

MonViA -

Monitoring der biologischen Vielfalt in Agrarlandschaften

Petra Dieker¹, Stefan Erasmi¹, Alexander Gocht¹, Marcel Schwieder¹, Heike Gerighausen², Markus Möller², Zvonimir Perić², Tanja Riedel², Ricarda Lodenkemper², Burkhard Golla², Annett Gummert², Sandra Krengel-Horney², Niels Lettow², Jörn Lehmhus², Christoph Hoffmann², Christoph Tebbe¹, Sainur Samad¹, Haotian Wang¹, Jingjing Yang¹, Sebastian Klimek¹, Jens Dauber¹ Thünen-Institut¹, Julius Kühn-Institut²

Unser Auftrag

Entwicklung eines bundesweiten Biodiversitätsmonitorings in Agrarlandschaften, das Veränderungen der biologischen Vielfalt erfasst (komplementär zu bestehenden Ansätzen, schnittstelle zum Wald), eine Bewertung agrarumweltpolitischer Maßnahmen ermöglicht und das bestehende Indikatorenset um relevante Indikatoren für Agrarlandschaften ergänzt.

Seite 1 Petra Dieker 17.03.2022 LTER-D-Tagung

- Individuell gestaltete Module
- Modulspezifische Indikatoren

Kooperationsprojekte

Agrarvögel

- Integrierte modellgestützte Datenanalyse externer und interner Monitoring- und Zeitreihendaten
- Tagfalter
- Nutzung heterogener Datenquellen zur Trendanalyse

Einheitliche Struktur,
Datenhaltung,
Berichtswesen, etc.

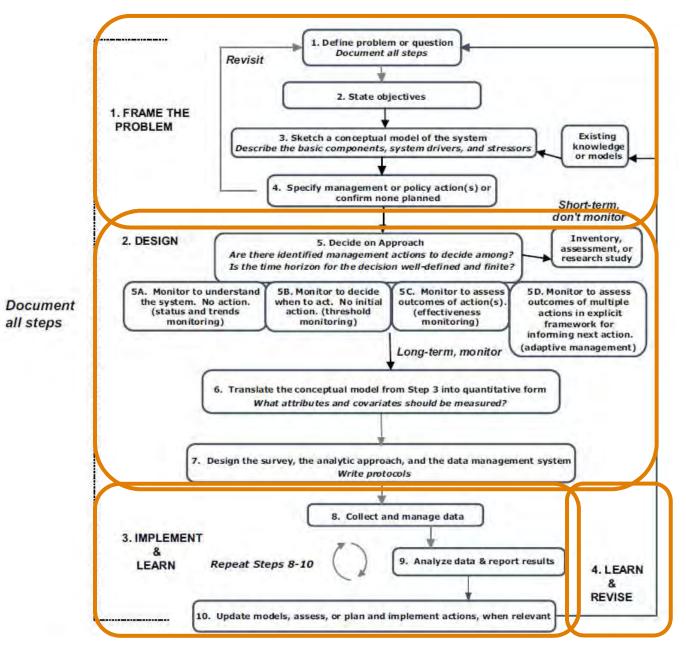
Kooperationsprojekte

Integratives Monitoring

Agrarvögel

- Integrierte modellgestützte Datenanalyse externer und interner Monitoring- und Zeitreihendaten
- Tagfalter
- Nutzung heterogener Datenquellen zur Trendanalyse

Konzeptioneller Ansatz in MonViA


Environ Monit Assess (2016) 188: 399 DOI 10.1007/s10661-016-5397-x

A road map for designing and implementing a biological monitoring program

Joel H. Reynolds • Melinda G. Knutson • Ken B. Newman • Emily D. Silverman • William L. Thompson

