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METHODOLOGY

An improved method for the segmentation 
of roots from X‑ray computed tomography 3D 
images: Rootine v.2
Maxime Phalempin1*  , Eva Lippold1, Doris Vetterlein1,2 and Steffen Schlüter1 

Abstract 

Background:  X-ray computed tomography is acknowledged as a powerful tool for the study of root system architec-
ture of plants growing in soil. In this paper, we improved the original root segmentation algorithm “Rootine” and pre-
sent its succeeding version “Rootine v.2”. In addition to gray value information, Rootine algorithms are based on shape 
detection of cylindrical roots. Both algorithms are macros for the ImageJ software and are made freely available to 
the public. New features in Rootine v.2 are (i) a pot wall detection and removal step to avoid segmentation artefacts 
for roots growing along the pot wall, (ii) a calculation of the root average gray value based on a histogram analysis, 
(iii) an automatic calculation of thresholds for hysteresis thresholding of the tubeness image to reduce the number 
of parameters and (iv) a false negatives recovery based on shape criteria to increase root recovery. We compare the 
segmentation results of Rootine v.1 and Rootine v.2 with the results of root washing and subsequent analysis with 
WinRhizo. We use a benchmark dataset of maize roots (Zea mays L. cv. B73) grown in repacked soil for two scenarios 
with differing soil heterogeneity and image quality.

Results:  We demonstrate that Rootine v.2 outperforms its preceding version in terms of root recovery and enables 
to match better the root diameter distribution data obtained with root washing. Despite a longer processing time, 
Rootine v.2 comprises less user-defined parameters and shows an overall greater usability.

Conclusion:  The proposed method facilitates higher root detection accuracy than its predecessor and has the 
potential for improving high-throughput root phenotyping procedures based on X-ray computed tomography data 
analysis.

Keywords:  High-throughput root phenotyping, Image analysis, Root segmentation, Root system architecture, 
Cylindrical feature detection, X-ray computed tomography, Root diameter

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
X-ray computed tomography (CT) is acknowledged as a 
powerful tool for the study of root system architecture 
of plants growing in soil. However, the study of the root 
system architecture is only possible after performing root 
segmentation, i.e., the binarization of the grayscale data 

into root voxels and background voxels. Root segmenta-
tion is often regarded as a tedious and difficult task as 
its success depends on several factors such as the image 
resolution, the signal-to-noise ratio during image acqui-
sition and the gray value (GV) contrast between the roots 
and all other surrounding features in soil [1].

In the past years, many methods have been developed 
to segment and visualize roots in tomograms acquired 
with X-ray CT [1–17]. Some algorithms rely on simple 
thresholding methods [8]. With these methods, the roots 
are segmented based on a histogram analysis and a GV 
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criterion. These methods usually fail at segmenting roots 
properly because of the overlapping GV of roots, water, 
organic matter and the soil matrix. The GV at the edges 
of roots, water, organic matter and soil matrix also show 
gradual changes of intensity spanning several voxels 
rather than a crisp intensity step [18]. This effect, known 
as the “partial volume effect”, is also responsible for poor 
segmentation results when using simple thresholding 
methods. More advanced thresholding methods rely on 
the use of adaptive local thresholding values (also referred 
to as “Region growing”) which use an additional connec-
tivity criterion to binarize the root and background vox-
els [3]. For both the simple and the adaptive thresholding 
methods, there is an inherent trade-off to be made by the 
user. If the GV range assigned to roots bounded by two 
thresholds is too broad, over-segmentation may occur 
(i.e., segmented root edges extend into the surrounding 
features and appear frayed) and the false positives need 
to be removed through user-interaction which is a sub-
jective, tedious and time-consuming task. Inversely, if the 
GV range is too narrow, an important loss of roots may 
occur which biases the root system architecture analysis 
of the scanned sample. To tackle the issue of overlapping 
GV of roots and other materials, root tracking methods 
such as the “RooTrak” algorithm have been developed 
[10]. With this method, the volumetric data is viewed as a 
sequence of X–Y cross-sectional images aligned along the 
Z axis. As the 3D stack is explored, root cross sections 
appear to move in the image and such “movements” can 
be used to reconstruct the root system. Methods rely-
ing on deep-learning algorithms and multi-scaled based 
approaches have also become common in X-ray CT and 
magnetic resonance imaging. promising applications of 
deep learning for the segmentation of roots from X-ray 
CT data were recently demonstrated by [13].

