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* Background and Aims Plants have evolved various root adaptive traits to enhance their ability to access soil
water in stressful conditions. Although root mucilage has been suggested to facilitate root water uptake in drying
soils, its impact during combined edaphic and atmospheric stress remains unknown. We hypothesized that
mucilage decreases the saturated soil hydraulic conductivity, and consequently, a genotype with high mucilage
production will exhibit lower maximum soil-plant hydraulic conductance and restrict transpiration at relatively
low vapour pressure deficit (VPD). On the contrary, in drying soil, mucilage attenuates the gradients in matric
potential at the root—soil interface and thus facilitates root water uptake, especially at high VPD.

* Methods We compared two cowpea genotypes with contrasting mucilage production rates and subjected them
to three consecutively increasing levels of VPD (1.04, 1.8 and 2.8 kPa) while the soil was left to dry out. We
measured the transpiration rate and soil and leaf water potentials and estimated canopy and plant hydraulic
conductance during soil drying.

* Key Results In wet soil conditions, the high-mucilage genotype restricted transpiration rate at lower VPD
(1.46 kPa) compared with the low-mucilage genotype (1.58 kPa). Likewise, the initial slope of transpiration rate
in response to VPD (the maximum conductance) was significantly lower in the high- compared with the low-
mucilage genotype. During soil drying, the transpiration rate declined earlier in the low- compared with the
high-mucilage genotype, supporting the hypothesis that mucilage helps to maintain the hydraulic continuity
between roots and soil at lower water potentials in the high-mucilage genotype.

* Conclusions Root mucilage is a promising trait that reduces water use in wet soil conditions, thereby conserving
soil moisture for critical phases (e.g. flowering and grain filling), both on a daily basis (increasing VPD) and on a

seasonal time scale (soil drying).

Key words: Cowpea, vapour pressure deficit, soil drying, soil hydraulic conductivity.

INTRODUCTION

Drought stress in plants can occur when water availability is in-
sufficient to meet the needs of the plants for water, resulting
from a mismatch between water supply from the soil (soil dry-
ing) and atmospheric demand (atmospheric drying) (Humphrey
etal.,2021). Water flow across the soil-plant—atmosphere con-
tinuum is driven by a gradient in water potential. This negative
tension enables plants to extract water from the soil, transports it
through the stem and releases it into the atmosphere through
transpiration. Although this long-distance water transport in
plants is primarily passive, it can be influenced actively by mod-
ifying plant traits such as stomata function and plant hydraulic
transport capacity (Taylor, 1964; Fricke, 2017; Ahmed et al.,

2018a; Torres-Ruiz et al., 2024), which allows plants to adapt
to changing environmental conditions (Tardieu et al., 2018;
Cai et al., 2022).

Plant transpiration exhibits a diurnal pattern, being lowest at
sunrise and increasing to a maximum around midday (Zhang
et al., 2017). Transpiration is predominantly governed by the
evaporative demand [such as vapour pressure deficit (VPD)]
and conductances along the soil-plant—atmospheric continuum,
i.e. soil, rhizosphere, root, xylem and leaf hydraulic conduc-
tance (Carminati and Javaux, 2020; Abdalla et al., 2021;
Bourbia et al., 2021). Stomatal conductance decreases with in-
creasing VPD (Grossiord et al., 2020) and the non-linear re-
sponse of transpiration rate to increasing VPD is typically
referred to as the VPD breakpoint (Devi and Reddy, 2018;
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Gholipoor et al., 2013). It has been demonstrated that stomatal
conductance decreases with increasing VPD, even in well-
watered conditions (Bunce, 2006; Baca Cabrera et al., 2020).
Although the mechanisms governing stomatal aperture and clo-
sure have been studied extensively (Hetherington and
Woodward, 2003), the processes driving the transpiration rate
limitations to increased VPD remain contentious (Grossiord
et al.,2020). In angiosperms, this response is thought to involve
diverse mechanisms ranging from passive change in guard cell
turgor to hormonally controlled aperture linked to active
sensing of water status within the leaf (Tombesi et al., 2015;
Grossiord et al., 2020; Cai et al., 2023; Scoffoni et al., 2023;
Binstock et al., 2024). In the context of soil drying, the
reduction in transpiration is believed to involve stomatal closure
triggered by a decrease in below-ground hydraulic conductivity
(Abdalla er al., 2021, 2022; Koehler et al., 2023; Manandhar
et al., 2024). Rodriguez-Dominguez and Brodribb (2020) and
Abdalla er al. (2022) demonstrated experimentally that the
drop in hydraulic conductance at the root—soil interface is the
primary cause for the stomatal closure and thus transpiration re-
duction during soil drying. Higher VPD can exacerbate the
speed of soil drying, thus modifying the plant drought stress
dynamics. Likewise, soil drying will increase the stomatal sen-
sitivity to increasing VPD (Cai et al., 2024; Koehler et al., 2024,
Novick et al., 2024). Hence, understanding the combined effect
of atmospheric drought and soil drying is key to studying plant
water use and its response to environmental stresses.

