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Abstract

The scope of this thesis is the development and analysis of scenarios for the agent-

based model named ABMig simulating the interactions between environmental change

and human migration in the highland district of South Wollo, Ethiopia. ABMig in-

cludes fully coupled environmental linkages and extensive implementation of human-

decision making for subsistence farmers, who decide on natural resource use and

migration. Migration is a possible adaptation strategy to environmental stress with

enabling factors being the major drivers in the case-study area, i.e. individuals

from better-off, less vulnerable households are more probable to migrate. ABMig

indirectly enhances this socio-ecological feedback loop feeding inequalities between

migrants and non-migrants.

We analyze the 50-years time series of socio-ecological outputs and migration. The

ecological submodel is sensitive to the different land-use parametrizations, with poor

land-use management resulting in increased resource depletion. A climate-resilient

green economy is correlated to better and diversified livelihoods, with less individuals

impacted by food insecurity and resource scarcity. On the contrary, we found that

the number of migrants is not sensitive to the different land-use approaches. Never-

theless, simulated policies addressing soil erosion decrease the resource gap between

migrants and non-migrants, while population stress and environmental degradation

increase it.

This work contributes to demonstrate that combining modeling tools from complex-

ity science with social-science theories allows better understanding of the interactions

between migration and global change to support policy-makers in the achievement

of sustainable development.
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1 Introduction

Complex systems are concerned with properties of sets of entities, whose behav-

ior arises through interactions between their single parts at different space and time

scales. From microscopic components and their connection, interaction, and/or com-

petition macroscopic complex properties might arise, such as, among others, non-

linearity, self-organization, pattern formation, emergence, adaptation, and feedback

loops. The resulting systemic behavior differs quantitatively and qualitatively from

the behavior of the single entities and is often a product of multilevel interactions.

Complex system science includes heterogeneous theories, between others cybernetics,

computational sciences, chaos, information and network theory. Technical advance

has allowed the wide-ranged application of these concepts in different field of stud-

ies, involving complex systems such as the Earth’s climate, neural networks, stock

markets, power grids and condensed matter systems. In fact, applied sciences have

been increasingly interested in understanding the mechanisms of collective behavior

of these structures, and developed descriptive models with different levels of abstrac-

tion. [2, 14, 22]

The study of complex systems has adopted two polar approaches towards the devel-

opment of models:

1. Focus on elegant and simplified rules in order to quantify the minimum of

complexity needed for the emergence of macroscopic phenomena;

2. Focus rather on the detailed holistic simulation of real world processes, exten-

sively taking advantage of fast-advancing computational tools.

Still, these two perspectives often mix up in state-of-the-art papers and result in

hybrid models. [14]

A computational model is a representation of a system of interest, with some

mathematical formulation as a starting point for the implementation in a com-

puter program. It may be viewed as a set of functions fj : Ωj 7→ Γj, being

(x1, . . . , xnj
) ∈ Ωj the input factors with Ωj =

⋃ nj

i xi that, when evaluated, produces

outputs gj = fj(x1, . . . , xnj
) ∈ Γj. When models involve some kind of stochaticity

the relevant output is then the average over a given number of simulations 〈gj〉.
The explicit forms of fj are often unknown, in particular when the model is not

equation-based. [37]
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In contrast to pure physical systems such as condensed matter models, complex

systems involving social agents have to deal with the unexpected effects of social

space, in particular they might be shaped by (human) decision-making and unpre-

dictable or adaptive behaviors. Moreover, no unified theory has been developed to

describe all the uncertainties of decision processes or captures the possible feedback

loops between agents and a modelled environment. These systems are therefore

difficult to represent through equation-based models. [2, 12] While game theory

considers mostly rational agents and has limits in dealing with a big number of

agents interacting with an environment, Agent-based Models (ABMs) offer a pow-

erful computational tool to analyze the actions of multiple agents in coupled social

and physical space [12].

ABMs, sometimes also referred as individual-based models, are a collection of au-

tonomous entities capable of interacting with each other and the environment based

on some presupposed rule of behavior, which can be for example deterministic or

stochastic, fixed or adaptive. ABMs are able to portrait both changing environment

and adapting agents, through the implementation of learning processes and agents’

memory. Agents can act without a goal or based on rational choices, implicitly or

explicitly optimizing some state variables. Rational agents are generally optimizer,

while agents with limited (or bounded) rationality can be, for example, satisficers.

The individuals’ perception of the environment can be limited or total, memory-less

or path-dependant. They could be organized and exchanging information through

networks, or within physical neighborhoods (for example Moore or Von Neumann

neighborhoods). Agent-based modelling allows a bottom-up description of phe-

nomena, where the macroscopic dynamic is not being superimposed by top-down

systemic equations. In physical terms it can be referred to as multi-body system,

where tools and theories of statistical physics can be applied. [12, 13, 14, 15] In

the following some relevant examples of ABMs will be presented. In Chapter 3.1 we

will describe the model we work with, which represents the main experimental tool

of this work.

Fireflies

By sending and perceiving signals, self synchronizing individuals influence each

other, causing minor local adjustments that result in global synchrony to emerge in

a decentralized manner. Certain species of (male) fireflies (e.g., luciola pupilla) are

known to synchronize their flashes despite sparse connectivity network (each firefly

has a small number of “neighbors”), the non-instantaneous visual communication

and random initial signal periods. In the cardiac muscle, pacemaker cells create

these rhythmic impulses and consequently the pace for blood pumping. Similarly,

for a long time, it was believed that the fireflies’ populations could synchronize

their signals only thanks to leading individuals. ABMs where able to explain this
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phenomenon in absence of leaders, and were particularly effective in replicating the

emergence of the pulse-coupled synchronization through a minimalistic set of rules

[9]. In fact self-synchronization can be modelled at the microscopic scale through

“coupled oscillators” where each agent is an independent oscillator. The oscillator

model for fireflies is called light-controlled oscillator and has found a wide-spread

application in electronic circuits.

The Schelling model of segregation

One of the earliest applications of agent-based modelling within social sciences is

the Schelling model of segregation. The model was created to show how individual

incentives and perception of differences can lead to the emergence of collective segre-

gation [10]. The model’s simplest form resembles a cellular automaton with a N×N
grid, where most of the cells are occupied by agents from (at least) two different

populations. The satisficer-agents relocate according to the fraction of friends (i.e.,

agents of their own group) within a neighborhood around their location. Hence,

agents have an aim, that is living in a neighborhood with a higher share of friends

B than their satisfaction threshold Ba, the main model parameter. Increasing Ba

would mean rising the agents’ intolerance towards individuals of the other popula-

tion. The model showed that even populations with high level of tolerance, that is

low values of Ba, were leading to clustering and segregation patterns. These patterns

correspond to the emergence phenomena of self-organization, and are able to partly

explain ethnic segregation and neighborhood tipping. One of the multiple empirical

application of the Schelling’s model consisted in comparing the residential dynamics

of Jews and Arabs in Israeli cities. Even though it ignores many relevant factors

of the residential market, the historical residential dynamics were partly congruent

with the model’s simulations and the Arab minorities where showed to be behaving

with patterns corresponding to relative high level of tolerance [11].