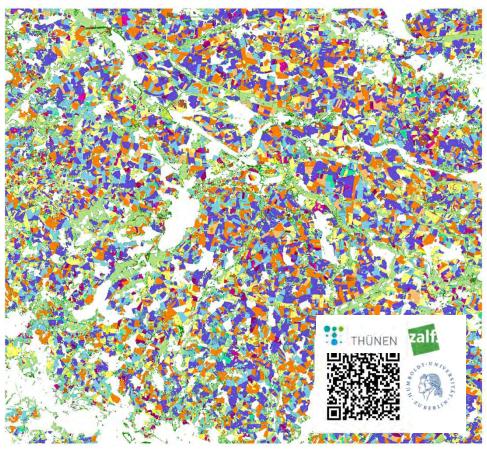
Pilotphase I (2019-2021)

Pilotphase II (2022-2023)

[Reynolds et al. 2016; Environ Monit Assess 188:399]

Lebensraumvielfalt

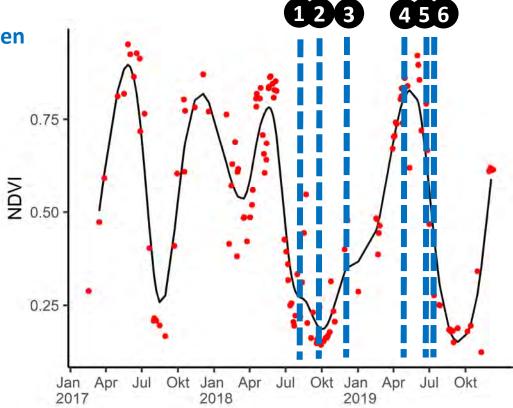
Landnutzungs-Monitoring


Wie ist der Zustand der landwirtschaftlichen Nutzung in der Agrarlandschaft Deutschlands und wie verändert sich die Landnutzung mittel- und langfristig auf nationaler Ebene und Ebene der Agrarräume?

Seite 6 Petra Dieker 17.03.2022 LTER-D-Tagung

Abbilden der Status-Änderungen in der Landnutzung

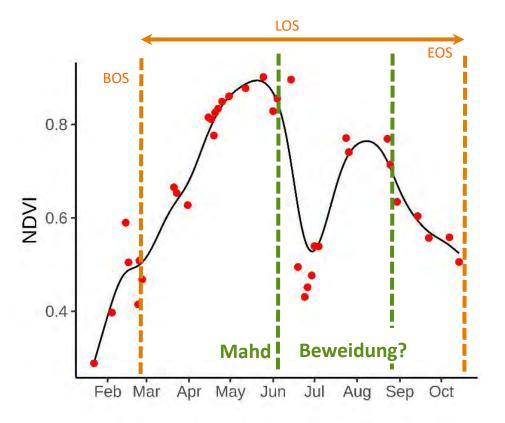
- Abbilden flächenscharfer und flächendeckender Landnutzung
- Aufzeigen von
 Landnutzungsänderungen
 sowohl auf nationaler Ebene
 als auch auf Ebene einzelner
 Agrarräume
- Landnutzung in Beziehung zu agrarpolitischen Änderungen und klimatischen
 Veränderungen setzen



Abfolge der Hauptanbaufrucht in den Jahren 2017, 2018 und 2019 [Basis von Sentinel-1/-2 Daten]

Erfassen saisonaler Veränderungen – am Beispiel einer Ackerfläche

Abbilden von **saisonalen Landnutzungsmuster** in
Beziehung zu z.B.
phänologischen Zeitreihen



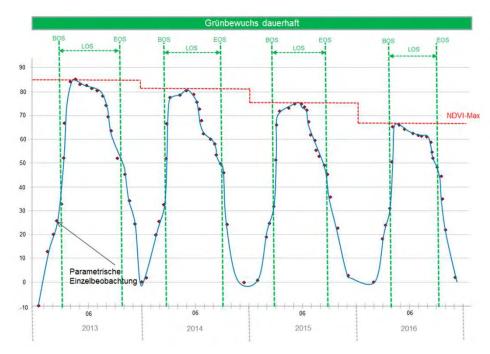
Seite 8 Petra Dieker 17.03.2022 LTER-D-Tagung