Plants have adapted various above- and below-ground traits to
regulate water loss during periods of drought stress. Plants can
limit the transpiration rate during high evaporative demand and
early in the soil drying cycle through partial stomatal closure
(Richards and Passioura, 1989; Sinclair et al., 2005). Soil water
conservation during the early growing season by limiting the
transpiration rate during the periods of high VPD could potential-
ly enhance both yield gain and stability, especially in water-
limited environments (Richards and Passioura, 1989; Sinclair
et al., 2010; Choudhary et al., 2014; Messina et al., 2015).
Restricting the transpiration rate under high VPD can be seen
as an anticipatory process to deal with terminal drought condi-
tions (Rodriguez-Gamir et al., 2016; Moussa et al., 2019). This
strategy allows plants to conserve water even before the onset
of water scarcity and maintain their vital functions longer during
drought (Tardieu et al., 2018). In contrast, below-ground traits
that might influence plant water use include, for instance, the for-
mation of root hairs (Cai and Ahmed, 2022) and the association
with arbuscular mycorrhizal fungi (Abdalla et al., 2023).

Another mechanism suggested to regulate water loss during
periods of drought stress takes place at the root—soil boundary
through mucilage exudation. Plants have a natural capacity to
produce compounds that interact with the soil, supposedly en-
hancing water availability to the plants and retaining water in
the soil (Bengough et al., 2011; Naveed et al., 2019; Berauer
et al., 2023). Mucilage is a polymeric gel secreted from the
cap cells of the root tip in most plant species (Ahmed et al.,
2014; Jianga et al., 2022). It comprises primarily polysaccha-
rides, with minor components such as amino acids, organic
acids, proteins, glycolipids and phospholipids (e.g. Nazari
et al., 2020; Werner et al., 2022). Mucilage has been proposed
as a means of facilitating root water uptake during soil drying
(Ahmed et al., 2014; Carminati et al., 2016). Mucilage can ab-
sorb large volumes of water, altering the physical properties of

the rhizosphere during soil drying (Ahmed er al., 2016;
Benard er al., 2018; Zarebanadkouki er al., 2019; Nazari,
2021). Furthermore, mucilage also alters the pore space and in-
fluences functional soil physical properties, such as water reten-
tion and hydraulic properties, thus helping to delay the onset of
hydraulic discontinuity between root and soil (Ahmed et al.,
2014; Carminati et al., 2017; Knott et al., 2022) and enabling
plants to maintain transpiration as the soil becomes drier
(Abdalla et al., 2024).

Although previous studies indicate that mucilage reduces the
saturated hydraulic conductivity of the soil (Ahmed et al.,
2018b; Kroener et al., 2018; Zarebanadkouki et al., 2019) and
facilitates root water uptake during soil drying (Ahmed et al.,
2014; Abdalla et al., 2024), the effect of mucilage on combined
soil and atmospheric drying remains unknown. We hypothesize
that, in wet soil conditions, high mucilage production decreases
the saturated soil hydraulic conductivity, leading to the adaptive
development of a lower maximum soil-plant conductance and
thus resulting in an earlier restriction of transpiration at a rela-
tively low VPD. On the contrary, during soil drying, mucilage
is expected to attenuate the drop in matric potential at the
root—soil interface and extend the range of water potentials in
which roots and soil remain hydraulically connected, hence
maintaining transpiration in relatively drier soil conditions.
Furthermore, we hypothesize that, during soil drying, the drop
in matric potential around the root—soil interface could lead to
a steeper decline in canopy conductance for a low-mucilage ge-
notype compared with a high-mucilage genotype.

To test our hypotheses, we compared two cowpea (Vigna un-
guiculata L.) genotypes with contrasting mucilage production
rates. Cowpea was chosen as a model plant because it is the
only species in which we have genotypes with contrasting muci-
lage production, which helps us to examine the potential role of
mucilage in water uptake in conditions of soil and atmospheric
stress. We subjected the two genotypes to three consecutively in-
creasing levels of VPD (1.04, 1.8 and 2.8 kPa) while the soil was
left to dry out. During soil drying and increasing VPD, we mon-
itored the transpiration rate (E), soil water content (SWC), leaf
water potential (LWP) and soil water potential (SWP). We esti-
mated the canopy conductance (g.) and compared the two geno-
types in wet soil conditions. We also estimated the plant hydraulic
conductance (K},) from the relationship between transpiration rate
and leaf water potential at a given soil water potential.