Gao et  al. [6] proposed a new algorithm to segment 
root systems growing in soil by exploiting a typical 
morphological characteristic of the roots, i.e., their 
cylindrical shape. This approach was first introduced 
for vessel detection in medical imaging [19]. The ves-
sel enhancement filter was later adopted to segment 
roots in 3D Magnetic Resonance Imaging data [20]. The 
rationale of this method is that the cylindrical shape of 
roots is unique among all materials and features found 
in soil. The shape-based semi-automated algorithm 
is named “Rootine” [6] and has shown to outperform 
the “Root1” [4] and “Region growing” [3] methods in 
terms of root recovery and segmentation accuracy. 
This demonstrated promising future applications of the 
algorithm for high-throughput root phenotyping based 
on X-ray CT data analysis. However, the Rootine algo-
rithm relies on a substantial number of parameters to 
be calibrated by the user. Moreover, Rootine suffers 

from the fact that some of the parameters and their 
effects are difficult to identify and to interpret by a non-
experienced user.

In this paper, we aim at developing an improved 
method for the segmentation of roots from 3D X-ray 
CT images that overcomes the aforementioned draw-
backs of Rootine. The objectives of this work are then 
to develop a new Rootine version (i.e., “Rootine v.2”) for 
which the segmentation accuracy and the user friendli-
ness are increased. Specific objectives are to propose a 
second version in which (i) the root recovery is higher, 
(ii) the segmented root diameters are better captured, 
(iii) segmentation artefacts are reduced, (iv) the number 
of tunable parameters is reduced and (v) the parameters 
are related to root properties (i.e., their GV, shape and 
connectivity).

The ability of the new segmentation algorithm to fulfill 
these criteria is evaluated by systematic comparison with 
the former algorithm Rootine (which will be referred 
to as “Rootine v.1”) and the results obtained by con-
ventional, destructive root sampling and analysis of the 
washed-off roots with the software WinRHIZO. In addi-
tion, a comparison between both algorithms is made by 
considering aspects such as the runtime and the overall 
usability of the algorithms. In that respect, the bench-
mark dataset of the “worse case” scenario presented in 
[6] is used. This benchmark dataset was chosen to test 
Rootine v.2 as it presents several challenges to over-
come, namely the presence of high soil heterogeneity, a 
poor quality of the images (i.e., a low number of projec-
tions during image acquisition) and a rather low image 
resolution as compared to the diameter of the roots to 
segment. The two first challenges contributed to a dete-
rioration of the signal-to-noise ratio whereas the third 
exacerbates the partial volume effect at the edges of the 
fine roots. In the study of [6], these challenges led to a 
rather low root recovery of (i.e., 29%) in comparison with 
conventional root sampling. These challenges combined 
make the benchmark dataset of [6] a perfect candidate 
for further testing and improvements of root segmenta-
tion algorithms.

In order to show that the improvements in segmenta-
tion quality are not solely due to an overfitting of Root-
ine v.2 for this particular dataset, we also demonstrate 
the performance of the new version on the so called “best 
case” scenario dataset of [6]. In this “best case” scenario, 
the soil and the scan settings were chosen in order to 
create low soil heterogeneity and a high signal-to-noise 
ratio. Those two aspects contributed to a robust estima-
tion of root length (i.e., 99% of recovery) in comparison 
with root washing and analysis with WinRHIZO. Finally, 
a 3D visual comparison of the results obtained with 
Rootine v.2, Rootine v.1, Root1 and the region growing 
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method available in VG Studio Max 2.1 is provided for a 
small test cube image of the worse case scenario.