Erfassen saisonaler Veränderungen - am Beispiel einer Dauergrünlandfläche

Rote Punkte = Beobachtungen von S-2 (wolkenfrei); schwarze Linie = interpolierter NDVI-Verlauf; BOS = Vegetationsbeginn; LOS = Länge der Saison; EOS = Ende der Saison

- Erfassen der Vegetationslänge
- Bestimmen von Mahdzeitpunkten
- Herausforderungen Detektieren von Weiden/Mähweiden

Nutzungsintensität Mahd-Häufigkeiten/-Schnittpunkte



Erfassen mittel- bis langfristiger Veränderungen

- Richtung Trendanalysen

Die roten Punkte stellen jeweils eine konkrete Beobachtung (= wolkenfreie Satellitenbildszene) zu einem Zeitpunkt dar. Y-Achse: NDVI; Vegetationsbeginn: BOS; Vegetationsdauer: LOS, Vegetationsende: EOS

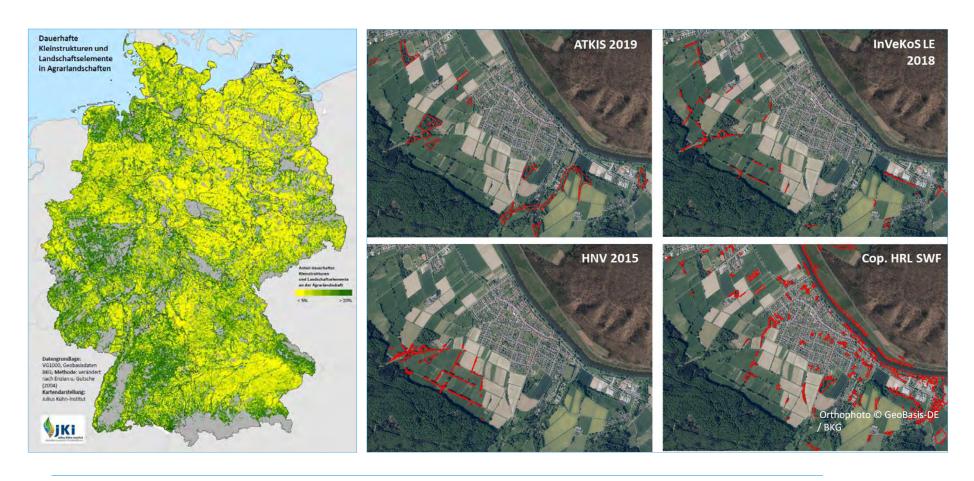
Quelle: Umweltbundesamt GmbH, Wien

Simulierte Zeitreihe des NDVI für einen Trockenrasenstandort – Veränderungstyp "Kontinuierliche Veränderung"

- Erfassen von Veränderungen über Zeit hinweg
- Agrarraumspezifische Aussagen in Zusammenhang zu z.B. agrarpolitischen Rahmenbedingungen und klimatischen Veränderungen aufzeigen

Lebensraumvielfalt

- Monitoring von Kleinstrukturen und Landschaftselementen -


Wie ist der Zustand (Quantität und Qualität) und die mittel- und langfristige Entwicklung von Kleinstrukturen und Landschaftselementen in der Agrarlandschaft?

Seite 11 Petra Dieker 17.03.2022 LTER-D-Tagung

Status quo Kleinstrukturen und Landschaftselemente – verfügbare Datensätze

Kleinstrukturen und Landschaftselemente flächendeckend erfassen

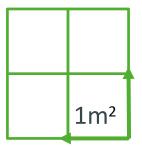
- Workflow und Indikatoren

Anteil Strukturen

Nachbarschaft, Form- und Strukturparameter

Dauerhafte Strukturen

[außerhalb landwirtschaftlich genutzter Flächen]



Kleinstrukturen und Landschaftselemente flächendeckend erfassen – räumliche und zeitliche Auflösung

Räumliche Auflösung

Testlauf Brandenburg 2020/21

Bundesweite Umsetzung 2022/23

Dauerhafte Strukturen

[außerhalb landwirtschaftlich genutzter Flächen]