MATERIALS AND METHODS

Plant and soil preparation

We used two cowpea genotypes with contrasting mucilage pro-
duction rates (Sun et al., 2015). One cowpea genotype produces
low amounts of mucilage and the other produces high amounts.
According to Sun et al. (2015), the low-mucilage-producing ge-
notype (Low mucilage) had 0.5 mg dry weight mucilage per
gram of dry weight roots, whereas the high-mucilage-producing
genotype (High mucilage) had a mucilage content of 3.4 mg dry
weight mucilage per gram of dry weight roots. The seeds for
those two genotypes were sterilized with 10 % H,O, for
10 min and germinated on saturated filter papers in Petri dishes
placed in darkness. Two days later, the germinated seeds (eight
of each genotype) were transferred individually to PVC
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columns (9 cm in diameter, 30 cm in height) filled with sandy
soil, a mixture of 16.7 % loamy soil by weight with quartz
sand (83.3 %). The hydraulic properties of these soils were re-
ported previously by Vetterlein e al. (2021) and are compiled in
the Supplementary Data (Fig. S1). Before being placed into the
columns, the soil was passed through a 1 mm sieve to create ho-
mogeneous soil layers among the replicates.

After germination, a layer of plastic beads (with a diameter of
3.5 mm) was applied to the top of the columns to minimize
evaporation from the soil surface. To prevent soil warming, al-
uminium foil was used to wrap the sides of the transparent col-
umn, which had five holes (5 mm) on the side of the column
walls to enable soil moisture measurements at different depths.

Plant growth conditions

Eight plants of each genotype were grown in a controlled
walk-in climate chamber (ThermoTEC Weilburg, Germany).
During the daytime, throughout the growth period, the plants
were exposed to three consecutive VPD levels. Low VPD
(1.04 kPa) was set at 24.5 °C with a relative humidity (RH) of
68 %. The medium VPD (1.8 kPa) was produced with an RH
of 50 % at 29.5 °C, and the high VPD (2.8 kPa) was set at
33.5 °C with an RH of 40 %. The duration of each VPD level
was 3 h, with a 30 min transition period to simulate natural con-
ditions (Supplementary Data Table S1). All VPD levels were
set with an identical light intensity of 1100 umolm™>s™".
During the nighttime, plants were exposed to a temperature of
18.5 °C and RH of 78 % for 8 h. Plants were watered daily to
ensure optimal water supply and to maintain growth until the
start of measurements. The temperature and RH inside the
chamber were monitored at canopy height every 10 min using
a thermo-hygrometer (EL-USB-1, Lascar Electronics, UK),
and VPD (in kilopascals) was calculated as follows.

(7.5T)
1—-RH 610.7x 10 @730
VPD = y |
100 1000 ey
T'is temperature (in degrees Celsius), and RH is relative humid-

ity (as a percentage).

Soil and plant hydraulic measurements

Data collection began 35 days after sowing, when most
plants had reached the early flowering stage. At this point,
irrigation was withheld, and pots were allowed to dry.
Measurements took place during soil drying for 6 days after
the last irrigation (see details below). Volumetric soil water
content was monitored daily using a time domain reflectom-
eter (TDR; E-Test, Lublin, Poland). The measurement was
taken from five depths for all replicates, and the average val-
ue was considered as the soil water content. In addition,
soil water potential was measured during soil drying
using water potential sensors (TEROS 31; Meter Group,
Munich, Germany).

After the last irrigation, the transpiration rate was obtained
gravimetrically for all replicates after each VPD level. We
weighed the columns manually at the beginning and end of
each VPD level using a sensitive balance (Plattform
Wigezelle H10A, Bosche, Germany) with a capacity of
8000 g and precision of 0.01 g. The transpiration rate was

then calculated based on the changes in weight of the columns
and the corresponding time duration for each VPD level. Before
the dry-down experiment began, we measured the transpiration
rate in well-watered conditions for two consecutive days using
the same method. Plants received full irrigation each night, and
transpiration rates were measured after each VPD level the fol-
lowing day to ensure that transpiration remained constant in
well-watered conditions.

We measured the leaf water potential after each VPD level
and at predawn every other day using a Scholander pressure
bomb. Leaf water potential was measured for one leaf per plant,
with four replicates per genotype.

Plant hydraulic conductance (K,; in grams per second per
megapascal) was estimated from the measurement of E, SWP
(W) and LWP (y.,¢) in well-watered conditions. The value
of K, was calculated as follows:

E

Ky=————

Ysoil = Vleaf
Leaf area was determined at the end of the experiment.
Following harvest, leaves of each individual replicate were
imaged to determine the leaf area (in centimetres squared)
using ImageJ software (Schneider et al., 2012). The bio-
mass, for all replicates, was reported as the dry weight after
oven drying at 60 °C for 72 h (Poorter and Nagel, 2000). In
addition, root biomass was measured in four replicates per
genotype using the oven drying method. Root:shoot ratio
was determined by pooling the shoot dry weight of four
plants per genotype and matching it with the root dry weight
of the same plants.

@

Normalization of transpiration

To assess transpiration reduction after the last irrigation
for each plant, transpiration rate values were normalized
as follows: the transpiration rate of each day for each plant
was divided by the average transpiration rate of the first 2
days when the plants were still at the well-watered stage.
The daily normalized transpiration rate (NTR) for each sam-
ple was calculated as follows (as described by Devi and
Reddy, 2020):

E_day_n
NTR = 3
mean E_days_1 —2 )

Where E_day_n is the daily transpiration rate after last irri-
gation, and mean E_days_I-2 is the average transpiration
rate of the first 2 days when plants were at the well-watered
stage.

