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Abstract: Effective monitoring and management of inland waterbodies depend on reliable assessments
of water quality through remote sensing technologies. Match-up analysis plays a significant role in
investigating the comparability between in situ and remote sensing data of physical and biogeochemical
variables. By exploring different spatial aggregations and temporal windows, we aimed to identify
which configurations are most effective and which are less effective for the assessment of remotely
sensed water quality data within the context of governmental monitoring programs. Therefore, in
this study, remote sensing data products, including the variables of Secchi depth, chlorophyll-a, and
turbidity, derived from the Copernicus satellites Sentinel-2 and Sentinel-3, were compared with in situ
laboratory data from >100 waterbodies (lakes and reservoirs) in Germany, covering a period of 5 years
(2016–2020). Processing was carried out using two different processing schemes, CyanoAlert from
Brockmann Consult GmbH and eoapp AQUA from EOMAP GmbH & Co. KG, in order to analyze the
influence of different processors on the results. To investigate appropriate spatial aggregations and time
windows for validation (the match-up approach), we performed a statistical comparison of different
spatial aggregations (1 pixel; 3 × 3, 5 × 5, and 15 × 15 macropixels; and averaging over the whole
waterbody) and time windows (same day, ±1 day, and ±5 days). The results show that waterbody-wide
values achieved similar accuracies and biases compared with the macropixel variants, despite the large
differences in spatial aggregation and spatial variability. An expansion of the temporal window to up
to ±5 days did not impair the agreement between the in situ and remote sensing data for most target
variables and sensor–processor combinations, while resulting in a marked rise in the number of matches.

Keywords: validation; match-up; water quality; inland waters; satellite data

1. Introduction

Inland waterbodies provide essential services for various human uses, particularly
water supply and recreation, as well as habitat and ecosystem-regulating services, including
nutrient and carbon cycling, or effects on the local climate [1–5]. However, inland waterbod-
ies are increasingly threatened by anthropogenic exploitation and multiple environmental
pressures such as organic and inorganic pollution, eutrophication, climate change effects,
and toxic cyanobacteria blooms [2,6]. Therefore, the monitoring of inland waterbodies,
with a special focus on water quality and their ecosystem status, is of global concern and
a major prerequisite to better understand the effects of environmental changes on inland
waters and to identify drivers of future change [7].

Despite the increasing need for more frequent and comprehensive monitoring arising,
for example, from legislation such as the European Union’s Water Framework Directive [8],
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only a small fraction of inland waterbodies are part of in situ monitoring networks [7,9].
Although the Water Framework Directive was a major breakthrough in the monitoring of
surface water, its implementation is limited by logistic and economic factors [10,11]. For
example, samplings are not realized every year and usually occur only monthly during
the growing season. The data may allow an assessment of the status of the ecosystem
but do not provide deeper insights into the underlying dynamics and stressor–response
relationships. It is therefore difficult to identify appropriate sustainable management
strategies to improve ecological and chemical status [12,13].

In support of classical monitoring of inland water quality, remote sensing can be a
valuable tool to provide water quality variables at a relatively low cost, at spatial scales
from local to global, and at an improved temporal resolution through relatively frequent
temporal revisits [10,14]. In this way, remote sensing can assist in identifying long-term
trends and effects of climate change, point- and non-point source contaminants [11], or the
emergence of extreme events such as algal blooms [15,16]. For the latter, near real-time
and frequent information can be provided on algal dynamics, enabling early detection of
phytoplankton blooms, and early warnings or tailored management reactions [11,16]. This
could be relevant and helpful for urban waterbodies or bathing sites where algal blooms
may impose health risks, and may strengthen the conversion of monitoring algal blooms
according to regulations such as the European Union’s Bathing Water Directive [17] and
its locally derived decrees. Satellite-based remote sensing can also provide data on the
ecological classification and assessment of trophic status, e.g., in the form of the product
types applied, such as eutrophication indices [18–22].

However, the application of satellite-based remote sensing is limited in the number
of measurable variables, the frequency of satellite overpasses, and the spatial resolution of
the sensors on board, and mostly reflect the conditions just at the water’s surface (i.e., the
visible water column, depending on the pixel size and penetration depth of light) [7,10,23,24].
Technically, the optical complexity of inland waters, referring to the intricate and fluctuating
interactions of light with the varied and dynamic composition of optically active constituents
in the water, still presents a challenge [7,16,24]. In addition, atmospheric correction, adjacency
effects, bottom reflectance effects, and the sensor’s design are challenging factors [7,9,16,24,25].
Besides these, weather conditions such as clouds, rainfall, ice coverage, or waves during storm
events may interfere with satellite-based remote sensing for certain applications [11,14,26].

On the basis of the information presented, it is evident that remote sensing could
enhance water quality information through increased spatial and temporal coverage, cost-
effectiveness, and relatively quick availability of data [10,14,26], thereby complementing in
situ data. The synergies between in situ and remote sensing have not been fully realized
due to challenges such as limited temporal capacities and a lack of support from the organi-
zational management within water administrations, concerns about products’ accuracy and
data continuity, and the absence of legal frameworks explicitly incorporating or permitting
remote sensing-derived observations [27,28].

The integration of processed remote sensing products by authorities and water man-
agement authorities requires a rigorous comparison of satellite-based and in situ obser-
vations, and an analysis and interpretation of the quality, accuracy, and uncertainties
(validation [29]). Quantifying the reliability of remote sensing products and accounting
for all components of uncertainty, however, is a challenging task due to the challenging
process associated with every satellite-derived variable from sensor-level signals to mass
concentrations [14,29]. Additional uncertainties are introduced through the in situ dataset
as well as the spatiotemporal sampling mismatch between the satellite data and the in situ
data [29,30]. Even though in situ measurements are often referred to as “ground truth”
measurements, they also come with measurement uncertainties themselves, also caused by
the different methods of sampling and analysis applied [31].