Dynamische Strukturen

[auf landwirtschaftlich genutzten Flächen]

Kleinstrukturen und Landschaftselemente flächendeckend erfassen – räumliche und zeitliche Auflösung

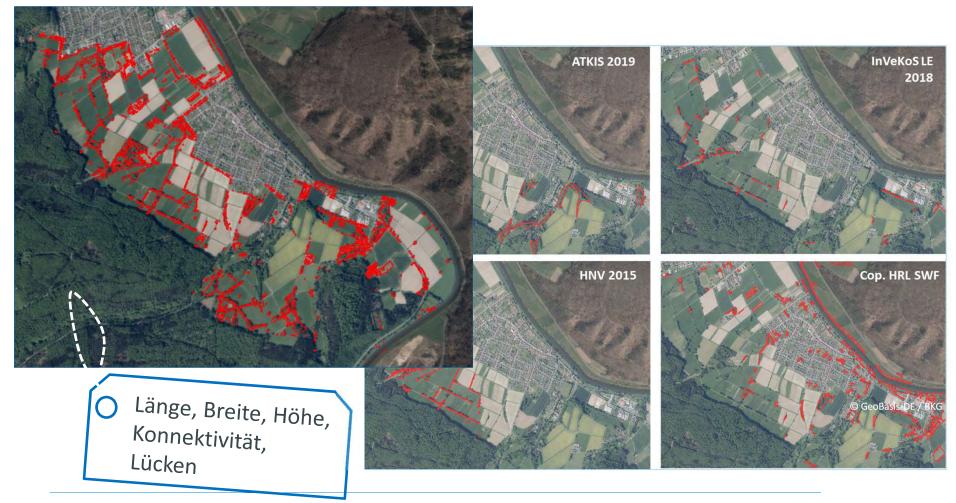
Zeitliche Auflösung

5-10 Jahren für aufragende Vegetation

1 Jahr für dynamische Strukturen

Dauerhafte Strukturen

[außerhalb landwirtschaftlich genutzter Flächen]


Dynamische Strukturen

[auf landwirtschaftlich genutzten Flächen]

Kleinstrukturen und Landschaftselemente flächendeckend erfassen

– DOM + LiDAR-Daten = Informationsgewinn

Seite 16 17.03.2022

Petra Dieker LTER-D-Tagung

Biologische Vielfalt landwirtschaftlich genutzter Böden

- Monitoring des Bodenmikrobioms -

Eignen sich Nukleinsäure-basierte Methoden zur Charakterisierung mikrobieller Gemeinschaften in landwirtschaftlichen Böden, um den Bodenzustand und seine Veränderungen zu beurteilen?

Seite 17 Petra Dieker 17.03.2022 LTER-D-Tagung

Eignen sich Nukleinsäure-basierte Methoden für ein Monitoring in landwirtschaftlich genutzten Böden?

Untersuchung der Abundanz und Vielfalt der Bodenmikroorganismen [Bakterien, Archaeen, Pilze und Protisten] mit PCR-Verfahren, der strukturellen und funktionellen Biodiversität und der Variabilität der mikrobiellen Gemeinschaften auf Ackerflächen im jahreszeitlichen Verlauf.

Seite 18 17.03.2022

Petra Dieker LTER-D-Tagung

Monitoring des Bodenmikrobioms

 Anknüpfungsmöglichkeiten an die Bodenzustandserhebung Landwirtschaft?

Bodenzustandserhebung Landwirtschaft (BZE-LW)

- Bundesweite einheitliche Inventur landwirtschaftlich genutzter Böden
- Erfassen der Vorräte organischen Kohlenstoffs
- Bewertung der Beeinflussung durch Standortund Nutzungsfaktoren
- Treibhausgas-Emissionsberichterstattung

Machbarkeitsstudie

Können die Proben der BZE-LW genutzt werden? Welchen Einfluss haben die

- Probenentnahme,
- Lagerung und
- molekularen Verfahren auf die mikrobiologischen Ergebnisse?