Assessment of fraction of transpirable soil water threshold in the
drying conditions

The fraction of transpirable soil water (FTSW) is water
that is available in the soil for plant transpiration. The
FTSW was computed as the soil water content for that day
(pot weight of the day minus pot weight at the end of the
drying cycle) relative to the total transpirable soil water,
which is the difference between the initial and final pot
weights. Based on this calculation, the FTSW was estimated
to be one when the pots were initially watered to pot water
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Fic. 1. Leaf area and plant biomass for two genotypes with contrasting mucilage production. (A) Leaf area. (B) Shoot biomass. (C) Root biomass. (D) Root:shoot
ratio.

holding capacity (100 %) and zero when NTR falls below
0.1 (Sinclair and Ludlow, 1986):

daily pot weight — final pot weight

FTSW =

= 4
(initial pot weight — final pot weight) “)

Calculation of canopy conductance

Canopy conductance (g.; in grams per second per centimetre
squared), was determined according to Jarvis and McNaughton
(1986) .

E _ Pum
=— X 5

LA  VPD %)

Where g. is the canopy conductance, E is the transpiration, LA is

the leaf area, P,,, is the atmospheric pressure (P, =
101.325 kPa), and VPD is the vapour pressure deficit.

8c

Statistical analysis

Segmental linear regression analyses were performed for each
plant (i.e. eight replicates per genotype) to examine the transpi-
ration rate in response to increasing VPD using the R segmented
package v.4.3.2 (Muggeo, 2023). This analysis allowed us to
identify the VPD breakpoints (VPDgp) and determine the initial
slope (Slopel) and the slope after the breakpoints (Slope2) in the
transpiration rate response to an increase in VPD. The same

analysis was performed to calculate the fraction of transpirable
soil water breakpoints (FTSWgp) threshold in NTR response to
FTSW. Furthermore, the soil water content (in centimetres cubed
per centimetre cubed), at which the normalized transpiration rate
began to decline (the critical soil water content), was also deter-
mined using segmented linear regression analysis. Moreover, an
independent #-test was performed to evaluate the significant dif-
ference between the mean of vapour pressure deficit breakpoint
(VPDgp; the VPD at which the increase in E is restricted with ris-
ing VPD), Slopel, leaf area, dry shoot biomass, dry root biomass
and root:shoot ratio of the two genotypes (Supplementary Data
Table S2). A r-test was also used to evaluate daily differences
in soil water moisture between genotypes from day 3 onwards.
In all cases, P <0.05 was considered to indicate significance.
All data analyses were performed using R version 4.3.2
(R Core Team, 2022) and MATLAB (Math Works Inc., USA).

RESULTS

The impact of root mucilage on soil moisture depletion and
transpiration dynamics

No significant differences were observed in leaf area between
the low- (332.5+34.8cm? and high-mucilage (310.95 +
36.0 cm?) genotypes (P = 0.67, t-test; Fig. 1A). All values are
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notypes. Data are mean values + s.e. (n = 8). Asterisks indicate significant dif-
ferences between genotypes (***P < 0.001 and ****P < 0.0001).

means + s.e. Similar results were observed in shoot biomass,
root biomass and root:shoot ratio (Fig. 1B-D). Although no sig-
nificant differences in leaf area and root:shoot ratio were ob-
served, the soil moisture depletion rate during soil drying was
slower in the high- compared with the low-mucilage genotype
(Fig. 2). A significant difference in soil water content started
from day 3 onwards (Fig. 2; P < 0.001).

During soil drying, normalized transpiration rate decreased at
higher soil water content in the low mucilage genotype [0.182
(95 % CI: 0.171-0.190) cm® cm™] compared with the hlgh-
mucilage genotype [0.166 (95 % CI: 0.161-0.171) cm’ em™ ]
as suggested by the segmented linear regression model (Fig. 3).

The impact of mucilage on plant response to atmospheric drying in
wet soil conditions

In wet soil conditions, the transpiration rate increased with in-
creasing VPD until a threshold was reached in both cowpea geno-
types (Fig. 4A; Supplementary Data Fig. S2 and Table S3).
Notably, in these conditions, VPDgp, the threshold for the restric-
tion of transpiration rate in response to VPD, is significantly differ-
ent between the two genotypes (Fig. 4A). The low-mucilage
genotype exhibited a restricted transpiration rate at a significantly
higher VPD (1.58 + 0.013 kPa) than the high-mucilage genotype
(1.46 +0.02 kPa; P =0.001; Table 1; Fig. 4A). Furthermore, the
slope in the relationship between transpiration rate and VPD before
the breakpoint (Slope1; in grams per second per centimetre squared
per kilopascal) was significantly higher in the low-mucilage geno-
type (0.009 +0.0004 g s™' em > kPa™") co ]pared with the high-
mucilage genotype (0.006 +0.00023 gs™'ecm 2 kPa™!; P<
0.001; Table 1; Fig. 4A).