Material and methods
Plant growth conditions and destructive sampling
Maize plants (Zea mays L. cv. B73) were grown in 
repacked soil sieved down to ≤ 2  mm particle size. The 
plants were grown in a climate chamber for 21  days in 
cylindrical containers of 7 cm inner diameter and 23 cm 
height. Six plants were analyzed for each scenario. One 
day after X-ray CT scanning, the plants were harvested 
and the pots were cut in several layers of 4 cm. The roots 
in those layers were washed off with deionised water 
and stored in a 50% ethanol solution prior to analysis. 
In order to assess root length density (RLD) for each 
layer, root samples were scanned with a flatbed scanner 
(EPSON perfection V700) and the obtained images were 
analyzed with WinRHIZO Pro™ (Version 2019a, Regent 
Instruments, Canada). In total, twelve layers were inves-
tigated for each scenario (i.e., two per growing pot, one at 
the top and one at the bottom). For detailed information 
on the plant growth conditions and the destructive root 
sampling method, the reader is referred to [6].

Workflow of Rootine v.2
The workflow of Rootine v.2 is synoptically shown in 
Fig. 1 where the novelties of the algorithm are highlighted 
in blue and the steps and/or parameters that were modi-
fied from the original Rootine v.1 are shown in purple.

Image acquisition
3D X-ray CT images were acquired and reconstructed 
into an 8-bit grayscale 3D tomogram having a voxel size 
of 45 μm. The 8-bit conversion allows saving space with-
out considerable loss of information. During the 8-bit 
conversion, contrast was optimized using a percentile 
stretching method, i.e., 0.2% of the darkest and brightest 
voxels are set to 0 and 255, respectively. A linear stretch-
ing is applied for all GV between 0 and 255. Consider-
ing the geometry of the panel detector of the X-ray CT 
device (X-TEK XTH 225, Nikon Metrology), pots were 
scanned at two depth intervals (i.e., a bottom and top 
depth) making sure that an overlapping region was pre-
sent. For more information regarding the image acquisi-
tion procedure, the reader is here again referred to [6].

Preprocessing
Before concatenation of the bottom and the top images, 
the overlapping regions in both scans are removed using 
the “Slice remover” function available in the free software 
ImageJ [21]. After concatenation, the obtained image 
comprises 3000 voxels in the Z dimension, 1750 voxels 
in the X and Y dimension and has a size ≈ 8.6 GB. The 

vertical extent of the stack is 13.5  cm. At the boundary 
of the two stitched images in the concatenated stack, a 
GV discontinuity is present due to an illumination drift 
caused by the X-ray CT hardware (see Fig. S2 in [6]). This 
GV discontinuity is corrected for using the “Attenuation 
correction” plugin [22] in ImageJ. This correction applies 
a linear transformation of GV to each slice of the stack 
in order to make the average and standard deviation of 
the background constant and equal to that of a reference 
slice throughout the stack [22]. Note that this GV discon-
tinuity is specific to the X-ray CT hardware used in the 
benchmark dataset of [6] and that this step might not be 
necessary with other set-ups.

Once the GV discontinuity of the stitched stack is cor-
rected for, a filtering step is performed with a “3D Non-
local Means (NLM)” filter [23]. This filtering step is 
performed with a plugin available in the ITK library [24]. 
This filter was chosen as it is fast [23] and can easily be 
incorporated in the workflow thanks to its standalone 
application. Note that in contrast to [6] (see Fig. S3 in 
[6]), we converted the images to 16-bit and added a con-
stant GV offset of 50,000 to avoid the change of contrast 
inherent to the use of this filter. The change in contrast 
is an outcome of the Rician noise model implemented 
in this filter [23] as it was originally implemented for 
Magnetic Resonance Imaging. Avoiding the non-linear 
contrast enhancement for the low attenuation materi-
als makes the results directly comparable to other soft-
wares implementing a 3D NLM filter (e.g. Avizo™). The 
strength of the filtering is determined by the parameter 
“Contrast threshold” ( tcon ) which needs to be given by the 
user as an input parameter. It is adjusted to the standard 
deviation of the image noise assessed by histogram analy-
sis. Similarly to [6], the remaining parameters of the 3D 
NLM filter were set to default. The result of the 3D NLM 
filtering can be assessed by comparing the original gray-
scale data (Fig. 2a) and the filtered image (Fig. 2b) for a 
subvolume of the worse case scenario.