Leistungsfähigkeit von Agrarökosystemen

Monitoring tierischer Schaderreger –

Schaffen einer Datenbasis zum **Zustand und Entwicklung der Schaderreger-Diversität** im Ackerbau sowie **Identifizieren und Bewerten relevanter Einflussgrößen**[Landnutzung, Bewirtschaftungsintensität, Landschaft] auf die Schaderreger-Diversität

Seite 20 Petra Dieker 17.03.2022 LTER-D-Tagung

Leistungsfähigkeit von Agrarökosystemen

- Monitoring tierischer Schaderreger -

Besonderheit des Monitorings:

Schaderreger sind Teil von Agrarökosystemen, Nahrungsnetzen, aber auf landwirtschaftlichen Flächen unerwünscht

Seite 21 Petra Dieker 17.03.2022 LTER-D-Tagung

Schaderregerüberwachung der Bundesländer

- wichtigste Datenquelle für das MonViA-Schaderreger-Monitoring

Kulturen mit regelmäßiger Überwachung tierischer Schaderreger [Insekten, ohne Schnecken, Mäuse] pro Bundesland und Anbausaison (2019/20)

Bundesland (BL)	BL 1	BL 2	BL 3	BL 4	BL 5	BL 6	BL 7	BL 8	BL 9	BL 10	BL 11	BL 12	n BL
Winterraps	х	х	x	х	х	х	х	х	×	х	X	х	12
Winterweizen	х	х	x	x	х	х	х	х	X	х	X	х	12
Wintergerste	×	х	х	Х	х	х	х	Х	X	x	х	х	12
Winterroggen		х	х		х		х	х	х	х		х	8
Mais	X	X	X	Х	Х	х	х	X	X	х	X	х	12
Zuckerrübe	х	х	х	х	х	х	х	х	х	х		х	11
Kartoffel		х	x	х	х	х	х	х	X	х		X	10
Futtererbse	×	X	X	x	х	х	х	х	X	х		х	11
Ackerbohne					х	Х						Х	3
Triticale		х								X		х	3
Sommergerste									x			х	2
Sonnenblume		х											1
Sojabohne				х									1
n Kulturen SEÜ	6	10	8	8	9	8	8	8	9	9	4	11	

Zusammenarbeit mit Pflanzenschutzdiensten der Bundesländer

Repräsentative Praxisflächen in den wichtigsten Kulturen des Ackerbaus

Kontinuierliche Erfassung und Dokumentation des Vorkommens von Schaderregern einer Kultur [Befallshäufigkeiten und Befallsstärke]

Ableiten des Zustandindikators Schaderregerdiversität im Ackerbau

Seite 23 Petra Dieker 17.03.2022 LTER-D-Tagung

Alternative Datenquellen erproben

- Machbarkeitsstudien -

Auswertung von Gelbschalenfängen über DNA-Metabarcodingansätze zur Abschätzung der Schaderreger-Diversität in Winterrapsfelder

Prüfen eines Citizen Science-Ansatzes: Können Landwirt:innen Schädlings- und Nützlingsarten sicher im Zuckerrüberanbau erkennen?

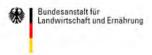
Seite 24 17.03.2022

Petra Dieker LTER-D-Tagung

MonViA in a nutshell

- Breit angelegtes
 Monitoringkonzept
- Methodenvielfalt
- Netzwerkcharakter
- EvidenzbasiertePolitikberatung

Kooperationsprojekte



Agrarvögel

- Integrierte modellgestützte Datenanalyse externer und interner Monitoring- und Zeitreihendaten
- Nutzung heterogener Datenquellen zur Trendanalyse

Vielen Dank für Ihre Aufmerksamkeit.

Fragen und Anregungen an

petra.dieker@thuenen.de

Thünen-Institut für Biodiversität

Seite 26 17.03.2022

Petra Dieker LTER-D-Tagung