In wet soil conditions, the low-mucilage genotype demon-
strated a relatively higher VPD breakpoint (VPDgp=1.6 +
0.048 kPa) at a hlgher plant hydraulic conductance (K=
1.22x10™* g s MPa™") compared with the high- muc11a§e ge-
notype (VPDgp=145+0.06kPa, at K,=1.0x10"

MPa™'; Fig. 5).

The response of canopy conductance (g.) to an increase in

VPD varied between low- and high-mucilage genotypes

1.2

A Low mucilage
e High mucilage

=
o

o
o

Normalized transpiration rate
o o
I o

o
[N

0.20

6 (cm3 cm™3)

Fic. 3. Relationship between normalized transpiration rate and volumetric soil
water content (&; in centimetres cubed per centimetre cubed) for low- (red) and
high-mucilage (blue) genotypes at high vapour pressure deficit (2.8 kPa). The nor-
malized transpiration rate in response to soil water content (¢) was analysed using a
segmental linear regression model. The threshold or breakpoint (critical soil con-
tent at which plants start to downregulate their transpiration) is shown in the figure
(6gp; the dotted vertical line). The data points (filled triangles and circles) during
soil drying are shown together with segmented regression lines (solid line).

(Fig. 6A). In wet soil conditions, the low-mucilage genotype
had higher canopy conductance values at all VPD levels. For in-
stance, at low VPD (1.04 kPa) canopy conductance values
were 0.87x 107> +0.28 x 107> gs Yem™ for the low-
mucilage genotype and 0.58 x 10> +0.19x 107> gs~' cm™
for the high-mucilage genotype. At high VPD (2.8 kPa), canopy
conductance values were 0.5x 107> +0.18 x 1072 gs™' cm ™
for the 1ow mucﬂage genotype and 0.35x 1077 +0.12 X
1072 g s~ % for the high-mucilage genotype. Regarding

canopy conductance in relationship to leaf water potential, a
substantial decline in canopy conductance in wet soil conditions
aligned with the increase in VPD and the resulting decrease in
leaf water potential in both genotypes (Fig. 6B, C). At the
same VPD in wet soil conditions, the low-mucilage genotype
had higher canopy conductance at more negative leaf water po-
tential (—0.4 MPa; Fig. 6B) than the high-mucilage genotype
(—0.3 MPa; Fig. 6C).

Interaction between soil and atmospheric drying on soil-plant
hydraulics

During soil drying, the transpiration rate increased linearly
with rising VPD until reaching a threshold/breakpoint in both
cowpea genotypes (Figs 4B, C and 7). The low-mucilage geno-
type restricted transpiration rate at lower VPD (1.39+
0.05 kPa) than the high-mucilage genotype, which restricted
transpiration rate at higher VDP (1.58 +0.06 kPa; P =0.03;
Table 1; Fig. 4C).

In both genotypes, no clear relationship was observed be-
tween VPDgp, the VPD at which transpiration rate was restrict-
ed with soil drying, and soil water content (Fig. 8A). However,
Slopel became less steep with decreasing soil water content in
both genotypes, with the reduction being slightly more pro-
nounced in the low- compared with the high-mucilage
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Fic. 4. Transpiration rate (E; in grams per second per centimetre squared) in response to step increases in vapour pressure deficit (VPD; in kilopascals) with

segmented regression lines for low- (red) and high-mucilage (blue) genotypes. (A) Wet soil: average of the first three consecutive days of transpiration rate

when plants were in well-watered conditions (n = 8). (B) Moderate drought: average of two consecutive days of transpiration rate in the middle of the dry-down

experiment (n = 8). (C) Severe drought: average of the last 2 days of transpiration rate during the dry-down experiment (n = 8). The average soil water content ()
for all replicates (n = 8) for the respective soil condition is displayed.

TABLE 1. Summary of the coefficient estimates and their standard errors obtained from the segmented linear regression analysis for each
genotype under different soil water content.

Genotype SWC VBDgp £s.e. Genotypic Slopel + s.e. Genotypic  Slope2 +s.e. (zs~' cm 2 kPa~")  Genotypic
(em® cm™) (kPa) difference (g sT'em™2 kPa™h) difference difference

Low mucilage 0.243 1.58+£0.013 P =0.001 0.009 + 0.0004 P= s 0.0014 +9.7 x 1073 P=0.018
High mucilage  0.246 1.46 +0.02 0.006 + 0.00023 SIX 107 6 002 4+ 0.00056
Low mucilage 0.165 1.39+£0.043 P=0.87 0.0033 +0.00012 P= 0.0072 + 0.00041 P=

. . 2.5x 1078 49x 1077
High mucilage 0.186 1.38 £ 0.051 0.0015 +0.00011 0.0023 + 0.00075
Low mucilage 0.122 1.39+0.05 P=0.03 0.0004 x 107>+ 82 x 107° = X —7.09 x 107> £5.0 x 107° P=0.048
High mucilage 0.151 1.58 +0.06 0.00113 x 107> +4.7 x 1077 8.6x10 1.84x 107 +4.1 x 107°

This includes the slopes of the first linear segment (Slopel), the vapour pressure deficit (VPD) at which the increase in transpiration with rising VPD was
restricted (VPD breakpoint; VPDgp), and the slopes after the breakpoint (Slope2).

genotype, although the difference was not significant (Fig. 8B).
Additionally, a positive correlation was found between transpi-
ration rate sensitivity to atmospheric drying (VPDgp) and tran-
spiration rate response to soil drying (FTSWgp; P=0.001;
Fig. 8C).

