Coupling agent-based modeling and Bayesian networks to study natural resource use and human migration in the Ethiopian highlands

burce Lisa Garbe

Jule Thober¹, Juliane Groth¹, Stephan Thober² and Kathleen Hermans^{1,3}

¹Helmholtz Centre for Environmental Research - UFZ, Department of Computational Landscape Ecology, Leipzig, Germany, ² Helmholtz Centre for Environmental Research - UFZ, Department of Computational Hydrosystems, Leipzig, Germany, ³ Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Wageningen, The Netherlands

Social Simulation Conference 2019, Mainz, 23 – 27 September 2019

THE ENVIRONMENT-MIGRATION NEXUS

POTENTIAL OF SIMULATION MODELS

Simulation models:

- Ability to study feedbacks between social and ecological systems & future trajectories under different scenarios
- Some aggregated modeling approaches exist¹
- But: based on "regional-level assumptions regarding migration decisions"²
 → ignoring that migration emerges from individual decision-making

\rightarrow Agent-based modeling

- Ability to depict individual behavior & social-ecological feedbacks³
- Recently increasing number of agent-based models (ABMs) that consider the role of the natural environment in rural migration processes⁴
- Often not considering fully-coupled social-ecological feedbacks & migration decisions modeled simplistically⁵

¹Krol & Bronstert 2007; Rigaud et al. (2018); ²Neumann & Hilderink 2015; ³Schlüter et al. 2012; ⁴McLeman 2013; Klabunde & Willekens 2016, ⁵Thober et al. 2018

MODELING MIGRATION DECISIONS USING BAYESIAN **NETWORKS (BNs)**

BNs are probabilistic models consisting of...

- Directed acyclic graph of nodes (i.e. variables) connected by edges (i.e. statistical relationships between two variables)
- Conditional probabilities for each variable given its parents in the graph
- Incorporation of qualitative as well as quantitative data¹
- Intuitive graphical interface enables participative processes¹

Advantages of coupling ABMs and BNs

- spatial and temporal processes; multiple human actors; social interactions¹
- Couplings of ABM and BN are still rare (e.g. Kocabas & Dragicevic 2013, Pope et al. 2015, Abdulkareem et al. 2018, 2019)

Weather Lunch Mood

	good	bad
sun, yummy	0.95	0.05
sun, yucky	0.70	0.30
rain, yummy	0.75	0.25
rain, yucky	0.1	0.9

¹Sun & Müller 2013

THE ETHIOPIAN HIGHLANDS

- 1200 up to 4550 masl
- Precipitation: unimodal/bimodal distribution; >700mm annually¹
- Rainfed subsistence agriculture (i.e. cropping, livestock keeping)²
- Livelihoods are challenged by
 - decreasing amount & increasing variability of precipitation
 - Frequency and intensity of droughts
 - Land degradation
 - Population increase

\rightarrow Food insecurity & migration

¹USAID 2010, ²Hermans & Garbe 2019

STUDY APPROACH & AIM

Study aim: (1) understand the current and future state in the Ethiopian highlands and (2) formalize causal relationships between environmental change, livelihoods and migration

SETTING UP THE BAYESIAN NETWORK

Influence factors of out-migration (based

on 19 published empirical studies):

Age at migration

Sex

Household size

Farm size

Social dependency ratio

Poverty

Number of livestock unit (TLU)

Food security

Combined with household survey data:

ETHIOPIAN RURAL HOUSEHOLD SURVEY, 2009 QUESTIONNAIRE FOR THE SEVENTH ROUND

1. Name of household head	
2. Is this the same household head as appearing on the roster card for the previous round YES 1 NO 2	

3 Interview Log	4 Check off if Complete	5 Any problems 1 No (or few) problems 2 Respondent had some difficulty answering these questions 3 Respondent had considerable difficulty answering these questions	6 Checked by supervisor
Voluntary Consent Obtained			
Roster Card			
Part I			
Part II			
Part III			
Part IV			

	CHECKS (put crosses if applicable)						
	DATE CHECK	CHECKER	STATU	s	PROBLEM	COMMENTS	CORRECTED
			ок	RETURN			
[

→ used to set-up network structure

→ used for quantifying the relationships

THE BAYESIAN NETWORK FOR MIGRATION DECISIONS

CONCEPTUAL OVERVIEW OF ABMig

MODEL DESCRIPTION OF ABMig *PRECIPITATION*

Approach:

- Based on global CHIRPS dataset¹; validated against data from weather stations in Ethiopian highlands
- Clustering of CHIRPS data based on kmeans & identification of five spatial clusters

→ Estimation long-term monthly precipitation climatology and fitted a lag-1 autoregressive model to the monthly residuals as input for the ABM

¹Funk 2010

MODEL DESCRIPTION OF ABMig CROPLAND AND PASTURE PRODUCTIVITY

Increase in altitude leads to..