Traffic models

One of the most famous application of agent-based simulations at the intersection

with physics is traffic flow modelling. Here, (road) transport is reproduced micro-

scopically, with autonomous car drivers being the agents, whose behavior is based

on decisional activities and the environment. Traffic and congestion result from the

interaction of each agent with the regulations, road infrastructure and other road

users, which are simulated at different degrees of realism. Pioneers in this field cre-

ated the Nagel-Schreckenberg model, a cellular automaton simulation for freeway

traffic which incorporates concepts from hydrodynamics in agent-based modelling

[4]. Each vehicle, localized in a single lane, has a random velocity vi ∈ [0, vmax], and

at each iteration agents accelerate or slow down depending on the position of the

next vehicle. Despite the simplicity of the behavior’s rules, this model was able to

explain start-stop traffic waves, a consequence of the fluctuation in the motion of
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vehicles.

In the past years research efforts focused on further increasing the complexity of

these models, incorporating for example anticipation effects, reduced acceleration

capabilities and an enhanced interaction horizon for braking [16] or different agents

driving styles [17]. For instance, it was found that an aggressive driving style was

correlated with the formation of spontaneous traffic jams [17].

Models for environment-migration linkages

The environmental and climate crises put a massive pressure on socio-ecological

systems. In particular environmental change can lead to human migration by af-

fecting societies not only directly through climatic extreme events such as floods and

droughts, but also indirectly due to the exacerbation of demographic and economic

dynamics. Moreover, migration can further nourish environmental change by locally

altering the resource pressure on vulnerable ecosystems. ABMs are valuable tools

to study these linkages because they can represent individual migration decisions

of human actors, while exploring their interaction and adaptation to a changing

environment. [1, 3, 8, 28]
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2 Research Question, Aim and Pur-

pose

The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES)

has identified the combination of ecological modelling and scenario development

as key for the investigation of the relationships and feedbacks between drivers of

change, ecosystem services and, consequently, human society [30]. As defined by

the Intergovernmental Panel on Climate Change (IPCC), a scenario is a coherent,

internally consistent, and plausible description of a possible future state of the world.

It is built upon scientific understanding of past and current observed relationships

between drivers and environmental trends, drawing upon narratives of plausible

socio-economic developments or particularly desirable future pathways under specific

policy implementations. [18]

J. Thober et al. (2018) [8] reviewed existing ABMs for environmentally-induced

migration in rural contexts of natural resource use and found:

1. General scarcity of models for environment-migration linkages;

2. Deficient analysis of non-migration;

3. ABMs focus either on human decision-making or on fully-integrated social-

ecological feedbacks;

4. Migration flows such as migration into and out of the system as well as tem-

porary migration processes were given little attention.

J. Thober et al. (2018) also provided the classification of socio-environmental link-

ages. For one-way linkages, agents are influenced by the environment but do not

influence the ecosystem. In the case of partly integrated linkages, agents can alter

for example land-use and are in turn influenced by harvest success. Finally, for fully

integrated linkages also environmental consequences of natural resource use and mi-

gration decisions are considered within the model (e.g. resource depletion or soil

degradation). In addition to these technical research recommendations, recent re-

search [8, 22] also calls for an interdisciplinary approach between social and natural

scientists, modelers and empiricists on socio-ecological ABMs.

Hence, the purpose of this work is to advance scientific research on agent-based sim-

ulations for migration and environment interaction in rural context. Specifically, our
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research question aims at contributing to filling the above-mentioned gaps, through

the development and analysis of scenarios for the ABM called ABMig, consistently

with the research recommendations provided by IPCC and IPBES. The character-

istics of the scenarios to be developed involve the following aspects:

1. be exploratory and based on trends, i.e. consistent with future possible geopo-

litical and ecological trajectories;

2. focusing on selected direct and indirect drivers of change;

3. be comparable to the baseline Scenario and produce different qualitative out-

put one from the other, in particular for the migration-related model’s outputs.
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3 Methods

3.1 The Model

Developed by the research group MigSoKo from the Computational Landscape De-

partment of UFZ, the model ABMig aims to represent subsistence farmers who

decide on natural resource use and migration in Ethiopia. For synthesis reasons we

will describe the model loosely following the ODD+D standard protocol [25] and

the protocol proposed in [8] for environment-migration ABMs.

3.1.1 General Aspects

The model’s concept builds upon previous scientific papers [1, 3, 6, 7, 8, 19],

stylised data and workshops of MigSoKo, in particular those referring to the case

study area in the Ethiopian highlands. ABMig is written in NetLogo, one of the

Figure 3.1: The highland region of South Wollo, Ethiopia. Source: Heinz Sielmann
Stiftung

most widespread programming languages for socio-ecological ABMs. Another fun-

damental characteristic of the model is the inclusion of stochaticity in form of ran-

dom number generators applied to initialization and other dynamical processes,

such as the simulation of precipitation. As a consequence, when running experi-

ments with ABMig, it is necessary to perform an adequate number of repetitions to

achieve robust results. The theoretical background of the implementation of human

decision-making grounds on the theory of bounded rationality and heuristics. The

considered migration flow is out-migration, with both permanent and (direct) re-

turn migration. Socio-environmental linkages are fully coupled, as they include the

influence of resource depletion and land degradation on the rural livelihoods.
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Model’s purpose

ABMig is designed for system understanding, communication and hypothesis testing

with the key audience being scientists and local stakeholders, including farmers and

the local governance structures. ABMig ought to be a tool to support decision-

making concerning policies in rural Ethiopia, but does not aim at any quantitative

prediction of future migration flows or environmental conditions.

Nevertheless, the modelled socio-ecological processes root in the above-mentioned

literature and in other validated socio-ecological ABMs, listen in the review paper by

Thober et al. (2018) [8], and are therefore able to provide a solid base for qualitative

comparison of the outputs.

Case study and spacial scale

The region of South Wollo in Northern Ethiopia has been chosen as case-study area

since it has been identified as hotspot of socio-ecological pressure in Ethiopia by

Hermans-Neumann et al. (2017) [3], which comprises high population densities,

migration, land degradation, and rainfall variability. Rainfall in South Wollo has

a bimodal pattern with a smaller spring season (Belg) and a larger summer season

(Kiremt). The region is affected by changing rainfall patterns with increasing vari-

ability between the years. The local population highly depends on rain-fed agricul-

ture, leading to reduced adaptive capability to the environmental and climate stress.