In wet soil, the transpiration rate at high VPD was slightly
higher in the low-mucilage genotype than in the high-mucilage
genotype (Fig. 9A). As the soil dried, the transpiration rate in
the low-mucilage genotype dropped faster (Fig. 9A) compared
with the high-mucilage genotype (Fig. 9B). Leaf water potential
decreased with an increasing VPD in wet and severe drought
conditions (Fig. 9). The high-mucilage genotype generally ex-
hibited less negative mean leaf water potentials than the low-
mucilage genotype (Fig. 9). In wet soil conditions and high
VPD, the higher negative leaf water potential was —0.51 +
0.046 MPa for the high-mucilage genotype and —0.62 +
0.036 MPa for the low-mucilage genotype. In severe drought
conditions, the most negative leaf water potential was —1.0 +
0.04 MPa for the low-mucilage genotype under high VPD,
while the high-mucilage genotype had a less negative water po-
tential of —0.61 + 0.009 MPa in the same conditions (Fig. 9).

DISCUSSION

We investigated the regulation of plant water use of two
cowpea genotypes with contrasting mucilage production
during combined edaphic and atmospheric stress. In wet
soil conditions, the low-mucilage genotype had a higher
VPD breakpoint (a measure of transpiration restriction)
than the high-mucilage genotype. The initial slope of tran-
spiration rate in response to VPD (Slopel; here interpreted
as the maximum conductance; Sinclair et al., 2008; Sadok
and Sinclair, 2010; Schoppach et al., 2017) was significantly
higher in the low-mucilage genotype compared with the high
mucilage genotype in wet soil conditions. On the contrary,
during soil drying, the transpiration rate declined earlier in
the low-mucilage genotype compared with the high-
mucilage genotype, supporting the hypothesis that mucilage
helps to maintain the hydraulic continuity between roots and
soil at lower water potentials in the high-mucilage genotype.
Furthermore, the high-mucilage genotype exhibited less
negative mean leaf water potentials than the low-mucilage
genotype.
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Impacts of mucilage on regulation of water fluxes in wet soils

Despite similar atmospheric demand scenarios, comparable
leaf area and root:shoot ratio, significant differences in soil wa-
ter depletion rate between the two genotypes highlight the role
of mucilage in regulating water fluxes at the root—soil interface,
even in ample water conditions. In previous studies, mucilage
has been shown to influence the viscosity of soil solution, there-
by reducing the saturated hydraulic conductivity (Ahmed ef al.,
2018a, b; Kroener et al., 2018; Benard et al., 2019; Landl et al.,
2021). The reduced saturated hydraulic conductivity might af-
fect water flow at the root—soil interface, thereby decreasing

1.8 T T

-# Low mucilage

-# High mucilage
1.7 -
15 B

16

VPDygp, (kPa)

13 B

1.2 L L
1.0 11 1.2 13

Kp (g st kPa?) x1074

Fic. 5. The relationship between the vapour pressure breakpoint (VPDgp; in

kilopascals), obtained from transpiration rate—vapour pressure deficit (VPD)

relationship using segmented regression analysis, and plant hydraulic conduc-

tance (Kp; in grams per second per megapascal) determined in wet soil condi-
tions for low- (red) and high-mucilage (blue) genotypes (n =4).

transpiration at the plant scale (Berauer et al., 2023; Abdalla
et al., 2024). The underlying mechanism is that in well-watered
conditions, mucilage forms a viscous polymeric layer at the
root—soil interface (Kroener et al., 2014; Volk et al., 2016),
which increases the viscosity of the liquid phase in the rhizo-
sphere, reducing saturated hydraulic conductivity (Ahmed
et al., 2018b). This could limit water supply to the roots under
increasing evaporative demand. This could be a plausible expla-
nation for the slightly slower rate of soil moisture depletion ob-
served in the high-mucilage genotype compared with the
low-mucilage genotype (Fig. 2).

