

BlauGrüne Potentiale im Bestand

Ganbaatar Khurelbaatar

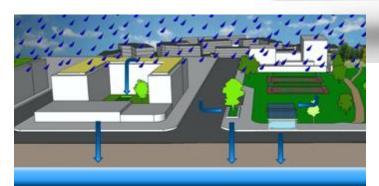
Axel Wuttke, LWB |
Lucie Moeller, Jan Friesen, Marc Breulmann, Daneish
Despot | UFZ
Stefan Böttger, Martin Mehner, Michael Mirisch | TILIA
Rüdiger Clausen, Jannis Clausen | GFSL
Milena Mohri | Optigrün

Eine Initiative des Bundesministeriums für Bildung und Forschung

Projektphase II

Urbane Herausforderungen

Im Spannungsfeld Starkregen - Dürre


Starkregen Kanalüberlastung Überflutung Gewässerbelastung

Dürre

Absterben von Stadtgrün Lokale Hitzeinseln gesundheitliche Belastungen

Maßnahme: Bewässerung, Verdunstung

Urbane Herausforderungen als Basis für Szenarienentwicklung Projektphase II

Urbane Herausforderungen als Basis für Szenarienentwicklung

Gesetze/

Regelungen

Projektphase II

Leipziger BlauGrün

Abflusslose Quartiere

Denkmalschutz

Ausgeglichener Wasserhaushalt Hitzeinsel

Flächenverfügbarkeit

> Standortspezifische Bedingungen

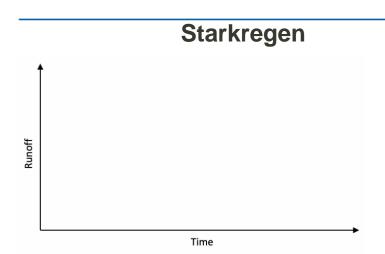
Flächenabkopplung (KWL, Leipzig)

Blau-grüne Aspekte in Detailplanung

Schmutzfrachten Reduktion

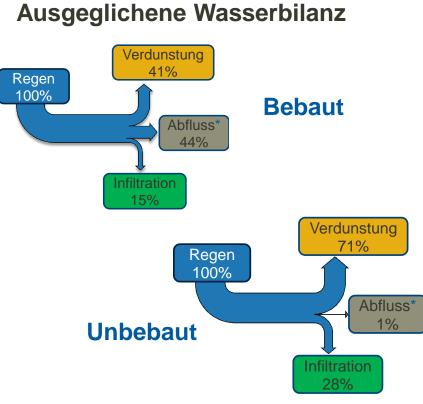
> Grundwasser

Erneuerungskosten


Baustatik

Kanalentlastung

Co-Design Prozess für Bau-Detailplanung materialien


Urbane Herausforderungen als Basis für Szenarienentwicklung

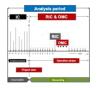
Ziel 1 – Starkregen. Abflussloses Quartier. (Starkregenereignis) | Entkopplung von ~20-25 % der abflusswirksamen Flächen. (Stadt Leipzig, L Gruppe)

Ziel 2 – Ausgeglichene Wasserbilanz. Annäherung an den Wasserhaushalt des unbebauten Zustandes. (Nationale Wasserstrategie, DWA 100, DWA 102) | Ressourceneffiziente Bewässerung.

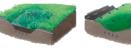
www.ufz.de

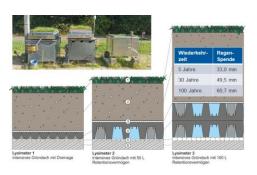
Wissenschaftlicher Ansatz

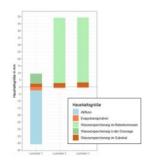
Vorplanung & Potenzialanalyze der BGI

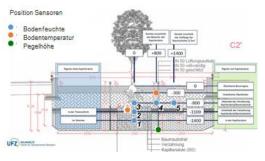


BGI potentielle Wirkung/ Kostenabschätzung

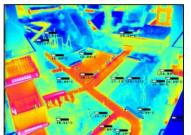




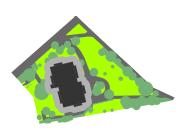

Wissenschaftlicher Ansatz Monitoring der PCI


Monitoring der BGI BlauGri

Potenziale der BGI: Starkregen & Wasserhaushalt



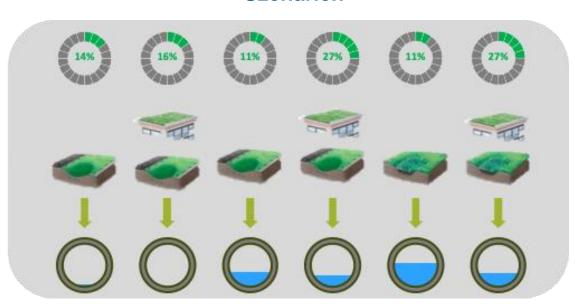
Potenziale der BGI: Mikroklima & Wasserhaushalt