Moreover, food insecurity affects the majority of the rural households. Due to the

declining Nature Contribution to People (NCP) and increasing population densities,

the rural kebeles (the smallest administrative units in Ethiopia) of South Wollo have

been identified by previous studies as a possible hotspot for human out-migration

[7]. The NCP approach, presented in the IPBES Framework, recognizes the central

and pervasive role that culture plays in defining all links between people and nature,

going beyond the concept of ecosystem services [29, 30]. The computational repre-

Figure 3.2: Gully erosion in South Wollo, Ethiopia. Source: MigSoKo
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sentation of the Ethiopian region constitutes the modelled environment where the

agents, both individuals and the households (HH), are located. The modelled socio-

environmental processes in ABMig were equipped with a baseline parametrization,

aiming to mirror the present environmental and demographic conditions in South

Wollo. Specifically, all the existing robust empirical data and literature was used

for calibration of climate-environmental parameters and their distributions to depict

local socio-ecological dynamics. Hence, an empirical validation, for example through

the common procedures applied to climate models using historical and present data

[55], is unfeasible. ABMig’s validation and verification rely rather on conceptual

and operational reasonability. This kind of validation approach, common to ABMs,

tests whether the model is able to robustly generate and regenerate a behavior to

be observed in reality. [45, 46]

The scenarios developed in this work seek to investigate how different land-use man-

agement priorities or demographic evolution have an impact on the model’s dynamics

and outputs. These simulated processes give insights on the real world’s possible

migration and environmental outcomes, extrapolating trends which can be observed

today or in the near future, and basing upon a solid knowledge of the present situ-

ation in the region of South Wollo.

3.1.2 Relevant Processes

In Figure 3.3 the conceptual structure of the model is represented. All the processes

are run once for each iteration, which corresponds to the time scale of one year.

In the following, one simulation refers to a model’s run over many years. Depend-

ing on the soil quality of the patches (pasture productivity) the HHs take specific

farming decisions. Agricultural processes are modulated by soil quality and annual

precipitation. Afterwards, if applicable, other livelihood sources (livestock and non-

farm activities) are simulated. Food production and savings directly impact the

food security of the HHs. Migration and demographic processes are the last run

procedures.
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Figure 3.3: Conceptual flowchart for ABMig’s processes.

Landscape and Climate

In ABMig climate is represented by the precipitation variable, which has been de-

rived by the CHIRPS dataset, an established data set providing rainfall estimates

from rain gauge and satellite observations for trend analysis and seasonal drought

monitoring [27, 28]. Considering that South Wollo has been defined as a hotspot for

rain variability [3], the use of CHIRPS for the simulation of monthly precipitation

in ABMig already includes regional droughts [27] and the fact that for this region

climate emergency is a present issue rather than a future scenario. With this bitter

reflection in mind, the idea of developing climate scenarios was dropped, and we fo-

cused mostly on different land-use management and demographic scenarios. Space

has been modelled explicitly, but is not based on Geographic Information System

(GIS) data. The landscape is divided into two altitude classes corresponding to

the two agroecological belts of Ethiopia, called Dega (above 2400 m) and Weyna

Dega (1,500-2,400 m), respectively in darker and lighter color shades in Figure 3.4.

Depending on the altitude class, either Belg or both Belg and Kiremt are used

for cropping, i.e. HHs in the higher elevated areas of Dega refrain from cropping

during Kiremt. Slope and initial soil quality are set – randomly and spatially het-

erogeneously – based on assumed distributions from empirical data. Soil quality is

influenced by agricultural management (that is whether the HH owns a oxen or not)

and slope-dependent natural degeneration. A predefined share of the landscape is

assigned as communal grazing land by randomly selecting the respective number of

patches.
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Figure 3.4: Map of Ethiopia with two case study areas of MigSoKo (indicated with
rectangles). South Wollo is the northernmost rectangle.Source: [1]

Households and individuals

First, a number of individual agents is calculated depending on the population size:

Nind =
∑
x

Ax ·Dx (3.1)

where Ax is the area of the respective altitude class x and Dx is the population

density of the respective altitude class. To sum up, the regions at different eleva-

tions are dissimilar for population density (higher regions are less populated) and

precipitation distribution/cropping season.

The number of HHs is calculated as:

NHH =
Nind

nHH

(3.2)

where nHH = 4.9 is the mean HH size derived from ERHS data. The distribution

functions for HH and individual characteristics have been fitted to the data using

a Gaussian kernel density estimator. Each HH receives initial savings, based on

interview data from South Wollo [1]. For reasons of simplicity, we made several

assumptions with respect to the wealth of HHs (e. g. initial savings are assigned

independently of further assets belonging to the HH such as livestock and farmland).

A fixed share of HHs is randomly selected to engaged in non-farm activities. HHs

are randomly allocated into the landscape and the owned patches are distributed
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according to the empirical data on farm size. Agents differ in agricultural intensity as

the ownership of oxen increases productivity through the input parameter oxen-use

and decreases yearly soil quality through the input parameter oxen-factor.

Food security

Each HH is defined by static land holdings and consumption requirements whilst

income and wealth are modelled dynamically. HHs depend on cropping and livestock

keeping for subsistence, sell crops and livestock, and might additionally engage in

non-farm activities to secure their livelihood. To determine the level of a HH’s

food security, the calorie demand per HH is calculated and compared to the calorie

supply. The calorie supply is provided by harvested crops and livestock products.

HHs try to meet their demand based on crops and milk. If this is not sufficient, they

first use any existing savings or they sell livestock to buy crops. Whether or not

the demand can be met determines the food security of the HH and the respective

individuals.

Migration

Once a year each HH member decides whether to migrate or not, this process is

visually represented in Figure 3.5. Firstly, potential HHs are selected based on the

conditions following Groth et al., 2020 [1]. 85% of the individuals with migration

potential belong to HH with migration experience (that is, somebody of the HH

already migrated) and either use both harvest seasons (and are therefore located

in the Weyna Dega area) or engage in non-farm activities based on results from

[1]. Non-farm activities and favorable environmental conditions during the Kiremt

season increase economic resources and as such migration ability. However, only

together with migrant networks, which can reduce the costs and risks of migration

and influence migration aspirations, can these drivers explain why HHs engage in

migration. Secondly, the other 15% of individuals being assigned the variable of

migration potential belongs to the rest of population which does not full fill these

conditions. Afterwards individuals from the potential HHs are appointed a specific

migration probability based on age and sex. These probabilities are calculated from

discrete frequency analysis derived from the ERHS data [33]. The initial migration

experience of HHs and the transformation of the derived individual probability are

calibrated so that the share of HHs and the share of individual migrants over a five

year time interval in the baseline scenario follow the share of HHs and individual

migrants found in [19]. The actual implementation of migration decision is modelled

by a random number generator. A given share of migrants permanently stay in

the destination and do not return, while the rest of migrants decide to temporary

migrate; i.e. they stochastically return to their HH from outside the focus area to

South Wollo.
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To sum up, the technical representation of migration decision, following [1], is fo-

cusing more on the enabling factors, i.e. factors which are generally a sign of an HH

being well-off [19, 28], rather than on the push factors. In addition, these factors

are structurally semi-static in iterations. This implementation of the migration de-

cision poses some challenges in the development of our scenarios, as the number of

migrants might not react sensitively to changes in parameters.

