

Vergleich der Fangeigenschaften von fünf Malaisefallentypen

LTER-D Jahrestagung 16.03.2022

Johannes Uhler, Peter Haase, Lara Hoffmann, Torsten Hothorn, Jürgen Schmidl, Stefan Stoll, Ellen A.R. Welti, Jörn Buse, Jörg Müller

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Johannes Uhler
LTER-D-Tagung

16.03.2022

More than 75 percent decline over 27 years in total flying insect biomass in protected areas

Caspar A. Hallmann ☑, Martin Sorg, Eelke Jongejans, Henk Siepel, Nick Hofland, Heinz Schwan, Werner Stenmans, Andreas Müller, Hubert Sumser, Thomas Hörren, Dave Goulson, Hans de Kroon

Published: October 18, 2017 • https://doi.org/10.1371/journal.pone.0185809

The Swedish Malaise Trap Project: A 15 Year Retrospective on a Countrywide Insect Inventory

Dave Karlsson, 1 Emily Hartop, 22,1,3 Mattias Forshage, 3 Mathias Jaschhof, 1 and Fredrik Ronquist 3

Temperature drives variation in flying insect biomass across a German malaise trap network

Ellen A. R. Welti 🔀 Petr Zajicek, Mark Frenzel, Manfred Ayasse, Tim Bornholdt, Jörn Buse, Alice Classen, Frank Dziock, Rolf A. Engelmann, Jana Englmeier, Martin Fellendorf, Marc I. Förschler ... See all authors 🔻

First published: 19 November 2021 | https://doi.org/10.1111/icad.12555

GLO

GLOBAL MALAISE TRAP PROGRAM

80

60

A Review of Terrestrial and Canopy Malaise Traps

Michael J. Skvarla, 14. Jonathan L. Larson, 2 J. Ray Fisher, 3 and Ashley P. G. Dowling 3

¹Department of Entomology, Penn State University, University Park, PA, ²Department of Entomology, University of Kentucky, Lexington, KY, ³Department of Entomology and Plant Pathology, Fayetteville, AR, and ⁴Corresponding author, e-mail: mxs1578@psu.edu

Subject Editor: Gadi V. P. Reddy

Received 10 September 2020; Editorial decision 12 October 2020

Standards and Best Practices for Monitoring and Benchmarking Insects

Graham A. Montgomery¹, Michael W. Belitz^{2,3}, Rob P. Guralnick² and Morgan W. Tingley^{1*}

Department of Ecology and Evolutionary Biology, University of Caffornia, Los Angeles, Los Angeles, CA, United States, Filorida Museum of Natural History, University of Flonda, Garnesville, FL, United States, *Department of Biology, University of Florida, Garnesville, FL, United States

Johannes Uhler LTER-D-Tagung

16.03.2022

40 20 0 200² 200² 200² 200² 200² 201² 201² 201² 201² 201²

Web of Science keyword search: "Malaise trap"

- ➤ Malaisefallen ermöglichen die langfristige und aufwandsarme Überwachung von Insektenbeständen
- > Studien mit unterschiedlichen Fallentypen und möglicherweise variierenden Fangeigenschaften werden dennoch gleichwertig miteinander verglichen

Fragestellung:

Inwiefern unterscheiden sich die Fangeigenschaften verschiedener Malaisefallen im Bezug auf Insektenbiomasse und Artenzusammensetzung?

Welche Rolle spielen Fallengröße, Form und Farbe?

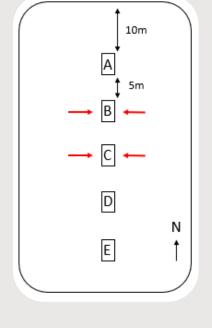
number of mentions 80 60 40

Web of Science keyword search: "Malaise trap"

20

Johannes Uhler LTER-D-Tagung

16.03.2022


Uhler et al. (*in review*): A comparison of different Malaise trap types. *Insect Conservation and Diversity*

Projektdesign

- 6 Versuchsflächen: zwei Habitattypen (Wald/ Offenland) und drei Regionen (Steigerwald, Spessart, Hunsrück)
- 5 verschiedene Fallen pro Fläche, aufgestellt in Reihe
- Fallen Nord-Süd ausgerichtet; 5m Abstand zwischen Fallen
- Position der Fallen pro Region unterschiedlich; einmalige Rotation der Fallen nach Hälfte der Leerungen
- Fangzeitraum von April bis Ende September 2020; Leerung alle zwei Wochen -> 13 Leerungen