Potentiale & Grenzen aufzeigen

40 bis 100 % Starkregenentkopplung

Status Quo

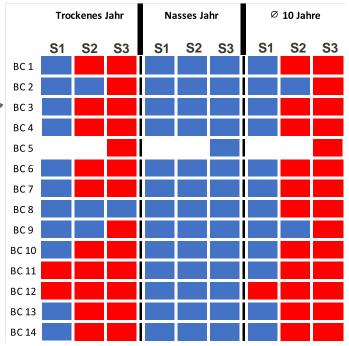


Fläche

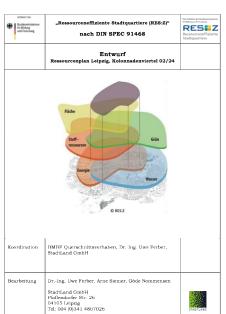
Infrastru ktur

Abfluss

Szenarien


Potentiale & Grenzen aufzeigen

Nachhaltige Bewässerung unter verschiedenen Klimabedingungen


Bewässerung durch Dachabfluss

Dachabfluss nicht ausreichend für Bewässerung

- GFSL Matrix BG
- DIN SPEC 91468
- Entwässerungsplan LWB



- Anwendung des wiss. Ansatzes für verschiedene Gebiete
- UFZ Stadt-Büro
- Blue Green City Coaching

Projektphase II

ErgebnissePublikationen

Breulmann, M., Moeller, L. (Hrsg.) Planung gekoppelter blau-grüner Infrastrukturen

Moeller, L., Knapp, S., Schmauck, S., Otto, P., Schlosser, D., Wick, L.Y., Georgi, A., Friesen, J., Ueberham, M., Trabitzsch, J., Wollschläger, N., Schlink, U., Hofmann, D., Müller, R.A., Mackenzie, K.: Gründächer im urbanen Raum und ihre Ökosystemleistungen. In: Kabisch, S., Rink, D., Banzhaf, E. (Eds.) Die Resiliente Stadt. Springer Spektrum. ISBN978-3-662-66915-0.

Friesen, J., Khurelbaatar, G., Plaul, B., van Afferden, M., Despot, D., Müller, R.A., Breulmann M. (2025) Chapter 9 Co-designing water-sensitive suburbs through blue-green infrastructure planning by research, municipality, and housing association partners. In: Lens, P., Bui, X. (Eds.) Nature-Based Solutions for Urban Sustainability. IWA Publishing. ISBN 9781789065008.

Breulmann, M.; Merbach, A.; Bernhard, K.; Moeller, L. Enhancing Urban Resilience: Stormwater Retention and Evapotranspiration Performance of Green Roofs Under Extreme Rainfall Events. *Land* **2025**, *14*, 977. https://doi.org/10.3390/land14050977

Breulmann, Marc, et al. "Enhancing Urban Resilience: Stormwater Retention and Evapotranspiration Performance of Green Roofs Under Extreme Rainfall Events." *Land* 14.5 (2025): 977.

Projektphase II

Ergebnisse

Wissenstransfer

- "Arab Germany Young Academy Meeting" AGYA, Hamburg Jul. 2023.
- "Wasserbewusste Stadtentwicklung" DWA ,Osnabrück Sept. 2023
- "Ressourcenmanager Regenwasser" DWA, Dresden Sept. 2023
- "World Water Congress & Exhibition" IWA, Toronto Aug. 2024
- "Grün und Blau ins Grau" SMEKUL, Dresden Sept. 2024
- "World Urban Forum 12" AGYA, Cairo Sept. 2024
- 5. Leipziger Gründachkolleg, Oktober 2024
- "Mehr als Regenwassermanagement BlauGrüne Infrastrukturen" Architekten Kammer Sachsen, Webseminar Dez. 2024
- "Stakeholder Engagement Workshop" EU-MULTISOURCE Project, Ho Chi Minh City, Feb. 2025
- "DEUTSCHLAND gießt", Leipzig, März 2025

GFSL

gruen fuer stadt und leben landschaftsarchitektur eG