Figure 3.5: Migration decision in ABMig

3.2 Scenario Development

For the development of robust model scenarios, the following workflow has been

developed [44]:

1. Parameter Ranking: Creation of a ranking list for all the variable input factors

according to their relative contribution to the output uncertainty.

2. Scenario Storylines & Parameter Translation: Conceptualization of possible

scenarios in form of abstract storylines and possible parameter translations.

3. Parameter Selection: Picking of a shortlisted number of relevant parameters

for each scenario

4. Value Definition: Choice of parameter value for each scenario, to be changed

with respect to their baseline value.

Parameter Ranking

ABMig includes M = 67 variable input parameters each with a different physical

meaning. The entanglement of complex procedures in the different submodels and

at the microscopic scale makes a pure analytical-mathematical approach for model

evaluation time-intensive and unsuitable. In the early stages of the exploration of

ABMig it is necessary to identify the most important parameters, that is, parameters

with the most impact on the model‘s output. To investigate the relative effect of the

variation of input factors on the output of a computational model the application of
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methods of Sensitivity Analysis (SA) is necessary. In fact, SA is increasingly being

used in environmental modelling for a variety of purposes, including uncertainty

assessment, model calibration and evaluation. [39, 45]

Local sensitivity analysis (LSA) considers the output variability against variations

of an parameter value around a specific parameter value, while global sensitivity

analysis (or GSA) considers variations within the entire space of variability of the

input factors. Consequently, the application of LSA requires the specification of a

nominal value x0i for the input factors. Although the limitation due to the choice of

a specific parameter value is absent in GSA, the latter still requires the careful spec-

ification of the input variability space Ω. Another complication one must take into

account when using GSA is the computational efficiency, which generally decreases

with more precise and complex methods. [39, 48] As we are interested in a gen-

eral picture of the model’s output with respect to different parameter combination

choices, the implementation of GSA is justified.

Factor prioritization aims to create a ranking list of the input factors x1, x2, . . . , xM

according to their relative contribution to the output variability. For the purpose of

parameter ranking the method of Morris has been chosen, as suggested by Pianosi et

al. (2016) [39]. Morris developed a so-called One-At-Time method, meaning that in

each model evaluation only one input parameter is given a new value. The main idea

is to look at the output perturbations from multiple starting points x̃ji for each i-th

parameter within the input space, and to measure their aggregated effect on each

output state variable through sensitivity indices [36, 37]. The method of Morris,

also called the Elementary Effect Test (EET) consists in particular in computing the

mean of r finite differences (also called ‘Elementary Effects’ or EEs) as a measure of

global sensitivity. The EEs are computed at fixed points x̃j in the feasible parameter

space, being ∆i the finite variation or perturbation length the i-th parameter space

is divided into. For a given output g, the sensitivity index Si is the averaged sum

of the finite differences of g with respect to xi at x̃ji over r reference values x̃ji . The

index Si quantify those changes in g due solely to changes in the i-th input. The

sensitivity measure for the i-th input factor thus takes the form:

Si =
r∑

j=1

EEj =
1

r

r∑
j=1

g(x̃j1, . . . , x̃
j
i + ∆j

i , . . . , x̃
j
M)− g(x̃j1, . . . , x̃

j
i , . . . , x̃

j
M)

∆j
i

ci (3.3)

where ci is a scaling factor.

For each input and output factor, both mean µi and standard deviation σi of the EEs

are computed , where the latter provides information on the non-linear interactions

between the i-th parameter and the other input factors. This way of computing

indices produces robust results if the model‘s output has a characteristic length of
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the same scale of ∆i. Thus, in practice, the so-called simulation design levels r and

correlated perturbation length ∆i have to be chosen carefully. [36, 37]

Scenario Storylines, Parameter Translation and Parameter Selection

The development of scenarios is achieved through a step-by-step procedure, bear-

ing in mind the Scenarios Frameworks proposed by the IPCC, such as GEO-4, and

Shared Socioeconomic Pathways (SSPs) [47]. The conceptual storylines were built

through a process of iterative revision and inclusion of relevant literature and local

stakeholders positions, classified in the STEEP categories, that is Social, Techno-

logical, Economic, Environmental and Political drivers of change. Furthermore,

the different stakeholders positions have been divided into expected, preferred and

planned socio-environmental outcomes.

While in this first conceptual development ABMig’s technicalities have not been

considered, the next step was to take into account just the relevant storyline com-

ponents which can have a mathematical parametric translation for the model. By

matching both technical feasibility and conceptual content, this process led to a

downscaling of the scenario storylines to a few different processes and to a list of

relevant input parameters.

The next step is to select parameters which will be changed with respect to their

baseline value. Since our goal is to compare scenarios between each other, the final

elected parameters must have an impact on the model’s output, i. e. the model

must react sensitively to their perturbation. Thus, we cross-check the parameters

with both a content-wise reasonable translation and a relative high ranking, using

the results from the GSA.

Figure 3.6: Schematic workflow for the development and analysis of scenarios.

Value Definition

Once potential varying parameters for each scenario have been selected, it is nec-

essary to select a specific value for each input. For each parameter we have Ni =
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(x̃0i−x̃extremal
i )/∆i possible parameter values , assuming that the characteristic length

of the model is ∆ and being x̃extremal
i the minimum or maximum of the parameter

range in the direction of change for the given scenario. So, for each scenario k the

number of possible parameter combinations are:

Pk =
s∏

i=1

Ni (3.4)

where s is the number of parameters to be changed for each scenario. Of course,

a simulation which evaluates the model at all the possible input combinations, i.e.

covers the whole selected parameter space, would be unfeasible due to its inacces-

sible time of computation. Hence, it is necessary to select a reasonable statistical

sampling, which does not underestimate the model‘s complexity while keeping the

runs efficient.