While the aim of validation is quite clear, the implementation often involves various steps
that are subject to assumptions and potentially require the user’s decisions, which affect the
validation of the results [29]. One aspect of this is the choice of the optimal spatial and temporal
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scales for in situ and remote sensing data. This requires a decision on which mismatch in
scales can be accepted [23,25,29,32]. As a general rule, match-ups between in situ and remote
sensing data should be as close to each other as possible in time and space (horizontal, vertical,
temporal) so they represent the same or at least comparable conditions [29]. However, to allow
for robust statistical analysis, a sufficient number of match-ups is also needed. Therefore,
a choice has to strike a balance between minimizing the spatiotemporal mismatching and
producing a large number of match-ups in order to have a representative sampling size [25,29].
Moreover, in situ monitoring is rarely aligned with satellites’ overpasses and a full match down
to minutes of both monitoring activities in space and time is the exception. Even worse, in the
case that both take place on the same day and thereby may appear to be temporally aligned,
this can be misleading in cases when the observed water parcels may differ substantially or
one sample takes place in the morning and the other in the evening [33].

In order to address these complications in the validation of remote sensing products for
water quality, we designed this study. We collected in situ observations of 112 inland water-
bodies from different monitoring agencies in Germany from 2016 to 2020. The waterbodies
varied in their morphometry and trophic state, resulting in 37.930 observations for all three
variables prior to preprocessing. We generated the corresponding satellite-based products
from the Copernicus satellites Sentinel-2 MSI and Sentinel-3 OLCI, and used two different
processing schemes (CyanoAlert® from Brockmann Consult Ltd. in Hamburg, Germany
and eoapp® AQUA from EOMAP GmbH & Co. KG in Seefeld, Germany). Subsequently, we
compared the remote sensing data for different levels of spatial aggregation (pixel windows
or “macropixels” of 1 × 1, 3 × 3, 5 × 5, and 15 × 15 as well as at the scale of the whole
waterbody) (see Figure 1) and for temporal windows from the same day to up to ±5 days
for different variables of water quality. We intentionally focused on processing workflows
that are commercially available because applications in governmental or societal contexts
are usually carried out in a consultancy setting. We quantified the deviations between
satellite and in situ observations by using three different error measures. Thus, the research
questions of this study were to find (i) what spatial aggregations of remote sensing data
are appropriate for validation, (ii) which time window is adequate when comparing re-
mote sensing and in situ data, and (iii) whether there are systematic differences in these
characteristics depending on the variable of water quality, the satellite, or the processor.
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2. Materials and Methods
2.1. In Situ Data Observations of More than 100 Lakes and Reservoirs

Laboratory in situ measurements of three target variables of water quality, namely
Secchi depth, chlorophyll-a, and turbidity, for 112 waterbodies (218 measurement stations)
were collected from various water authorities of 13 federal states and research institutes
in Germany (see Figure 1). The measurements cover 5 years from 2016 to 2020. Since the
monitoring of water quality and the effective implementation of water protection policies
in Germany is the responsibility of the federal states, the number of in situ samples and
the frequency of sampling differs among waterbodies, federal states, and target variables.
All available data were collected for the purpose of assessing water quality to meet the
objectives of existing policies at the EU or federal level, and ultimately to ensure the good
ecological status of the waterbodies. It should be noted that the in situ data were collected
across federal states according to different methods and protocols. In the following section,
we describe the steps of homogenizing the data we undertook to mitigate the differences in
the protocols.

Several steps were taken to optimally prepare the in situ data for comparison with
satellite data. The maximum depth of the in situ data was restricted, measurement sites
located in shallow water zones as well as probe data were excluded, and extreme values
were removed from the dataset. These steps are described in detail in the following section.

Remote sensing data capture events only within the visible water column. Therefore,
to improve vertical comparability between in situ and remote sensing data, discrete in situ
measurements with a sampling depth of more than 2 m from the water’s surface were
removed from the dataset for chlorophyll-a and turbidity. In case of integral measurements
(taken between 0 m and 25 m max.), all values were retained and arithmetically averaged
per time point. Only 10% had a maximum sampling depth of more than 10 m so that the
potential contribution from deep chlorophyll or maxima of turbidity, which can hardly be
detected by satellites, remained small.

In addition, optically shallow waters, where the penetration depth of light exceeds
the physical depth of the water column, are prone to detection errors arising from the
contributions of bottom reflectance. Therefore, in this study, measurement points located in
shallow water zones were removed from the dataset by visually inspecting high-resolution
satellite images together with the measurement points.

Furthermore, probe data with nearly daily measurements were not integrated into
the analysis to balance the number of matches across the waterbodies. Finally, extreme
values in both the in situ and satellite-based water quality data were removed if they
were outside the data ranges as given in Table A3. The resulting in situ dataset con-
sisted of 7286 data points in total and encompassed both discrete (n = 5437) and integral
(n = 1849) measurements with varying numbers of observations per site and parameter
(Tables 1 and S1).

Table 1. Minimum, maximum, and mean number of in situ measurements per waterbody and
variables, and the total number of measurements (2016–2020).

In Situ Data Chlorophyll-A Turbidity Secchi Depth

Unit µg/L FNU m

Minimum 2 2 2

Maximum 173 241 231

Average 30 89 33

Total n 2956 1151 3179
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2.2. Satellite-Based Detection of Water Quality with Sentinel-2 MSI and -3 OLCI

The remote sensing data originated from optical sensors on board the Copernicus
satellites Sentinel-2 and Sentinel-3 over the timespan from 2016 to 2020. Sentinel-2 satellites
(A and B), launched in 2015 and 2017, with multispectral instruments (MSI) on board, offer
high-resolution imagery at spatial resolutions of 10 m, 20 m, and 60 m, depending on the
spectral band [34,35]. The MSI measure 13 spectral bands and provide data every 2–5 days
depending on the latitude [34,35]. Likewise, the Sentinel-3 mission consists of two satellites
(A and B), that were launched in 2016 and 2017, respectively [36]. Sentinel-3 satellites carry
ocean and land color instruments (OLCI) on board [36,37]. The OLCI measure 21 spectral
bands at a spatial resolution of 300 m and provide temporal coverage every 2 days at the
equator and up to twice a day in midlatitudes [36,37].