..decrease in rain use efficiencies, maximum capacities and ratio of green/reserve biomass¹

¹Du et al. 2018, Fensholt et al. 2011, Gudina et al. 2015, Nemera 2016, Li et al. 2008, Ma et al. 2010

MODEL DESCRIPTION OF ABMig MIGRATION & DEMOGRAPHIC PROCESSES

Migration processes:

- Individuals decide to migrate or not based on probability derived with BN
- Share of migrants stay permanently
- Others stochastically return following a lognormal distribution

Demographic processes:

• Individuals die and are born based on age-specific fertility and death rates¹

¹CSA 2007

PRELIMINARY RESULTS

Introduction | Bayesian network | ABM | Preliminary results | Outlook

PRELIMINARY RESULTS REGIONAL DIFFERENCES

- **Region 1:** Eastern Amhara; bimodal; annual mean 800 *mm*
- Region 2:
 Southern Highlands;
 bimodal; annual
 mean 1050 mm
 - **Region 3:** Eastern Amhara; unimodal; annual mean 1500 *mm*

DISCUSSION & OUTLOOK

1) Bayesian network of migration decisions

- Represent feedbacks in BN not possible; but in combination with ABMs!!
- Set of migration influence factors in BN -> neglects other possible factors and is static

2) Model validation & analysis

3) Future model extensions

Destination system

Social interactions via networks and/or collateral use of land

THANK YOU FOR YOUR ATTENTION!

This study has been conducted in the frame of the BMBF- and UFZ-funded junior research group MigSoKo (<u>https://www.ufz.de/migsoko/</u>).

Contact: jule.thober@ufz.de

REFERENCES 1

- Abdulkareem et al. (2018). Intelligent judgements over health risks in a spatial agent-based model. *International Journal of Health Geographics* 17:8.
- **Abdulkareem et al. (2019)**. Bayesian networks for spatial learning: a workflow on using limited survey data for intelligent learning in spatial agent-based models. *Geoinformatica* 23: 243.
- **Du et al. (2018)**. Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency, *Science of The Total Environment* 628–629.
- **Fensholt et al. (2011)**. Analysis of trends in the Sahelian 'rain-use efficiency' using GIMMS NDVI, RFE and GPCP rainfall data. *Remote Sensing of Environment* 115(2).
- Funk (2015). Climate Hazards Group. http://dx.doi.org/10.15780/G2RP4Q
- **Gudina et al. (2015)**. A study of forage yield and nutritive value of natural pastures at varying levels of maturity in North West Lowlands of Ethiopia. *Frontiers of Agriculture and Food Technology* 3(1): 259-264.
- Hermans & Garbe (2019). Droughts, livelihoods, and human migration in northern Ethiopia. *Regional Environmental Change*.
- Janssen (2010). Population aggregation in ancient arid environments. *Ecology and Society* 15(2):19.
- **Klabunde & Willekens (2016)**. Decision-making in agent-based models of migration: state of the art and challenges. *European Journal of Population* 32:73-97.
- **Kocabas & Dragicevic (2013)**. Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model. *Journal of Geographical Systems* 15:403-426.
- Krol & Bronstert (2007). Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Northeast Brazil. Environmental Modelling & Software 22:259-268.
- Li et al. (2008). Plant height as a simple predictor of the root to shoot ratio: Evidence from alpine grasslands on the Tibetan Plateau. *Journal of Vegetation Science* 19: 245-252.

REFERENCES 2

Ma et al. (2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. *Science China Life Science* 53(9): 1142-1151.

McLeman, R. (2013). Developments in modelling of climate change-related migration. *Climatic Change*, 117, 599-611.

- **Müller et al. (2007)**. Relevance of rest periods in non-equilibrium rangeland systems a modelling analysis. *Agricultural Systems* 92, 295–317.
- **Nemera (2016).** Assessment of vegetation dynamics as feed resource and improvement of grazing lands in sheep dominated areas of West Shoa Zone, Oromia Region, Ethiopia. Msc thesis, Haramaya University, Haramaya .
- **Neumann & Hilderink (2015)**. Opportunities and challenges for investigating the environment-migration nexus. *Human Ecology* 43:309-322.
- **Pender et al. (2006)**. Strategies for sustainable land management in the East African highlands. Washington, D.C., International Food Policy Research Institute.
- **Pope & Gimblett (2015)**. Linking Bayesian and agent-based Models to simulate complex social-ecological systems in semi-arid regions. *Frontiers in Environmental Science* 3:55.
- **Rigaud et al. (2018)**. Groundswell: preparing for internal climate migration. World Bank, Washington, D.C., USA.
- Schlüter et al. (2012). New horizons for managing the environment: A review of coupled social-ecological systems modeling. *Natural Resource Modeling*, 25(1), 219-272.
- Sun & Müller (2013). A framework for modeling payments for ecosystem services with agent-based models, Bayesian belief networks and opinion dynamics models. *Environmental Modelling & Software* 45:15-28.
- **Tahir et al. (2018).** Evaluation of livestock feed balance under mixed crop–livestock production system in the central highlands of Ethiopia. *Agriculture & Food Security* 7:19 (2018).

Thober et al. (2018). Agent-based modeling of environment-migration linkages: A review. *Ecology & Society* 23(2), 41.
 USAID (2010). An Atlas of Ethiopian Livelihoods – The Livelihoods Integration Unit. USAID, Government of Ethiopia Disaster Risk Management and Food Security Sector.