Latin Hypercube Sampling (LHS) can be viewed as a compromise procedure that

incorporates many of the desirable features of random sampling and stratified sam-

pling. LHS is a probabilistic procedure in the sense that a weight (i.e. wi = 1/nS)

can be associated with each sample element that can be used in probabilistic cal-

culations. Like random sampling, the implementation of LHS does not involve the

complex determination of strata and strata probabilities. [43] LHS operates in the

following manner to generate a sample of size nS from x = [x1, x2, . . . , xnk
]. The

range of each input variable is exhaustively divided into nS disjoint intervals of equal

probability and one value is selected at random from each interval. The nS values

thus obtained for x1 are paired randomly without replacement with the nS values

obtained for x2. These nS pairs are combined in a random manner without replace-

ment with the nS values of x3 to form nS triples. This process is continued until a

set of nS nk-tuples is formed. These nk-tuples are of the form:

Xk = [xi1 , xi2 , . . . , xi,nX
], i = 1, 2, . . . , nS (3.5)

and constitute the Latin hypercube sample. [41, 43]

Bearing in mind that we want to focus on the migration-environmental change nexus

and we want the scenarios to specifically differ in the migration output, we reduce

the parameter value choice to a small maximization problem. We looked at the sum

of the normalized distances of the migration output function for all the sampled

combinations: ∑
t,i 6=j

| f i
t (x̃1, . . . , x̃ni

)− f j
t (ỹ1, . . . , ỹnj

) | (3.6)

where i, j refer to the given scenario, ni to the number of parameters to be changed
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for each scenario, f i(x̃1, . . . , x̃ni
) is the output, i.e. migration events, for a spe-

cific set of parameter values (x̃1, . . . , x̃ni
). We chose then the tuple of parameter

combinations maximizing the quantity in Equation 3.6.
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4 Main

4.1 Sensitivity Analysis

In the context of this thesis, SA were useful to shortlist parameters ABMig is re-

sponding sensitively to and leading to scenarios which actually differ from each

other. During test runs we observed that the model‘s behavior was robust against

parameter perturbations, so we made the assumption that r = 50 levels for the

Morris simulation design where appropriate to explore the model’s global behavior

[37]. This way, we are sure that all the finite differences ∆i of the Morris Method

(referring to the i-th parameter) are homogeneously covering the whole parameter

space Ω , without missing important variations in the output space Γ for a given

output g. The computation time for this GSA simulation phase approximately 8

hours.

In Figure 4.1 some exemplary results of the GSA are shown. This heat map gives

an idea of the sensibility of each output variable to each input parameter, despite

the direction of change of the parameter value. It is important to mention that the

normalization is column-based, so that one can visually distinguish for each output

which are the most important input factors, despite of how big the absolute impact

of a factor is. A direct consequence of this consideration is that even though two

slots in different columns of Figure 4.1 might have the same colour, they might

not correspond to similar absolute index values. The SA of ABMig were heavily

affected by the choice of range of each parameter. In addition, when looking at

a reduced number of parameters the indices appeared to be generally increasing.

Figure 4.1 shows for instance the relative importance of population density (factors

density-weynadega-km2 and density-dega-km2) change on most of the model’s out-

puts except for the harvest quantity. Focusing on the migration output, we observe

a higher sensitivity to calories content of crops (calories-crops) and to the share of

HHs with migration experience (share-HH-mig-experience) than to other factors. A

deeper analysis of the GSA’s results goes beyond the scope of this work.
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Figure 4.1: Exemplary results of Morris sensitivity indices for each relevant output
(columns) and input parameter (rows), with column-wise normalization. A darker
shade of color represents a higher index, that is a bigger absolute response of the
output to the parameter’s change.
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4.2 Developed Scenarios

Applying the above described methodological research design, three scenarios have

been developed using the baseline as a starting point. In the respective table the

chosen parameter changes and values have been listed. Running LHS for ABMig,

we get sets with sample size nS = 100 of nk-tuples, where nk is the number of

pre-selected parameters for the k-th scenario. [56, 41]

Climate-Resilient Green Economy Scenario

The Climate-Resilient Green Economy Scenario (CRGE) corresponds to the imple-

mentation of more sustainable land-use management, including measures directly

tackling the local increasing soil erosion and degradation [42]. The communities of

South Wollo have access to green job positions, supported by the Ethiopian gov-

ernment. Subsistence farmers are earning more in non-farm activities, diversifying

their income and livelihoods. As a consequence the population is expected to be less

exposed to drought and more able to cope with harvest uncertainty. [51, 52, 54]

Parameter Storyline S0 CRGE
depletion-factor-
slope

soil erosion prevented with smart land-
management

2 1

grazing-land-
share

more communal grazing land 0.05 0.1

gr1 more sustainable pasture management 0.5 0.33
gr2 more sustainable pasture management 0.1 0.03
share-non-farm-
activities

income diversification through green
jobs

0.7 0.8

prod-factor farming practices addressing soil deple-
tion

0.01 0.0067

Table 4.1: Input Parameters for CRGE Scenario

Tech Future Scenario

For the Tech Future Scenario we assume possible effects on South Wollo of financial

investments into the agro-economy from foreign countries, leading to fast and less

sustainable development. The main relevant narrative for our model is an inten-

sified and industrialized agricultural production. Local crops are substituted with

genetically modified crops with an higher calories content, or other cash crops. Also

livestock production is optimized and leads to an increased amount of calories con-

tent in milk. [42, 51, 52]
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Parameter Storyline S0 TF
calories-crops diffusion of more efficient crops 3450 4483
calories-milk new technology in livestock manage-

ment
400 800

grazing-land-
share

increased land privatization 0.05 0.033

gr1 intesified pressure on pasture vegeta-
tion

0.5 0.66

gr2 intesified pressure on pasture vegeta-
tion

0.1 0.2

oxen-factor intensified farming practices 0.01 0.03
oxen-use intensified farming practices 1.1 1.4

Table 4.2: Input Parameters for The Tech Future Scenario

Population Bomb Scenario

While the previous scenarios correspond to diametrically opposed approaches to

land-use management and agricultural production, this last one aims at exploring the

impact of demographic change on the available resources, livelihoods and economy.

The Population Bomb scenario is characterized by an increased birth rate, while the

initial population density is kept at set-up level. Due to the decreasing resources per

capita and rural livelihoods at risk, migrants are also more likely to permanently

stay in the regions of in-migration. Permanent migration is therefore increasing.

[42, 52, 52]

Parameter Storyline S0 PB
birth-rate-change demographic change 0 0.2
share-permanent increased share of permanent migration 0.3125 0.45

Table 4.3: Input Parameters for Population Bomb Scenario
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4.3 Scenario Analysis

For statistical robustness, in the following analysis we will always consider present

the results for 100 model runs of 50 years each. The time horizon of 50 years has

been chosen as it is a reasonable compromise between how much time the model’s

trajectories need to reach the steady state and the socio-ecological ”forecastable”

near-future. The computation time of 100 model runs was approximately one hour

for each scenario.