For the purpose of quantifying the selected variables of water quality (chlorophyll,
turbidity, Secchi depth), the radiance leaving the water, i.e., the spectrally resolved light,
needed to be determined on the basis of the signal detected by the sensor [14,38]. For this,
the influence of the atmosphere and the reflection of light at the air–water interface had to
be determined and subtracted from the top-of-atmosphere radiance to derive estimates of
the radiance leaving the water [38–41]. The spectrally resolved remotely sensed signal was
then used to retrieve the variables of water quality [40,42].

In this study, two commercially available but scientifically documented operational pro-
cessing schemes, CyanoAlert® (Brockmann Consult GmbH) and eoapp® AQUA (EOMAP
GmbH & Co. KG), were applied. These are both based on analytical expressions, incor-
porating the radiative transfer equation to retrieve the concentrations of optically active
constituents of water from the radiance leaving the water, which was derived from top-of-
atmosphere measurements of various optical satellite-based data sources. Both processing
schemes are globally applicable for almost any kind of water and without a priori knowl-
edge of the particular waterbody. The core element of the processing chain applied within
CyanoAlert® is C2RCC (Case 2 Regional CoastColour), which is composed of a set of
neural nets (NNs) to derive the atmospheric and in-water properties. The NNs are trained
by a set of approximately 10 million simulated reflectance spectra representing a wide
range of in-water and atmospheric conditions [43]. Within the processing chain, C2RCC is
complemented by cloud detection (Idepix), MPH (maximum peak height) algorithms for
the detection of chlorophyll-a (only OLCI data), and the Nechad algorithm for determining
the turbidity. Further information on this processing scheme was presented by Brock-
mann et al. [43] (C2RCC), Matthews et al. [18,44] (MPH), Wevers et al. [45,46] (Idepix), and
Nechad et al. [47]. The various processing elements of this processing scheme are referred
to as CyanoAlert. In comparison, the processor underlying eoapp® AQUA is called MIP
(modular inversion and processing system). MIP is purely physics-based and consists of a
sensor-independent suite of algorithms and databases to derive atmospheric and in-water
properties [28,48]. The model encompasses all the relevant processing steps and necessary
corrections such as detection of the surface type (land, water, or cloud), correction of adja-
cency and sun glint, and atmospheric correction. Retrieval of the variables of water quality
was performed by modeling the influence of their respective optically active components
on the measured radiance [28,48]. Details of this processing scheme were documented by
Heege et al. [48] (MIP). The processor is referred to as EOMAP-MIP. Note that in accordance
with company recommendations, the Sentinel-2 MSI data processed by CyanoAlert have
a resolution of 60 m, whereas the Sentinel-2 MSI data processed by EOMAP-MIP have a
resolution of 10 m.

Due to the lower spatial resolution of Sentinel-3 OLCI (300 m pixels versus 10 or 60 m
pixels in Sentinel-2 MSI), only a selection of 38 waterbodies were suited for OLCI images,
as prescribed by area and shape of the waterbody. It was assumed that a spatial window of
5 × 5 water surface pixels, i.e., about 1.5 × 1.5 km in dimension, should be present inside a
waterbody to be suitable for evaluation based on OLCI. For selection of a waterbody, the
point furthest away from the entire shoreline was calculated and buffered with a radius
of 750 m, based on which, a bounding box with an edge length of 1500 m was calculated.
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The bounding box, corresponding to a macropixel of 5 × 5 grid cells, was intersected with
the respective shape of the waterbody. All waterbodies whose shoreline shapes intersected
with the bounding box were considered to be unsuitable.

Each processing scheme incorporates algorithms to mask out clouds, cloud shad-
ows, and haze, and to handle adjacency effects or sun glint. The data processed by
CyanoAlert came with a quality indicator (quality band) to differentiate between valid
(quality indicator == 1) and invalid (quality indicator == 0) pixels. The quality indicator
is composed of a combination of quality flags generated by the C2RCC processor raised
for invalid processing conditions and by the Idepix pixel classification scheme identifying
disturbed water pixels. Data processed by EOMAP-MIP contained a quality score ranging
from 0 to 100 (low to high quality), in which case, pixels with quality score values smaller
than 50 were removed from the data. This score was calculated from the influences of
atmospheric and surface effects, the angles of the sun and the sensor view, and detectable
concentration limits defined within the processor’s definitions. In addition, pixel outliers
within the macropixel were removed when they were outside the range of mean ±1.5-times
the standard deviation, as suggested by Bailey and Werdell [31]. Only if more than 30% of
pixels within the macropixel or waterbody were valid, the respective scene was evaluated;
otherwise, it was excluded. The remaining valid pixels were spatially aggregated by calcu-
lating the median, 25th percentile, and 75th percentile, as well as the coefficient of variation
(CV; standard deviation/mean). The CV was calculated for characterizing the level of
spatial variability within the different spatial aggregations. As an example, Table 2 shows
an overview of the amount of data extracted for chlorophyll-a and the associated spatial
aggregations. Data on turbidity and Secchi depth were in the same order of magnitude and
are given in the Appendix A (Tables A1 and A2).

Table 2. Overview of the valid remote sensing data for chlorophyll-a, given as the number of
scenes per sensor, processor, and spatial resolution, for all waterbodies over the period considered
(2016–2020).

