being a better predictor and corrupt other
important parameter estimates.

To examine the behaviour of GEE methods in detail we
checked their performance for simulated datasets. We com-
pared correlograms of the average Moran’s I of standardized
residuals. These provided a basis to decide which model is

best at removing the effect of spatial autocorrelation, so that
inferential results could be trusted. Although the real param-
eters of the German plant data analyses are unknown, due
to general ecological theories (Currie, 1991; Hawkins et al.,

Fig. 6 – Block diagram of the GEE models. (1) Start with a GEE fixe
residuals and Eq. (6). (2) If the dataset is too large or the autocorr
2 0 7 ( 2 0 0 7 ) 159–170

2003) and knowledge on distribution and ecology (Haeupler
and Schönfelder, 1989; Benkert et al., 1996), we can conclude,
however, that those GEE models which reduced spatial auto-
correlation best were also the ones which yielded the most
sensible results. It is important to recognize that (1) all used
GEE models are better than standard GLM and (2) the perfor-
mance of the autologistic regression approach is very poor
in our study with regards to parameter estimation. We can
therefore not recommend the use of autologistic methods to
account for spatial autocorrelation.

Due to a misspecification of the variance covariance
structure in a model that does not account for spatial auto-
correlation, significances could be overestimated (Anselin and
Bera, 1998; Lennon, 2000). Diniz-Filho et al. (2003) discusses
the problem whether one should take spatial autocorrelation
into account or not quite carefully. They conclude that spatial
autocorrelation can impose problems but that not necessarily
all analyses ignoring spatial autocorrelation are flawed. Never-
theless, if the effect of spatial autocorrelation is not analysed,
it remains unclear whether regression coefficients would be
affected. As we have shown in our examples of real data, coef-
ficients as well as significances may change (Kühn, 2007). So in
cases where spatial autocorrelation is ignored, we have no idea
about the correct relationship between variables in analyses
that ignore spatial autocorrelation at all. It might be absolutely
correct, or not.

6. Recommendations

The following recommendations result from our experience
with using GEE and many other analyses to account for spatial
autocorrelation and are only rules of thumb.

With Normally distributed, spatially autocorrelated data,
we would preferably use ordinary spatially autoregressive
methods such as SSAEM. SSAEM yields good results compared

to LM and GEE and needs no specification for the correlation
structure (Kissling and Carl, in press).

Having binary data, we recommend GEE. The use of GEE
models reduced the autocorrelation of the residuals consid-

d model (left). Parameters are given by Eq. (4) for GLM
elation removal is not acceptable, try clustering (right).
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rably as measured by Moran’s I. The GEE fixed models give
he best results whenever the correlation structure can be
pecified by the user. Here the autocorrelation is reduced to
early zero. We would therefore recommend the use of GEE
xed models (without clustering) wherever applicable (see
ig. 6, left). This depends on two problems: (1) The selection
f a sensible correlation structure and (2) memory storage
apacity for computations.

1) In case that spatial stationarity and isotropy of autocorre-
lation can be assumed we can use the Moran’s I (4) of GLM
Pearson residuals to fit a correlation function. Here we rec-
ommend Eq. (6) as useful function (see (first) and (second)
box in Fig. 6).

2) Note the high need of memory storage capacity for
datasets of large sample size without clustering (symbol-
ized by the decision in the (third) box in Fig. 6).

If the dataset is too large (regarding to available memory) or
ne has neither prior knowledge nor sensible assumptions on
he autocorrelation structure, cluster models can also be used,
rovided that the cluster size and the number of unknown
arameters is small. We achieved this by setting all auto-
orrelation parameters in a cluster to an identical value (i.e.,
xchangeable) or defining a specific square (i.e., quadratic) struc-
ure where all correlation coefficients of the same distance
re equal within clusters. Under these conditions also cluster
odels can decrease residual autocorrelation. Large clusters

nd a large number of unknown parameters can all lead to
tatistical and computational difficulties. However, the size of
lusters and the number of parameters are related to the sam-
le size. A decision tree (when to use which cluster model) is
iven in Fig. 6(right). We therefore think that cluster models
ill be useful especially for large datasets.
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