To ease the comparison between scenarios we choose to leave untouched initial point

values, in other words we keep a fixed “origin” for calibrated quantities. This work’s

focus lies rather on dynamical parameters, whose effect on the state variables spreads

in the model for each iteration, while basing upon the baseline model calibration

mimicing real-world dynamics.

ABMig is able to report a variety of outputs, but we focused on a small sample which

we considered representative for different aspects of subsistence farmers’ livelihoods,

that is harvest, reserve biomass, livestock, food security and migration. Generally

speaking, the model shows a typical behavior of complex systems: at the first simula-

tion’s tick the ABMig’s outputs start from approximately the same point no matter

which scenario is considered. Natural fluctuations and heterogeneity are simulated

through the internal implementation of random number generators, (Gaussian and

lognormal) distributions and seeds. In other words the initialization is on average

similar for each parametrization, with small alterations caused by the above men-

tioned sources of stochasticity. After a transition phase ABMig’s state variables

find their steady state, which generally corresponds to a constant output value or

constant slope. Since the ABM’s aim is a qualitative analysis, absolute values of

these ”final” steady states are for this work not decisive per se, but their significance

lies rather in the relative comparison between different scenarios.

Harvest

In Figure 4.2 the time development of harvest yields for the different scenarios is

plotted in kg per year and household. The total harvest is calculated annually based

on variable ecological factors and on annual precipitation.

In the baseline, considering the mathematical ecological processes, annual precipita-

tion variability appears to be the main origin of the yearly agricultural production

fluctuations, while ecological factors refer mostly to soil quality and might be driving

the long term tendency. The 50-years trend is also influenced by the intrinsic pre-

cipitation trend itself, which for South Wollo is characterized by increasing droughts

frequency and duration. The baseline and the Population Bomb Scenarios are char-

acterized by a similar behavior. Harvest yields drop for the first 20 years, and
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afterwards start to slowly increase, reaching a stable state with a constant slope.

This finding is consistent with the SA, where harvest was not influenced by pop-

ulation density changes. Thanks to the increase in the production factor and the

decrease in soil depletion due to slope , in CRGE harvest yields are higher than in the

other parametrizations and strictly increasing. In contrast to the previous scenarios,

agricultural yields in the Tech Future Scenario are dramatically dropping in the first

two years. This is partly a consequence of the steep drop in soil quality because of

the intensified farming practices (in particular the increase in the oxen-factor input).

Afterwards, the curve presents a recovering behavior with a slow increase over time,

but still not reaching the yields of the other scenarios. The increased use of oxen and

new technologies (both represented by oxen-use) impacts positively on the quantity

of harvest, partly balancing the effect of a land-use management not addressing the

diminishing soil quality.

Figure 4.2: Time development of harvest yields in kg per year and household for the
different scenarios. The line represents the mean, the shadowing represents downside
and upside standard deviation.

Reserve Biomass

The time development of reserve biomass per area is plotted in Figure 4.3. Reserve

biomass describes the non-photosynthetically active biomass which mainly serves

as storage of the plants below and above ground, and includes for example roots
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or woody branches [35]. Here, the baseline and Population Bomb scenarios shows

identical decreasing trajectories, TF resembles an exponential decrease and CRGE

has again the largest values. In this plot, it is important to notice the asymmetry of

downside and upside standard deviations, where the latter is smaller than the first.

This kind of statistical approach allows to identify the asymmetries in the differ-

ent simulations. In particular, the large downside standard deviation indicates that

there are some outliers smaller than the mean. Moreover, the majority of the sim-

ulations produced outputs which accumulated around the average and were upper

limited. In other words, some (few) simulations produced outputs with particu-

larly low levels of reserve biomass, while there were less outliers with much higher

value than the average biomass. Demographic change does not have an impact on

reserve biomass. The dynamics of biomass are in fact determined mostly by the

grazing pressure on reserve biomass (gr2), which was changed in opposite directions

for CRGE and TF.

Figure 4.3: Time development of reserve biomass in g/m2 for the different scenar-
ios. The line represents the mean, the shadowing represents downside and upside
standard deviation.

Livestock

Figure 4.4 shows on the y-axis mean and standard deviation of the average livestock

units per household and time on the x-axis. Livestock is measured in Tropical Live-
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stock Units (TLU), a unit to compare livestock numbers for different animals based

on the grazing equivalent of one ”tropical cow” [23]. Again, livestock starts at the

first time point at a similar value for all scenarios and then decreases until reaching

a relatively constant value, which differs for each scenario. The fastest decrease is

to be observed for TF, followed by The Population Bomb and the baseline. In the

CRGE the decrease is the least sharp, and the final average TLUs per household is

the highest. In the model more harvest generates more crop residues which can be

used to feed the livestock. Also, the increases in communal grazing land and in the

share of non-farm activities (which means also increased savings) positively affects

the livestock dynamics by allowing HHs to diversify the feeding methods of their

animals. On the contrary, an increase in birthrate negatively impacts the available

resources and indirectly causes the HHs to sell their unfed livestock. Livestock dy-

namic is the result of complex socio-ecological interactions and other procedures -

crop dynamics and the harvest output in the first place - compete to determine the

different scenario trajectories.

Figure 4.4: Time development of livestock units in tropical livestock units (TLU) per
household for the different scenarios. The line represents the mean, the shadowing
represents downside and upside standard deviation.
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Food Security

Food Security is calculated as the percentage of population which is food secure,

that is, whose yearly calories’ demand is covered. Calories’ intakes stem from milk

and crops, and in case the available food is still not fulfilling the households need

of 2100 calories per person, savings are used to buy food [25]. If there are no

savings, then the households is considered food insecure. Initially all the agents

in the system are set as food secure, but in time the share declines for all the

scenarios, as seen in Figure 4.5. Food security in TF starts to decline later but

faster than in the other parametrizations. After 50 years of simulation the share

of food secure population for CRGE is around 47%, for the baseline 36%, for TF

25% and for the Population Bomb around 20%. The trajectories are influenced

by livestock and harvest dynamics and by the savings available in the system and

are therefore sensitive to the cumulative changes of parameters which control these

processes. Thus, considered the above analysis of ABMig’s outputs, it is clear how

the different drops in food security emerge from complex submodels’ interactions

smoothing out its behavior.

Figure 4.5: Time development of the share of food secure population for the different
scenarios. The line represents the mean, the shadowing represents downside and
upside standard deviation.
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Migration

The number of migration events is calculated yearly and plotted in Figure 4.6 .