Rootine v.2 features a new pot wall detection step. This 
step serves two purposes. The first purpose is to create 
a mask which will exclude the pot wall from the data to 
segment and the second is to use the characteristic GV 
of the pot wall to generate a peak in the histogram. The 
generated peak is used later on for the calculation of the 
average root GV during a background removal step. In 
order to create a mask which excludes the pot wall, the 
coordinates of a circular region of interest (ROI) bounded 
within the pot wall limit need to be defined manually at 
three Z slices of the stack, i.e., at the first, the middle and 
the last slices. Those three sets of coordinates need to be 
given as input. The coordinates of the bounded ROI for 
all Z slices are then linearly interpolated from the given 
X–Y coordinates of the bounded ROI at the three Z 
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slices. This allows creating a 3D mask, i.e., a mask whose 
boundaries in the X and Y dimensions will move as the 
stack is explored in the Z dimension. Creating a 3D mask 
is necessary to cope with pots being tilted during the 
X-ray CT scanning. Note that, at the resolution used in 
the benchmark datasets and considering the pot height, 

a certain tilt of the pots is always present. For tilted 
pots, a 2D mask would result either in masking the roots 
growing along the pot wall or in the inclusion of the pot 
wall in the data to segment. With the 3D mask, a logical 
“AND” operation is used on the filtered image in order to 
remove the pot wall from the data to segment. Once the 

Fig. 1  Synoptic view of the Rootine v.2 workflow including the comparison with Rootine v.1
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bounded ROI is calculated for all Z slices, an extended 
ROI is created by simple extension of the bounded ROI 
by 50 voxels (Fig. 3a). The extended ROI serves the pur-
pose of including the pot wall in the histogram analysis of 
the stack so that a characteristic peak is generated. After 
extracting the histogram of the extended ROI, a function 
searches for the maxima in the lowest part (i.e., from 0 to 
128) and in the highest part (i.e., from 128 to 255) of the 
histogram. This function then retrieves the GV of those 
maxima, i.e., P1 and P2 which correspond to the aver-
age GV of the pot wall and of the soil matrix, respectively 
(Fig. 3b). Those two values are used further down in the 
workflow during the background removal step.

An edge enhancement step is then applied with the 
“Unsharp Mask” filter in ImageJ. “Unsharp Mask” fil-
ters enhance the local contrast between root edges, the 
surrounding soil matrix and pores [25]. The degree of 
edge enhancement is controlled by two input param-
eters. “Blur radius” is the standard deviation of the blur 
radius of the Gaussian filter kernel and “Mask weight” 

determines the strength of the filtering. The result of the 
edge enhancement step can be assessed by comparing the 
image filtered with 3D NLM (Fig. 2b) and the image after 
“Unsharp Mask” (Fig. 2c).

A new feature of the Rootine v.2 algorithm is to apply 
a background removal step. During the background 
removal, every voxel whose GV deviates too much from 
the average root GV ( 

−
vr) is masked out. This operation 

is performed in a three steps procedure. During the first 
step, a calculation of the root average GV is carried out 
using the previously identified characteristic peaks of the 
pot wall and the soil matrix. Assuming that a shift of P1 
and P2 would result in similar shift of 

−
vr , 

−
vr can be calcu-

lated for every image of the dataset using Eq. (1),

where 
−
vr is the root average GV, fr is the root GV fac-

tor which has to be determined a priori on a representa-
tive test image and P1 and P2 are the characteristic peaks 

(1)
−
vr = fr .(P2− P1)+ P1

Fig. 2  Results of the steps of Rootine v.2 for a subvolume of the worse case scenario. a The original grayscale image. b The obtained image after 
denoising with the 3D NLM filter. c The obtained image after performing edge enhancement of b. d Resulting image after background removal 
with ADT on c. e Results of the root segmentation applied on d before applying postprocessing steps. f Segmented roots after applying the 
postprocessing steps on e 
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of the pot wall and the soil matrix, respectively. The first 
step allows coping with differently contrasted images in 
the dataset. Differences in image contrast are due to the 
percentile stretching method used during the 8-bit con-
version when reconstructing the tomograms. Once 

−
vr 

is calculated, a second step named “Absolute Difference 
Transform” (ADT) is applied. The rationale of this step 
is to brighten the GV of the roots and darken all back-
ground voxels including pores and soil matrix, as both 
materials have a GV different than 

