Synthetic Microbial Communities for the Production of High-Value Compounds

Andrea Stallvik, Idun Burgos, Daniel Machado - Norwegian University of Science and Technology

Motivation

Microbial communities have gained attention as production platforms for high-value compounds due to certain advantages over traditional single-strain methods, such as increased substrate utilisation and division of labour strategies^[6]. Community simulation methods can be used to screen for optimal community compositions *in silico* and guide selection of community members. This master project, which is part of the Cell4Chem project, aims to **evaluate the predictive abilities of current methods for genome-scale metabolic modelling of synthetic communities** by comparing simulated results

Literature survey results

A literature survey of 112 case studies from 2000 to 2023 where microbial communities have been used to produce a target compound showed:

with results from real case-studies. The goal is to identify and understand the current limitations of these methods.

Cell4Chem

Cell4Chem is a collaborative project between several European institutions. The project goal is to design and build a microbial consortium for the production of industrially valuable **medium-chain carboxylates** (MCC) from lignocellulosic biomass. The main stages of the project consist of:

- engineering metabolic specialists for cellulose degradation and lactate production
- combining engineered strains with WT strains into a consortium for MCC production
- process engineering to steer fermentation towards MCC formation

In order to guide the design of the synthetic consortium for optimal MCC production, genome-scale metabolic models will be used to screen for consortia compositions with the predicted highest theoretical MCC yields.

- There is an increased interest in **microbial communities as production platforms** for industrially relevant products.
- **Glucose** and **lignocellulose** are the most common substrates.
- *E. coli* and *Clostridium* bacteria are the most common community members.
- There is high diversity in products, ranging from simple alcohols (butanol, ethanol) to complex plant compounds.
- For undefined communities the majority of studies are concerned

Why use consortia?

Community platforms have shown **improved production yields** over monoculture methods, and can make **more complex pathways** feasible.

with hydrogen gas production from waste products.

Lignocellulose is an **abundant**, **renewable**, and **inexpensive** resource, and is suggested as an alternative to high-cost refined sugars and edible biomass^[1]. Several community studies have therefore been motivated by engineering communities to utilise lignocellulose as substrate in combination with the production of high-value compounds.^[1, 2]

Master project description

Goal: identify and understand the current main limitations for designing synthetic microbial consortia using genome-scale metabolic models.

Literature search of successful cases where microbial communities have been used in production of industrially relevant compounds

Build or retrieve genome-scale metabolic models for strains, and

Culture stability^[3] Pathway balancing^[4] Improving thermodynamic driving force^[5]

Improvement of production yield

attempt to reproduce experimental results from case studies using different community simulation methods

Compare simulated and experimental results and discuss limitations and possible improvements to modelling frameworks

[1] Cai, M., Liu, J., Song, X. et al. (2022). De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial coculture strategy. *Microb Cell Fact 21*(81).

[2] Shahab, R. L. et al. (2020). A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose. *Science 369*(6507)

[3] Weiss, T. L., Young, E. J., Ducat, D. C. (2017) A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production, *Metabolic Engineering* 44:236-245

[4] Li, Z., Wang, X., and Zhang, H. (2019). Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. *Metabolic Engineering*, 54:1–11.

[5] Ren, Z., Ward, T. E., Regan, J. M. (2007) Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture, Environmental Science & Technology 41(13):4781-4786

[6] Ibrahim, M., Raajaraam, L., Raman, K. (2021). Modelling microbial communities: Harnessing consortia for biotechnological applications, *Computational and Structural Biotechnology Journal*, 19:3892-3907