The time-dependent behavior of migration is unchanged for baseline, CRGE and

TF Scenarios. The number of migrants is increasing linearly. In the PB Scenario

the number of migrants is increasing faster over time, in other words the slope

is not constant, it is instead increasing. The fact that the number of migration

Figure 4.6: Time development of the migration events for the different scenarios.
The line represents the mean, the shadowing represents downside and upside stan-
dard deviation.

events is scaling up with the number of agents in the system is not surprising. The

behavior of the migration output is not responding sensitively to the different land-

use management approaches parametrized in the different scenarios. To observe

some differences in the simulated migration we will focus on a comparative analysis

in the resources gap between migrants and non-migrants.

Migrants versus non-migrants

In the migration process we focus on the out-migration and its impact on their ab-

sence in South Wollo. Once that a person leaves the system (the so-called migration

event), he or she is ignored by the model’s future dynamics. The household divides

its resources between the remaining family members in South Wollo, and does not
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send or receive money or resources from the migrant. Although remittances repre-

sent in the reality an important source of income for migrants’ families, they are

not part of the simulated processes as the model is limited for modelling exogenous

factors. The agent, in case he or she is marked as non-permanent, is taken into

account in the resources distribution in the model when he or she stochastically

”decides” to come back to the household.

In Figure 4.7 we compare the financial resources of migrants in the year of the

migration event to the resources of non-migrants in the same year the different

elevation regions and scenarios. Considering the standard choice of 50 discrete time

steps, the financial gap gfinancial for each scenario and altitude is calculated as:

gfinancial =
∑
t

f
migrant

t − fnon−migrant

t

50 · fmigrant

t

(4.1)

where f
migrant

t represents the mean over the respective savings over all migrants for

a given year. It is known that the available resources in the system depend on the

relative scenario and altitude. Moreover, in view of how the migration decision is

technically implemented, generally migrants come from better-off households and

have access to more resources. Consequently, it has been chosen to normalize the

(mostly positive) gap to the average savings of migrants f
migrant

t .

A gap of 200% means that the migrants have twice as much savings than non-

migrants. A negative gap could occur when non-migrants have more savings than

migrants, which is the case for outliers in CRGE and medium elevation, although

the averaged gap is always positive. In all the scenarios the gap is broader for

areas with high elevation. In general the biggest gaps are in the baseline and TF,

while the smallest is in CRGE Scenario. The differences between high and medium

elevation regions are flattened for the Population Bomb and the CRGE Scenarios.

The TF Scenario causes an increase in the baseline gap, and still diverges for the

different elevations. The altitude distribution and cropping seasons are correlated,

in particular the households owning patches in the agricultural belt Weyna Dega

(high elevation) only take advantage of the Belg rain season. As seen in Figure

3.5, individuals from Weyna Dega, thus harvesting just once per year, are assigned

migration potential only for the cases:

1. there is migration experience in the household and they are engaging in non-

farm activities

2. they are randomly selected from the rest of the population which does not full

fill these conditions.

Households engaged in non-farm activities have more sources of income and there-
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Figure 4.7: Mean and standard deviation of the financial gap between migrants and
non-migrants at the year of the migration event for different scenarios and altitudes.

fore in ABMig more savings. As a consequence, migrants from Weyna Dega have

a different income distribution than migrants from medium elevation areas, causing

asymmetries in the financial resources gap. The inequalities between different alti-

tudes are probably enhanced by the increasing land degradation in TF negatively

affecting the whole economy. As for the Population Bomb Scenario, we suppose that

the differences in resources gap for Dega and Weynadega are flattened out due to

the increasing number of individuals in each household, no matter how their liveli-

hoods are (in-)secured. In ABMig we find that sustainable land-use management

addresses inequalities in income between migrants and non-migrants by diminishing

the financial gap.

Similarly, we calculated the food security gap between migrants and non-migrants,

and plotted it for different scenarios and altitudes in Figure 4.8. The gap is increasing

for TF and Population Bomb, and narrows down for CRGE in comparison to the

baseline. In baseline, TF and CRGE the food security difference between migrants

and non-migrants is slightly bigger for medium elevation than for the high Weyna

Dega regions.
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Figure 4.8: Mean and standard deviation of the food security gap between migrants
and non-migrants at the year of the migration event for different scenarios and
altitudes.
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5 Discussion

Sensitivity analysis

To cope with the challenge of translating conceptual scenario narratives into quan-

titative model input variables, GSA have been run and produced a list of sensitivity

indices coherent with ABMig’s design. Although the computation of Morris Sensi-

tivity Indices belongs to the most simple and efficient GSA methods [36, 39], the

process of parameter ranking was complex and time intensive, involving different

model set-ups, specific packages (coupling NetLogo and R) [38] and high computa-

tional costs. Specifically, GSA showed that the different submodels in ABMig are

reacting sensitively to parameter changes, and these reactions reflect the modeller’s

expectation and intention.

Scenarios and Livelihoods

The developed scenarios were 3+1: Climate-Resilient Green Economy, Population

Bomb and Tech Future, plus a baseline. ABMig successfully represents some real-

word processes for the different scenarios, for example the fact that harvest yields

depend on the long term by the composition of precipitation and soil quality trends,

and that harvest is responding to different simulated land-use management prac-

tices. [31, 32] Moreover, the development in time of the model’s state variables can

be considered part of the ABMig’s validation.

In comparison to other scenarios, CRGE portraits a society with less resource

scarcity and diversified livelihoods. A technological future, with improved genet-

ically modified crops but no policies directly addressing soil degradation, leads to

a decrease in harvest yields, in livestock units and enhances inequalities between

migrants and non-migrants. The available resources suffer from the unhampered

environmental stress and damage the livelihoods of the farmers. As for the Popula-

tion Bomb scenario, the iterativelly increasing population density places additional

stress on the available natural resources, and the share of food insecure population

increases sharply. In fact, food production per capita heavily drop as a result of the

large demographic pressure on an unchanged (with respect to the baseline) and de-

clining amount of natural resources, increasing the necessity of permanent migration

rather than temporary drought-related mobility [6]. Consequently more adaptation

strategies to deal with the declining NCPs are needed, with migration being one of

the possible households coping approaches [7].
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Migration Trajectories

Using a Bayesian Network, Groth et al. (2021) [28] suggested that environmen-

tal changes increase migration in South Wollo, as migration needs rise due to low

agricultural production. This would be the case for the TF and Population Bomb

scenarios, where, following this ratio, environmental degradation should drive an

increment in the number of migration events.

In discordance with the conclusions from [28], the analyses from this thesis per-

formed on different land-use management scenarios produced results where out-

migration trajectories could not be altered. The reason is that ABMig lacks of

sufficient strong feedback loops between migration and environmental change due

to the technical implementation of migration decision.