Interestingly, the high-mucilage genotype exhibited a lower
VPD breakpoint in transpiration rate response to rising
VPD (Fig. 4). This earlier breakpoint (Table 1; Fig. 4A;
Supplementary Data Fig. S2) and the associated lower maximum
soil-plant conductance (Table 1; Fig. 4A) might be linked to a re-
duced water supply to the roots under increasing evaporative
demand, potentially owing to the mucilage-induced decline in sat-
urated hydraulic conductivity, as described above. Furthermore,
we observed that lower plant conductance was correlated with a
lower VPD breakpoint, whereas higher plant conductance was as-
sociated with a higher VPD breakpoint (Fig. 5). A previous study
also showed that alow VPD breakpoint is associated with low plant
hydraulic conductance (Choudhary et al., 2014), hence plants with
higher hydraulic conductance might exhibit a delayed response to
increasing VPD (e.g. reaching a higher transpiration rate before
breakpoints occur). In contrast, Koehler et al. (2024) reported
that C,4 cereals (sorghum, maize and millet) showed earlier restric-
tions in transpiration rate at lower VPD when their maximum con-
ductance (Slopel) was high in low-VPD conditions. The authors
suggested that higher maximum conductance at low VPD might
predispose plants to earlier regulation of transpiration as evapora-
tive demand increases. Therefore, in wet soil conditions, we as-
sume that transpiration rate restrictions in response to VPD
might not depend solely on plant conductance, but might also be
impacted by mucilage-induced changes in rhizosphere hydraulic
properties, because mucilage can affect water flow to the roots, es-
pecially under high transpiration demand (Ahmed ez al., 2018a, b;
Benard er al., 2019; Abdalla et al., 2024).
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FiG. 6. Relationship between canopy conductance (g.; in grams per second per centimetre squared), vapour pressure deficit (VPD; in kilopascals) and leaf water
potential (y..; in megapascals) in wet soil conditions. (A) Response of g. to an increase in VPD for low (red) and high-mucilage (blue) genotypes. Data are mean
values + s.e. (n =4). Response of g. to a decrease in leaf water potential for low- (B) and high-mucilage (C) genotypes. Different colours represent different in-
dividual plants (n = 4). Grey squares with error bars (in B and C) represent the mean values and s.e. of g. measured at high and low VPD. Different lowercase letters
indicate statistically significant differences (at P < 0.05) between the mean values of g. of the two genotypes measured at low (1.04 kPa) and high (2.8 kPa) VPD.
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(C) Relationship between fraction of transpirable soil water breakpoints (FTSWgp) and VPDgp. The coefficient of determination (R?) and P-values (P < 0.05 con-
sidered significant) are shown. The shaded area represents the 95 % confidence interval.

Impacts of mucilage on water flux regulation during severe drought

It has been shown that mucilage decreases the saturated hydrau-
lic conductivity of soils by several orders of magnitude (Ahmed
et al., 2018a, b; Benard et al., 2019; Zarebanadkouki et al.,
2019), but also enhances the water content in the rhizosphere com-
pared with the bulk soil at low soil moisture (Carminati et al.,
2010). This effect would attenuate the gradient in matric potential
at the root—soil interface, thereby facilitating root water uptake dur-
ing soil drying (Carminati et al.,2010; Ahmed et al., 2014; Kroener
et al., 2014; Abdalla et al., 2024). Simulation studies showed that
the high water-holding capacity of mucilage in the rhizosphere de-
lays the onset of stress and supports sustained transpiration
(Schwartz et al., 2016; Landl et al., 2021). Our study further sup-
ports the hypothesis that, during soil drying, the genotype with
higher mucilage production exhibits less negative leaf water

potential than the low-mucilage genotype (Fig. 9B). This might
be attributable exclusively to the presence of mucilage, which at-
tenuates the gradients in water potential in the rhizosphere
(Carminati et al., 2017; Ahmed et al., 2018a). Recently, Abdalla
etal. (2024) investigated the same cowpea genotypes and revealed
that the genotype with high mucilage production showed a less
steep decline in water potential near the root surface in comparison
to the genotype with low mucilage production. This suggests that
mucilage plays a crucial role in delaying the onset of hydraulic lim-
itations in drying soil (Ahmed et al., 2018b).

Impacts of mucilage on water flux regulation under increasing VPD

In wet soil conditions, the high-mucilage genotype showed a
gradual increase in transpiration rate (Fig. 4A; Supplementary
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FiG. 9. Relationship between transpiration rate (E; in grams per second) and leaf water potential (.,¢; in megapascals) at different vapour pressure deficit (VPD)

levels (indicated by different shapes) at different soil water content (indicated by different colours). Each data point represents an individual replicate (n = 4). VPD

levels were predawn (PD), low (VPD1 = 1.04 kPa), medium (VPD2 = 1.8 kPa) and high (VPD3 = 2.88 kPa) for low- (A) and high-mucilage (B) genotypes, respec-
tively. The linearly fitted slope of the E—yq,¢ relationship equals the soil—plant hydraulic conductance (in grams per second per megapascal).

Data Fig. S2) and an earlier restriction in transpiration rate with
increasing VPD (i.e. lower VPDgp; Table 1; Fig. 4A) compared
with the low-mucilage genotype. The lower initial slope and
earlier stomatal response led to less overall water loss through
transpiration in higher VPD conditions. This highlights that mu-
cilage decreases the saturated hydraulic conductivity in wet soil
conditions, which potentially slows down root water uptake,
thereby conserving soil moisture for critical phases, such as
flowering and grain filling (Ahmed et al., 2018a). Conversely,
Jafarikouhini et al. (2022) reported that in sweet corn, the
VPDgp, the VPD at which transpiration becomes restricted,
was negatively correlated with Slopel (maximum canopy con-
ductance). Likewise, Koehler et al. (2024) found the same rela-
tionship in maize, pearl millet and sorghum. These variations
might be attributable to differences in water potential gradient
in the rhizosphere, which might explain the earlier onset of re-
strictions of transpiration rate at lower VPD.