Chlorophyll-A
S2-MSI S3-OLCI

3 × 3 5 × 5 15 × 15 Waterbody Scale 1 × 1 3 × 3 Waterbody Scale

CyanoAlert 14,639 15,053 13,534 17,403 10,802 11,867 14,508

EOMAP-MIP 15,895 16,004 16,083 19,630 16,990 18,542 20,730

Finally, extreme values in both the in situ and satellite-based water quality data were
removed if they were outside the data ranges as given in Table A3.

2.3. Statistical Analyses and Comparison of In Situ and Satellite-Based Observations

In this study, temporal windows of in situ and remote sensing data from the same day
up to ±5 days were considered. In this process, the optimal temporal match was determined
for each in situ data point, ensuring that each satellite-based data point appeared only once
in the dataset. Note that the time window was expanded for this research, meaning that
the ±5-day window included all matches from the same day to ±5 days. The number of
matches generated per waterbody varied greatly due to difference in both the available
in situ and usable remote sensing data, ranging from 1 to 108 matches per waterbody. In
addition, since the literature on remote sensing of water quality reports a wide range of
temporal matches to be considered near-coincident, ranging from ±3 h to ±10 days [23],
we also formed all possible matches for each in situ data point up to ±10 days. For each
time lag, we calculated the residuals along with the associated statistics (mean, median,
and interquartile range). Note that the in situ data did not have temporal information
specified to the hour.
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In this study, three error metrics were calculated for evaluation of the performance,
namely the mean absolute error of the log-transformed data (MAE) and bias, in line
with [49], as well as the root mean square error (RMSE). The bias quantified systematic
differences between the two datasets, namely systematic over- or underestimation, and
was defined as the difference of the mean values for the in situ and satellite-based values,
and hence was not sensitive to random errors [29,49,50]. The RMSE and the MAE are both
metrics describing the accuracy or the pairwise agreement between matched in situ and
satellite-based observations [49]. The RMSE is frequently used in validation analyses of
remote sensing data but can become strongly influenced by larger deviations [51], in con-
trast to MAE, which is more robust against outliers [49,51]. In addition, our data showed a
logarithmic distribution of error (see Figure A1), and we therefore followed the recommen-
dation of Seegers et al. [49] and calculated the MAE and bias using log-transformed data,
followed up by back-transformation to linear space to facilitate interpretation. RMSE was
calculated using untransformed data, i.e., in the linear space, to facilitate comparability
with other studies and for easier interpretation. For details on the performance metrics for
the assessment of satellite-based data products, see Seegers et al. [49]. The error metrics
were computed using Equations (1)–(3).

MAE = 10̂

(
∑n

i=1
∣∣log10(isatellite)− log10(iinsitu)

∣∣
n

)
(1)

Bias = 10̂

(
∑n

i=1 log10(i satellite
)
− log10(iinsitu)

n

)
(2)

RMSE =

√
∑n

i=1(isatellite − iinsitu)
2

n
(3)

We defined different variants for spatial and temporal matching (Table 3) in order to
identify the performance of satellite-borne data and to derive recommendations for practical
matching. The selection of smaller spatial aggregations was made (1 pixel, 3 × 3 macropixels,
and 5 × 5 macropixels) following the recommendations of EUMETSAT [52], which sug-
gested spatial aggregations of 1 pixel, 3 × 3 macropixels, and 5 × 5 macropixels, depending
on the local conditions. A larger spatial aggregation (15 × 15 macropixels) was added for
the S2-MSI data to approximate comparability with the S3-OLCI data. Finally, a waterbody-
scale variant was added to analyze to what extent the in situ data represented the entirety
of the waterbody. With regard to the selection of temporal windows, the usage of same-day
matching constituted the minimum possible temporal window. This was extended to time
windows of ±1 day or ±5 days as alternatives in temporal matching, following previous
studies that have applied temporal intervals of in situ and remote sensing data ranging
from ±3 h to ±10 days [23]. For the comparison of spatial aggregations, the temporal
windows were kept to same day matches in order to restrict the variability only to the
effects of spatial aggregation. Accordingly, in a comparison of the temporal windows, the
spatial aggregation was kept constant at 3 × 3 macropixels. The abovementioned error met-
rics were used to compare and evaluate these different variants. Moreover, the respective
sample sizes, i.e., the number of matches between in situ and satellite-based observations,
were included in our evaluation. Note that the applied spatial aggregations differed be-
tween S3-OLCI and S2-MSI in order to account for the different spatial resolutions of
these sensors.

All analyses and visualizations were performed using R Statistical Software (v4.3.0; R
Core Team 2021). Geospatial analysis was performed using ArcGIS Desktop (Esri 2019).
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Table 3. Different variants for spatial and temporal matching. Note the different spatial resolutions
of the two sensors as outlined in the text. For example, a 3 × 3 macropixel from S3-OLCI covers
900 × 900 m, which is the same as a 15 × 15 macropixel from S2-MSI (when S2 is processed at a 60 m
resolution). Note also that the comparison of spatial matches only used same-day temporal matches.

Spatial Matching

Temporal Matching 1 Pixel 3 × 3 Pixels 5 × 5 Pixels 15 × 15 Pixels Waterbody Scale

S2
-M

SI

Same day (0 d) X X X X

±1 day X

±5 days X

S3
-O

LC
I Same day (0 d) X X X

±1 day X

±5 days X

3. Results
3.1. Spatial Aggregations

In the comparison of in situ and satellite-based water quality variables for differ-
ent spatial aggregations, the emerging differences remained relatively small and random
overall. This was true for all three target variables (chlorophyll-a, turbidity, and Secchi
depth), both sensors (OLCI and MSI), and both processors (EOMAP-MIP and CyanoAlert)
(Figures 4, A2 and A3). In most cases, it did not make a difference if either finely resolving
the macropixels at the scale of a few hundred meters or the waterbody-scale variant were
used in determinations of the error metrics. A further complicating factor was that the dif-
ferent error measures applied to the same variable, sensor, and processor favored different
spatial aggregations (Figure 4). As an effect of scale, data on the Secchi depth produced
the least pronounced differences overall in the error metrics among spatial aggregations
simply because their range was more restricted than that of, say, chlorophyll. Errors for
chlorophyll-a appeared to be generally higher, but again, no systematic differences among
the applied spatial aggregations emerged. For turbidity, the error estimates were slightly
better for waterbody-wide values. This evaluation was, however, based on a smaller
number of waterbodies and matches compared with the other target variables. In most
cases, the waterbody-scale variant yielded a slightly larger number of matches for both
sensors. But this effect remained small: on average, the waterbody scale led to an increase
in matches by 16.8% compared with the finest spatial aggregation applied.