As observable in Figures 3.5 and 3.3, a weak impact of parameter changes in the

migration output was expected, due to the weak coupling between the modelled mi-

gration decision-making and the land-use environmental submodels. In fact, initial

migration experience is parametrized based on empirical data, and it is re-linked

with the migration progress itself, but has no direct connection with environmental

processes. In particular, looking at the factors for migration potential in Figure 3.5,

the used cropping season depends on the altitude of the owned patches, which is of

course stable in time. Households engage in non-farm activities either because they

belong to the selected household in the initialization process (which is 75% of the

households) or because the mean soil quality of their patches is dropping below a

certain threshold. Even though this might look like a dynamical condition, the soil

quality in the system drops so fast in the first simulations years that most of the

households engage in non-farm activities after the first simulation ticks. This trend

is enhanced by the fact that the initial share of households engaged in non-farm

activities is already high. The migration decision procedure depends mostly on the

initial empirical parametrization, rather than on factors dynamically changing over

time. Results from exploratory SAs were also supporting this hypothesis.

MigSoKo past research constitutes a solid theoretical base for the model’s design,

but limits the options for more complex non-linear behaviors. The theoretical back-

ground partly superimposes trends and stiff drivers, which might not be as relevant

for the future as they are for the present. Considered these technicalities, it is un-

surprising that the model migration output shows the same trajectories for different

land-use scenarios, consequently disagreeing with the conclusions from [28].

Inequalities and Migration

While migration is an important adaptation strategy, it cannot be adopted equally

among households and as a result often reinforces existing inequalities. From pre-

vious place-based researches [1, 28], it is known that migration ability is correlated

with the economic resources of HHs, which act as mobility-enabling factors. As vi-
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sualized in Figure 3.5, this mechanism is indirectly depicted in ABMig through the

migration decision-making process due to the non-farm activities, which represent

an non-agricultural source of income.

In fact, the general gap in resource access and in vulnerability between mobile

and immobile communities is both observed in the real world and simulated, where

those not possessing the means or the network which facilitate migration are twofold

disadvantaged [1, 49]. Whilst considering this fact, we focused on analysing the dif-

ferences in livelihoods between migrants and non-migrants in the year of migration

and how they are influenced by the different altitudes and scenarios. Our results

surprising suggest that this feedback loop feeding inequalities could be weakened

by the adoption of more sustainable land-use practices, which hamper the increase

in resources gaps between migrants and non-migrants. This effect is not intention-

ally modelled or intrinsic in the microscopic ABMig’s design, hence it represents an

emergent phenomenon in our model for the exploration of the migration-environment

nexus and offers possible computational insights to the ”mobility equity” framework

[49].

33



6 Conclusion

Exploring the potential consequences of policy decisions as well as measuring progress

towards sustainable development, holistic socio-ecological modelling and scenario de-

velopment have been identified as keys for future research to assess effects of global

change on ecosystems and society. By microscopically modelling sufficient real-world

complexity, the scope of socio-ecological ABMs is twofold: firstly insights in the

cause-effect relations of expected dynamics can be gained, and secondly unexpected

dynamics from known processes can be qualitatively explored. The acquired knowl-

edge adds to our understanding of the local system and can support policy makers

and local stakeholder in decision-making. In this work we developed policy-oriented

scenarios using the model ABMig for human migration-environment interactions

in the Ethiopian highland region of South Wollo. This ABM incorporates not only

complex human decision-making but also fully integrated socio-ecological feedbacks.

It takes into account temporary migration while focusing on a out-migration and

resource depletion hotspot. Hence, this thesis successfully contributes to filling the

research gaps mentioned in the Research Question, Aim and Purpose.

After developing literature-based scenario narratives, GSA has been run to cope with

the challenge of translating the conceptual storylines into a mathematical transla-

tion in quantitative model input variables. The new input values for the different

scenarios have been chosen applying the LHS and output distance maximization

methods as discussed in Chapter 2. The simulated results for the developed sce-

narios show that more sustainable land-use practices lead to improved livelihoods

of the Ethiopian rural communities. In contrast, growing demographic pressure and

policies not directly tackling soil erosion and resource depletion emphasize the local

population’s vulnerability to famine and result in a higher share of food insecurity

in the rural community.

In general, this analysis was able to identify most of the responsible factors for the

different model’s behaviors, yet some dynamics remain unexplained, for example the

role of soil quality as a possible global variable and the interaction between altitude

and resource distributions. Following the example of Janssen, M. A. (2010) [34], a

deeper inspection of the soil quality with respect to resource dynamics and demo-

graphic trends at the different altitudes could help to gain more insights on ABMig.

Nevertheless, the model has been proven able to reliably represent selected processes

and their cause-effect chains, and can be considered qualitatively validated. While
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the number of migration events where unchanged by land-use scenarios, interest-

ing results have been found in how resources are distributed between mobile and

immobile individuals for different altitudes and socio-ecological scenarios. ABMig

replicates the feedback loop between resources inequalities and migration, where re-

sources are unevenly distributed between mobile and immobile population, in favour

of migrants. Unexpectedly, we found that the relative resources gap between mi-

grants and non-migrants at different altitudes closes for the more sustainable sce-

nario. On the contrary, the food security and financial resources gaps appear to

worsen together with environmental degradation and demographic pressure.

For a deeper analysis of the human mobility and environment interlinkages, future

research on ABMig could modify and/or extend the migration process to include

more dynamical variables, different representations of human decision-making or

a more complex social network between the agents [40]. A stronger coupling be-

tween the social and the physical submodels would be needed, together with a solid

knowledge to justify it. The theoretical and empirical framework for model’s ex-

tension and improvement must be provided by future place-based research, which

takes into account the cultural and environmental heterogeneity of socio-ecological

interactions. Environmentally-induced migration is increasingly being understood

as a multi-causal phenomena and a solid scientific background should increasingly

distinguish between migration desire, ability and willingness. [1, 6, 7, 49]

Migration represents a risk diversification strategy for human beings to better cope

with global change and can be interpreted in computational simulations as the

agent’s adaptation to a dynamic environment. Capable of the microscopic simu-

lation of complex adaptive systems, agent-based models provide a powerful tool

to analyze the nexus between global change and mobility, while considering the

heterogeneity of the drivers of agents’ decision-making. [8] Future research using

ABMs should flexibly include different ecological mechanisms and agent rules of

behavior for the further investigation of the feedback loops between migration and

climate change, and provide a consistent tool for local governance and communities

to achieve sustainable development in a changing word. Last but not least, ABMs

serve as a fertile field for inter- and multi-disciplinarity, enriching and stimulating

both natural and social sciences to solve together real world problems.
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