Plants can more easily sustain reduced fluxes during soil dry-
ing for extended periods when the daily average transpiration rate
is lower, owing to the restricted transpiration rate during lower
VPD conditions (Koehler et al., 2023). Vadez (2014) highlighted
that limiting the transpiration rate at lower VPD can increase dai-
ly transpiration efficiency and that restricting the transpiration
rate in the early stages of the soil drying cycle can lead to a con-
servative seasonal transpiration response to soil drying. This
strategy enhances water use during critical reproductive stages
of crop development and yield stability in water stress conditions
(Gholipoor et al., 2013; Vadez, 2014). Schoppach et al. (2014)
found that a drought-tolerant wheat breeding line displayed a
conservative behaviour by limiting its transpiration rate with in-
creasing VPD, effectively saving soil water moisture for later
use. Our results show that the low-mucilage genotype also exhib-
its a more conservative approach on a ‘seasonal basis’ by limiting
transpiration at higher FTSWpgp, whereas the high-mucilage ge-
notype displays an anticipatory behaviour by being more conser-
vative on a daily basis by limiting transpiration at relatively low
VPDgp (Fig. 8C). Similar findings in soybean (Devi et al., 2014)

and maize (Gholipoor et al., 2013) suggest that a limited transpi-
ration rate in response to increased VPD initiates a decline in
transpiration at lower FTSWs. This conservation of soil water
by restricting transpiration rates can improve agricultural sustain-
ability and resilience to climate change, maximizing crop yields
and optimizing plant water use.

Although we have shown that root mucilage might impact
plant water use during both edaphic and atmospheric stress, it
is essential to recognize other root traits, e.g. differences in an-
atomical, architectural and/or axial and radial conductivity, that
also determine the capacity of root systems in root water uptake
(e.g. Baca Cabrera et al., 2024). We observed no significant dif-
ferences in root biomass or in root:shoot ratio between the two
genotypes (Fig. 1C, D). Furthermore, Abdalla et al. (2024)
found no significant differences in root length and diameter be-
tween the same two cowpea genotypes grown in loamy soil. The
authors showed a significant decline in water potential across
the rhizosphere in the low-mucilage genotype, whereas the
high-mucilage genotype attenuated the decline in water poten-
tial across the rhizosphere (Abdalla et al., 2024). These findings
are in line with our results, which indicate that mucilage plays a
crucial role in enhancing root water uptake, especially in drying
soils. Moreover, although root mucilage might modulate plant
water use in both atmospheric and edaphic drought conditions,
this advantage might be associated with a trade-off. For in-
stance, increased mucilage production entails a cost in assimi-
lated carbon, potentially diverting resources away from root
development and reproductive processes (Lynch, 2007; Raza
et al., 2024). Furthermore, the influence of environmental con-
ditions on mucilage exudation rates between the two genotypes
remains unknown. Further research is needed to elucidate how
factors such as climate and soil type affect mucilage exudation.

Conclusion

The collective interplay between edaphic and atmospheric
drought is a topic of growing interest in the scientific
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community (Liu et al., 2020; Sadok et al., 2021; Gleason et al.,
2025). In this study, we investigated two cowpea genotypes
differing in mucilage production under increasing VPD and
progressive soil drying. We showed that as VPD increases,
plant water use is regulated through a reduction in maximum
plant conductance and genotype-specific thresholds for
transpiration restriction. Root mucilage is thus suggested as
a beneficial trait for enhancing plant water use both on a daily
basis and over extended periods during soil drying. Further
investigation into the genetic and physiological mechanisms
underlying plant response to VPD could guide breeding efforts
to develop crops with enhanced traits, such as root mucilage
production.

SUPPLEMENTARY DATA

Supplementary data are available at Annals of Botany online and
consist of the following. Figure S1: soil water retention (A) and
hydraulic conductivity (B) curves of sandy soil used for this ex-
periment. The fitting parameters of the water retention and hy-
draulic conductivity curves were estimated using Brooks and
Corey model. Figure S2: average transpiration rate (E; in grams
per second per centimetre squared) for all replicates (n = 8) in re-
sponse to step increases in vapour pressure deficit (VPD; in kilo-
pascals) with segmented regression analysis for low- (red) and
high-mucilage (blue) genotypes in well-watered conditions over
two consecutive days before the start of the dry-down experiment.
Table S1: climate chamber program used for cowpea plant exper-
iments in sandy soil. Table S2: outcome of statistical analysis of
VPDBP, slopel, leaf area, dry shoot and root biomass and root:
shoot ratio. Table S3: slopes, VPD breakpoints, and other param-
eters obtained from the E—VPD relationship using segmented
regression model for replicates before the dry-down experiment
(in wet conditions). The grey-shaded rows represent the average
of 2 days.
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