A closer inspection of the different spatial aggregations of all variables of water quality
for MSI-based data products (Figure 2) and OLCI-based products (Figure 3) generally
confirmed the highly diverse and partly random performance of the different spatial aggre-
gations. Irrespective of the spatial aggregations applied, however, the absolute estimates
differed between the different processors and sensors. For example, chlorophyll concen-
trations yielded lower concentration values on average when processed by EOMAP-MIP
compared with being processed by CyanoAlert. Scatterplots, however, sometimes showed
severe cases of overestimation (above the 1:1 line) and underestimation (below the 1:1 line).
This appeared to be independent of the spatial aggregation applied (Figures 2 and 3) and
occurred for all processor–sensor combinations.

In one case, the consistent superior performance of the waterbody scale appeared in
our analysis. The RMSE when the data were processed by EOMAP-MIP was always the
lowest for the waterbody scale (see Figure 4). No such consistent response was detectable
for any macropixel-based aggregation.
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Figure 2. Overall performance of different spatial aggregations using the match-up dataset (same
day) with MSI data processed by CyanoAlert (orange) and EOMAP-MIP (blue). Scatterplots are
shown in log-log scale with selected error metrics and the number of observations (both processors
combined) for the three target variables of chlorophyll-a (top), turbidity (middle), and Secchi depth
(bottom). The grey dashed line refers to the 1:1 line.

The coefficient of variation (CV) is given in Table 4. It is important to note that the CV
is not necessarily a measure of quality but is rather an indicator of spatial heterogeneity,
something that is normal in natural water and that can rarely be covered with in situ
measurements. Moreover, the different spatial scales at which the MSI data were processed
had a direct impact on that measure. The spatial variability increased with increasing
spatial scale and was at a maximum at the waterbody scale. This increase in spatial CV
was stronger for EOMAP-MIP-based processing when applied to the products of MSI
but were higher for CyanoAlert-based processing when applied to the products of OLCI.
Moreover, the increase in spatial CV was more pronounced for chlorophyll-a than for the
other two water quality products.
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Figure 3. Overall performance of different spatial aggregations (left column, 1 pixel; middle column,
3 × 3 macropixels; right column, waterbody scale) using the match-up dataset (same day) with OLCI
data processed by CyanoAlert (orange) and EOMAP-MIP (blue). Scatterplots are shown in log-log
scale with selected error metrics and the number of observations (both processors combined) for the
three target variables of chlorophyll-a (top row), turbidity (middle row), and Secchi depth (bottom
row). The grey dashed line refers to the 1:1 line.
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Figure 4. Overall performance of different spatial aggregations using the match-up dataset (same
day) with MSI and OLCI data processed by CyanoAlert (top) and EOMAP-MIP (bottom). The table
shows selected error metrics, the number of observations (matches), and the number of waterbodies
(N Lakes) for the three target variables of chlorophyll-a, turbidity, and Secchi depth. Dark grey
shades indicate the poorer performance of the variant, while the lightest shade represents the best
performance within each processing scheme.

Table 4. Average coefficient of variation depending on the spatial aggregations, target variables,
sensors, and processors. Note that OLCI was not evaluated for 5 × 5 and 15 × 15, and that for 1 × 1,
no CV could be calculated.

CV (CyanoAlert) CV (EOMAP-MIP)