Fallentypen

Townes - Design

Krefeld weiß

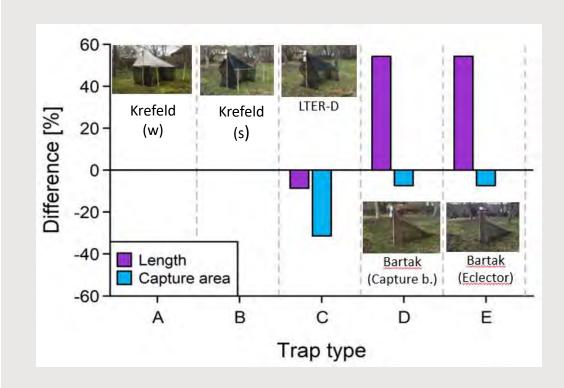
Krefeld schwarz

LTER-Modell

Bartak - Design

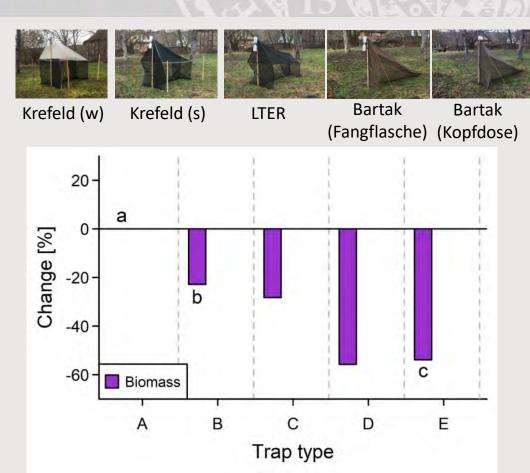
Bartak mit Kopfdose

Bartak mit Fangflasche



Johannes Uhler

Fallentypen

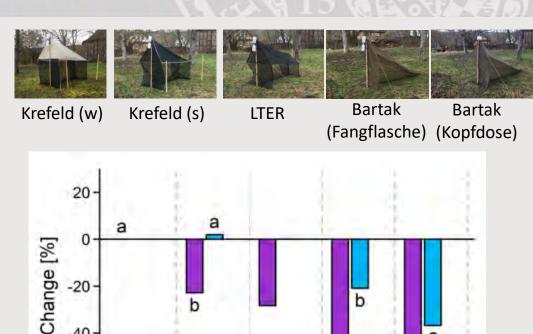

- ➤ Krefelder Model [A,B] größte Fangfläche, vergleichbar mit Bartfakfallen [D,E]
 - ➤ Bartak-Fallen [D,E] zwar nieder als [A,B], dafür länger
- ➤ Fangfläche der LTER-Falle [C] kleiner (-31%)

Ergebnisse

Biomasse:

- ➤ Größte gefangene Biomasse: Krefeld (weiß) [A]
- Townes-Fallen: Krefeld (schwarz) [B] -23% Biomasse, LTER [C] 28%
- ➤ Bartak-Fallen: Bartak [D] -56% , Bartak [E] -54%

Partial effects of trap type on insect biomass. Results extracted from a generalized additive model. Values are displayed in comparison to trap type A. Significance was tested by multiple post-hoc comparisons. Different letters indicate significant differences (p<0.05) between categories; only the first significant entry for a predictor is shown.



Ergebnisse

Biomass
BINs

Trap type

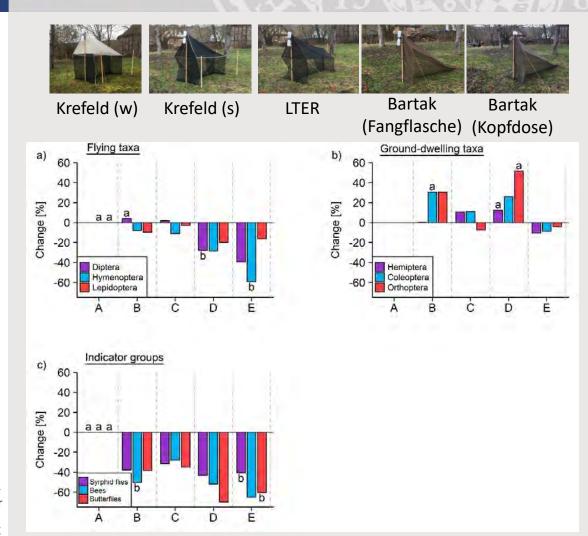
Biomasse:

- > Größte gefangene Biomasse: Krefeld (weiß) [A]
- ➤ Townes-Fallen: Krefeld (schwarz) [B] -23% Biomasse, LTER [C] 28%
- ➤ Bartak-Fallen: Bartak [D] -56%, Bartak [E] -54%

BIN-Richness:

- Vergleichbar für Townes-Fallen [A], [B] und [C]
- ➤ Deutlich geringer bei Bartak mit Kopfdose [D] -21% und Bartak mit Fangflasche [E] (-37%)

Partial effects of trap type on insect biomass. Results extracted from a generalized additive model. Values are displayed in comparison to trap type A. Significance was tested by multiple post-hoc comparisons. Different letters indicate significant differences (p<0.05) between categories; only the first significant entry for a predictor is shown.



Ergebnisse

BIN-Richness der mobilen/ flugaktiven Gruppen:

Am größten für Townes-Fallen [A, B und C]; deutlich niedriger bei den Bartak-Fallen [D, E]

Bin-Richness der boden-/ vegetationsgebundenen Gruppen:

➤ Vergleichbar für [A], [C], [E], deutlich höher für Fallen [D] und [B]

BIN-Richness der Indikator Gruppen:

Am größten für Falle [A]; deutlich niedriger für alle anderen Fallentypen

Johannes Uhler LTER-D-Tagung 16.03.2022

Zusammenfassung

Krefeld (w)

Krefeld (s)

LTER

Bartak

Bartak (Fangflasche) (Kopfdose)

- Malaisefallen im Townes Design haben eine höhere Fangleistung als Bartak-Fallen; sowohl Biomasse als auch Artenzahl
- Fallenform wichtiger als Größe der Fangfläche
 - > trotz vergleichbarer Fangfläche fangen Bartak-Fallen deutlich weniger Insekten
 - Bartak-Falle länger und niedriger, Großteil der Fangfläche tiefer über dem Boden
 - kleinere Anflugschneise für Fluginsekten
- Townes-Falle mit weißem Dach fängt deutlich mehr Bestäuber ->
 - Phototropische Reaktion oder Ködereffekt?
- Eclector Flasche (Bartak) trocknet deutlich schneller aus
 - besonders problematisch für Metabarcoding

Vielen Dank

- Projektpartner:
 - Peter Haase & Beatrice Kulawig (Senckenberg Institut)
 - Stefan Stoll, Lara Hofmann & Wolfram Remmers (Umweltcampus Birkenfeld)
- Jürgen Schmidl (bioform) für die Bereitstellung der Malaisefallen