Sensor Target Variable 3 × 3 5 × 5 15 × 15 All 3 × 3 5 × 5 15 × 15 All

S2-MSI Chlorophyll-a 36.7 44.0 78.9 87.8 13.6 18.0 33.3 204.8

Turbidity 18.3 56.7 26.3 32.8 18.2 24.4 51.3 188.2

Secchi depth 17.8 20.8 28.2 30.5 8.8 12.1 20.3 52.1

S3-OLCI Chlorophyll-a 13.6 - - 115.4 23.5 - - 109.2

Turbidity 18.2 - - 63.2 15.2 - - 24.3

Secchi depth 8.8 - - 55.4 14.9 - - 36.0

3.2. Temporal Windows

Similar to the analysis of different spatial resolutions, the expansion of the time
window from 0 to 5 days did not yield a consistent pattern if all error measures were
considered from a synoptic view (Figures 5 and 6). Nevertheless, as in many tested
combinations of sensors, processors, and variables of water quality, a 5 d delay resulted
in elevated RMSE errors (Figures 5, 6 and A4). This was, for instance, noticeable in the
measurements of chlorophyll-a from MSI or the turbidity assessments of OLCI. In some
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cases, the results for different temporal windows hardly differed, such as in the Secchi
depth and the OLCI chlorophyll-a data products, indicating that a temporal extension to
±5 d did not necessarily come with higher errors (Figure 6). It is important to note that
the expansion of the time window from the same day to ±5 days resulted in a significant
increase in the number of matches (right-hand side of Figure 6), which were, on average,
about 2.5 times (±1 day) or 5 times (±5 days) greater compared with the same-day matches.
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Figure 5. Overall performance of different temporal windows (left column, same day; middle
column, ±1 day; right column, ±5 days) using the match-up dataset (3 × 3 macropixel) with MSI
data processed by CyanoAlert (orange) and EOMAP-MIP (dark blue), and OLCI data processed
by CyanoAlert (yellow) and EOMAP-MIP (light blue). Scatterplots are shown in log-log scale with
selected error metrics and the number of observations for the three target variables of chlorophyll-a
(top row), turbidity (middle row), and Secchi depth (bottom row). The grey dashed line refers to the
1:1 line.
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The highly diverse behavior of the error metrics for different temporal matchings was 
slightly reduced when both sensors (MSI, OLCI) and processors (EOMAP-MIP, 
CyanoAlert) were combined for each product (Figure A4). In this aggregated view, the 
RMSE suggested that larger temporal windows (i.e., ±5 d) increased the errors. In 
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Figure 6. Overall performance of different temporal windows using the match-up dataset with MSI
and OLCI data processed by CyanoAlert (top) and EOMAP-MIP (bottom). The table shows selected
error metrics, the number of observations (N, “matches”), and the number of waterbodies (N Lakes)
for the three target variables of chlorophyll-a, turbidity, and Secchi depth. Dark grey shades indicate
poorer performance of the variant, while the lightest shades represent the best performance within
each processing scheme.

Besides the highly diverse behavior of the error indices among the variables, sensors,
and processors, a few consistent patterns emerged. The RMSE tended to increase with
large time windows (±5 d), while the log-based MAE and bias were more random (see
Section 4.5). Among the variables, the Secchi depth reacted rather insensitively to expansion
of the time windows, and in many cases, a time window of ±5 d did not come with an
elevated error. An increase in the sample size, i.e., the number of valid matches, necessarily
increased with an increasing time window. This increase in sample size was higher for MSI
products (roughly a factor of 6 to 7) than for OLCI products (roughly a factor of 3–4).

The highly diverse behavior of the error metrics for different temporal matchings was
slightly reduced when both sensors (MSI, OLCI) and processors (EOMAP-MIP, CyanoAlert)
were combined for each product (Figure A4). In this aggregated view, the RMSE suggested
that larger temporal windows (i.e., ±5 d) increased the errors. In addition, there were only
minor differences in CV among the different temporal windows (Table A4).

4. Discussion

Restating the established objectives, the study aimed to identify (i) appropriate spatial
aggregations of remote sensing data for a good representation of observations obtained
through in situ measurements, (ii) adequate temporal windows when comparing remote
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sensing and in situ data, and (iii) systematic differences in these characteristics depending
on the variable of water quality, satellite, or processor.

4.1. Spatial Aggregations

Regarding Objective (i), the study has shown that no clear pattern emerged regarding
the spatial aggregation. This finding was invariant to the processing scheme used and was
confirmed when all results for both processors (EOMAP-MIP, CyanoAlert) were merged
into one analysis (only possible for 3 × 3 macropixel and the waterbody-scale variants)
(Figures A2 and A3). In detail, the pairwise agreement (MAE, RMSE) between the different
spatial aggregations (different sizes of macropixels versus the waterbody scale) was sur-
prisingly similar overall and showed no clear patterns, despite large differences in their
spatial extent and variability, whereby the waterbody-scale variant performed similarly
well overall compared with the macropixel variants (see Figure 4). As an exception, the
performance of the waterbody-scale evaluation was significantly better for OLCI data pro-
cessed with EOMAP-MIP when evaluated with the RMSE. Similarly, systematic differences
(bias) between the in situ and remote sensing data showed only minor differences among
the different spatial aggregations. This is astonishing, because the CV in the satellite data
clearly showed that the variability in the target variables (e.g., chlorophyll-a) increased with
an increase in the spatial scale and was at maximum at the waterbody scale. This spatial
variability at the scale of the whole waterbody actually suggests that macropixels should
be superior in terms of validation, which could not be confirmed statistically. Note that in
this context, the comparison of spatial aggregations only used same-day matches (Figure 4)
and the temporal dynamics of the ecosystem had only a limited impact (as discussed in
Section 4.2).

In addition, the results showed only minor differences among the macropixel variants.
However, to account for processing errors and to avoid the risk of operating with a faulty
pixel, very small spatial windows (e.g., only one pixel) are not recommended [31,53].
This was also partly reflected in this study, with the 1-pixel variant of aggregated OLCI
EOMAP-MIP data performing slightly worse than the 3 × 3 macropixel variant for all
target variables. Different macropixel variants of MSI data showed noticeable differences
in the number of matches compared with the 15 × 15 macropixel variant. On average, 8%
fewer matches were produced when the 15 × 15 macropixel results were compared with
the smaller macropixel variants, probably due to higher number of invalid pixels when the
measurement points were closer to land.

In the context of governmental monitoring programs, where the assessment of the
status of the entire waterbody is the goal, aggregating at the waterbody scale can be
advantageous for comparing in situ and remote sensing data. The spatial variability is
averaged away, and thus the spatial heterogeneity is considered. Another advantage of
waterbody-wide aggregation is the mitigation of effects occurring primarily close to the
shore such as adjacency effects, shade from hills, or bottom reflection. This is particularly
valid for waterbodies where the proportion of number of pixels close to the shore is high
compared with the total number of pixels. Furthermore, waterbody-scale extractions
usually yield slightly higher numbers of matches (Figure 4), because it is not so important
where exactly the invalid pixels are located for the water-body-scale extraction still to be
valid. For statistical purposes, it may thus also be advantageous to aim for waterbody-
scale extractions.

On the other hand, macropixel-based products may be, on one hand, able to account
for local conditions but, on the other hand, can be severely influenced by the neighboring
pixels in a locally heterogeneous environment. The latter becomes even more influential
when part of the spatial heterogeneity is attributable to random errors. Note that in this
respect, in situ samples are always point samples attributed to precise locations with a
very small spatial extent. The fact that waterbody-wide averaging does not deteriorate the
statistical performance of satellite-based products in most cases (Figure 4) may indicate
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that spatial dynamics at small scales are, in many cases, not strong enough that large-scale
averaging yields similar patterns.

It needs to be noted that we conducted a broad-scale validation study using adminis-
trative data. Therefore, the validation here aimed to examine whether in situ and remote
sensing data can be used comparably well for official monitoring. In a different context,
for example, when it comes to optimizing algorithms, the existing protocols should be
relied upon, which typically rely on macropixel variants and well-positioned sampling
sites not too close to shore, where the spatial variability of the variables of water quality
in question is relatively stable over the whole macropixel. In addition, a very tight match
of satellite overpasses and in situ sampling is crucial (at temporal scales far below daily;
see the discussion below) for these purposes; otherwise, the sampled water parcels do not
exhibit the same characteristics of water quality due to possible temporal fluctuations in
the concentrations at small time scales.

4.2. Temporal Windows

Regarding Objective (ii), different time windows performed similarly well with only
minor differences and without clear patterns when evaluated with the MAE and bias (see
Figure 6). However, RMSE showed an increase for various target variables (except Secchi
depth) and sensor–processor combinations. The differences between MAE (log scale) and
RMSE (linear) indicated an increase in the skewness of data’s distribution and the presence
of outliers with increasing time windows (see Section 4.5). This indicated that expanding
the time window to up to 5 days can be useful in validation studies for all target variables
because of a noticeable increase in the number of matches, as long as special attention is
given to the appropriate treatment of outliers.

In addition, an expansion of the time lags for up to 10 days showed that the distribution
of residuals between in situ and remote sensing data and the associated summary statistics
(mean, median, and interquartile range) were relatively stable even for time lags of more
than 5 days (Figures S1–S3).

4.3. Interplay between Temporal and Spatial Scales

A waterbody surface can be seen as a heterogenous system in motion, so that the spatial
patterns depend on the time window. Two hours may lead to different spatial patterns at
the surface due to the high advective transport in waterbodies, particularly under windy
conditions [33] and during ice-melt or phytoplankton blooms. Such comparably rapid
events impair the agreement between in situ and remote sensing data more strongly for
macropixel variants than for evaluations based on the whole waterbody [9]. It would
therefore seem advisable, particularly for the macropixel approaches, to match only in situ
and satellite data that are within 2 h of each other [7]. In the present study, this was not
possible due to the time information in the in situ data not being specified to the hour. The
smallest time window available for a comparison of different spatial aggregations was the
same day, which translated to a temporal mismatch between in situ and remote sensing
data of up to 8 h. This is one explanation for some errors being relatively high, which
complicated the evaluation of the spatial patterns.

4.4. Systematic Differences among Variables of Water Quality, Satellites, or Processors

The agreement between in situ and remote sensing data depends on multiple factors,
e.g., the environmental and in-water conditions, the placement of the sensors, and the
sensitivity of the algorithms, among others. For this study, two operational processing
schemes were applied with different approaches to address atmospheric influences, sun
and sky glint, and other interfering factors from the radiance leaving the water to derive
the concentrations of the variables of water quality. These operations have to work over a
wide range of geographical regions, may be affected by unpredictable uncertainties, and
are further developed continuously. The abovementioned aspects led to the differences
between sensor–processor combinations and the occurrence of occasionally strong outliers
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irrespective of the spatial aggregation or time window applied. However, integrating all
the alternative satellite products (S2-MSI or S3-OLCI, EOMAP-MIP or CyanoAlert) into one
waterbody-specific average yielded a robust value when compared with the in situ-based
values (unpublished data).

4.5. Error Metrics

MAE, bias, and RMSE are often applied in validation studies in parallel, although they
are only partially complementary [29]. MAE and RMSE differ in their sensitivity to outliers
and the distribution of the data [49]. RMSE, in contrast to MAE, penalizes high absolute
deviations and an uneven distribution of the error due to it being calculated in linear
space and the squaring of errors. However, they both addressed the pairwise agreement
(accuracy) between remote sensing and in situ data. Since the residuals in regressions of
satellite versus in situ observations increase with the mean—an argument for using log
scale—the RMSE for the concentration of chlorophyll-a in eutrophic waterbodies should be
much higher than for oligotrophic waterbodies. The opposite holds true for the log-based
MAE, where smaller deviations had a big impact if the chlorophyll value was low. To
give an example, the log-based MAE resulted in the same magnitude of error when the
detected/measured chlorophyll was 0.1 or 1 µg/L compared with 10 and 100 µg/L because
both have the same ratio. But the RMSE would weigh the pair at 10 and 100 µg/L to be
far more erroneous because it is based on squared deviations at the linear scale. From the
limnological point of view, however, a difference between 0.1 and 1 µg/L is irrelevant and
hardly measurable in the laboratory, while a difference between 10 and 100 µg/L makes a
huge difference in evaluations of the status. In summary, RMSE stresses errors at larger
values (e.g., high chlorophyll) while MAE emphasizes deviations at low true values (e.g.,
low chlorophyll).

Therefore, the small and random differences between the different spatial aggregations
across all error measures, with MAE and RMSE being not very different from each other,
indicated that the presence of outliers or the distribution of the errors did not differ
significantly among different spatial aggregations. However, we noted that RMSE was
increasingly higher at large time windows for various target variables and sensor–processor
combinations. This suggests an increase in the influential outliers and the skewness of
the distribution of the errors with an increasing time window, which should be addressed
when larger time windows are applied. This is also partially reflected in Figure S1, with the
median and interquartile range being relatively stable up to a time lag of ±5 days, whereas
the mean increased more.

Lastly, it needs to be considered that both datasets, remote sensing and in situ, con-
tained errors and uncertainties. Therefore, the assumption that the error metrics fully
evaluated the dataset is disputable. Given these results and occurrences of error, we agree
with Papathanasopoulous et al. [54] and IOCCG [55] that satellite-based monitoring will
complement rather than replace in situ sampling to increase the understanding of the
spatiotemporal development of waterbodies, as well as to provide information where in
situ data were (in the past) or are still sparse or non-existent.

5. Conclusions

In general, our results provide clear evidence that satellite-based products reflect the
average condition of a given waterbody and are therefore suited for assessments of the
status, such as are required in national and international legislation for the protection of
water. The results showed that it does not necessarily pay to focus spatially on the exact
sampling point. In many cases, waterbody-scale values achieved similar or slightly better
accuracies and biases despite the large differences in the spatial aggregation and spatial
variability. They also provided slightly larger sample sizes. Data on Secchi depth produced
the least pronounced differences among all spatial aggregations, independent of the sensor
and processor. Overall, the results did not show huge differences among different spatial
aggregations, and no clear preferences for the type of spatial aggregation emerged.
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The study has also shown that an expansion of the time window of up to ±5 days can
be practiced under certain conditions. Data products for Secchi depth showed only small
and random differences among different temporal windows. In contrast, data products for
turbidity and chlorophyll-a showed an increase in outliers with increasing time window for
various sensor–processor combinations. Therefore, if applicable, the increasing occurrence
of outliers must be considered in case of extending the time window. In summary, the
results indicated that an expansion of the time window of up to ±1 day or ±5 days can be
useful in validation studies because of the marked rise in number of matches, which were,
on average, about 2.5 times (±1 day) or 5 times (±5 days) greater than same-day matches.

Besides these details on procedures of validation for satellite-based monitoring of
water quality, our data on more than 100 waterbodies showed that averaging all the
available values for a given waterbody can very likely reflect the status of the waterbody.
Satellite-based information can therefore supplement the information collected via in situ
monitoring, which can only be conducted at limited temporal and spatial scales, and thus
can improve assessments of the ecosystem status of a given waterbody.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs16152798/s1. Table S1: The table provides an overview of the
in situ data after processing; Table S2: The table provides an overview of the number of matches
(spatial aggregation: 3 × 3 pixels; time window: ±5 days); Figure S1: Boxplots depicting the residuals
calculated between in situ and remote sensing chlorophyll-a data for various time lags. Each group of
boxplots represents the distribution of residuals for a specific time lag, consisting of one boxplot for
each sensor-processor combination. Summary statistics provided on the figure include the number of
observations (N), mean (M), median (Md), and interquartile range (IQR) across all sensor processor
combinations; Figure S2: Boxplots depicting the residuals calculated between in situ and remote
sensing turbidity data for various time lags. Each group of boxplots represents the distribution of
residuals for a specific time lag, consisting of one boxplot for each sensor processor-combination.
Summary statistics provided on the figure include the number of observations (N), mean (M), median
(Md), and interquartile range (IQR) across all sensor processor combinations; Figure S3: Boxplots
depicting the residuals calculated between in situ and remote sensing Secchi depth data for various
time lags. Each group of boxplots represents the distribution of residuals for a specific time lag,
consisting of one boxplot for each sensor-processor combination. Summary statistics provided on the
figure include the number of observations (N), mean (M), median (Md), and interquartile range (IQR)
across all sensor processor combinations.
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Appendix A

Table A1. Overview of the valid remote sensing scenes for turbidity, given as the number of scenes per
sensor, processor, and spatial resolution, for all waterbodies over the period considered (2016–2020).

Turbidity
S2-MSI S3-OLCI

3 × 3 5 × 5 15 × 15 Waterbody Scale 1 × 1 3 × 3 Waterbody Scale

CyanoAlert 14,639 16,250 13,534 17,403 10,803 14,301 13,114

EOMAP-MIP 15,895 16,004 16,083 19,630 16,990 18,542 20,730

Table A2. Overview of the valid remote sensing scenes for Secchi depth, given as the number of
scenes per sensor, processor, and spatial resolution, for all waterbodies over the period considered
(2016–2020).

Secchi Depth
S2-MSI S3-OLCI

3 × 3 5 × 5 15 × 15 Waterbody Scale 1 × 1 3 × 3 Waterbody Scale

CyanoAlert 14,639 15,053 13,534 17,403 11,808 16,250 13,114

EOMAP-MIP 15,890 15,997 16,077 19,623 16,890 18,440 20,618

Table A3. Thresholds for the identification of outliers in the three target variables applied to both
in situ and remote sensing data. Values were identified by expert judgement and visual inspection
of the distributions of probability. Identification of the outliers resulted in removal of <<1% of
the observations.

Target Variable Unit Minimum Maximum

Chlorophyll-a µg/L 0.01 400

Turbidity FNU 0.01 100

Secchi depth m 0.05 20
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combined. The table shows selected error metrics, the number of observations (matches), and the
number of waterbodies (N Lakes) for the three target variables of chlorophyll-a, turbidity, and Secchi
depth. Dark grey shades indicate poorer performance of the variant, while the lightest shades
represent the best performance.

Table A4. Coefficient of variations (average) dependent on the temporal window, the target variables,
the sensors, and the processors.

CV (CyanoAlert) CV (EOMAP-MIP)

Sensor Target Variable Same Day 1 Day 5 Days Same Day 1 Day 5 Days

S2-MSI Chlorophyll-a 36.7 38.5 39.5 13.6 13.5 14.1

Turbidity 18.3 19.4 20.7 18.2 15.2 14.4

Secchi depth 17.8 19.0 19.7 8.8 8.4 8.5

S3-OLCI Chlorophyll-a 25.1 22.8 27.9 23.5 23.5 23.2

Turbidity 53.0 60.5 64.2 15.2 16.1 17.4

Secchi depth 43.6 39.2 40.9 14.9 14.9 15.1
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