−
vr . For every voxel, 

this is done by computing Eq. (2),

where vADT is the voxel GV after the ADT and vf  is the 
voxel GV prior ADT. The background is then masked out 
by thresholding the image with a threshold value ( tADT ) 
calculated with Eq. (3),

where Rr is the root GV range centered around 
−
vr . Rr has 

to be determined a priori on a representative test image 
and has to be given as a input parameter. The image 
obtained after background removal serves as the input 

(2)vADT = 255−
∣

∣vf −
−
vr

∣

∣

∣

(3)tADT = 255−
Rr

2

image for the subsequent root segmentation step. This 
three-step procedure replaces the simple pore masking 
step in Rootine v.1. The result of the background removal 
step can be assessed by comparing the image after edge 
enhancement (Fig.  2c) and the image after background 
removal (Fig. 2d).

Root segmentation
A specificity of the Rootine algorithms is to segment 
roots by exploiting one of their inherent characteristics, 
i.e., their cylindrical shape. To do so, the “Tubeness filter” 
available in ImageJ is used. In brief, the tubeness filter 
performs a smoothing of the image and produces an 
image in which the GV are directly related to how similar 
an object is to a cylinder. Generally, a scaled approach is 
adopted, i.e., the same image is filtered with Gaussian fil-
ters of different strength determined by their σ values, 
segmented and then combined. For low σ values, the 
roots of small diameters will evoke high GV after tube-
ness filtering whereas the bigger roots will either appear 
hollow or display low GV after tubeness filtering. Increas-
ing the σ values of the tubeness filter then results in the 
opposite effect, i.e., the roots of greater diameter appear 
brighter whereas the roots of smaller diameter will van-
ish. The obtained series of images are then segmented 

Fig. 3  Mask creation and calculation of the average root GV based on characteristic peaks. a Depicts the drawing of a circular ROI bounded within 
the pot wall (red circle) on a 2D section of the worse case scenario. The bounded ROI serves the purpose of creating a mask. By extension of the 
bounded ROI by 50 pixels, an extended ROI is created (blue line). b Histogram of the bounded and extended ROI illustrated in a The extended ROI 
serves the purpose of creating a peak in the histogram which is used to calculate the average root GV



Page 7 of 19Phalempin et al. Plant Methods           (2021) 17:39 	

using the “3D Hysteresis thresholding” method available 
in the 3D ImageJ Suite [26] and then combined to recon-
stitute the full root system. Hysteresis thresholding is a 
segmentation method requiring two thresholds. With an 
upper threshold ( thighhys ) , seed regions definitively belong-
ing to roots are determined. The upper threshold is less 
relevant for segmentation accuracy and can be set a pri-
ori. From the upper threshold, a region growing process 
connects all voxels brighter than a lower threshold ( tlowhys  ). 
This region growing process improves edge continuity in 
gradient images [27] and the class assignment of partial 
volume voxels [28], thereby reducing the presence of false 
positives.

In this work, we introduce a new method to esti-
mate the lower threshold applied during hysteresis 

thresholding. This estimation is based on the measure-
ment of root diameters present in the image to segment. 
The link between the lower threshold applied during 
hysteresis thresholding and the root diameters has been 
made by analyzing carefully the results of the tubeness 
filter for increasing σ values applied on the same image 
of a hypothetical root (Fig.  4a). This was achieved with 
the following sequence of operations. First, a root having 
a diameter dr is created by drawing a white cylinder on a 
black background. Then, this root image is filtered with 
tubeness of increasing σ values. Note that the absolute 
value of the tubeness intensity depends on the gradient 
magnitude and hence the level of smoothing. Therefore, 
the contrast in the tubeness filter results were normal-
ized, i.e., the highest GV after filtering is set to 255 during 

Fig. 4  Estimation of σ values of the tubeness filters and the optimal lower thresholds of hysteresis thresholding. a Results of the tubeness filter on 
a hypothetical root of a diameter dr obtained for different q values. The dashed blue lines show the original root outline whereas the solid yellow 
lines show the position of the transects used to plot the GV along the root diameter axis. b Plot of GV along the root diameter axis for some of the 
q values shown in a. The colored dots at the intersection between the root outline and the GV parabola correspond to topthys  for a given q value. c 
Line of best fit imposed on the couple of points q and topthys  . In this study, we calculated topthys  corresponding to = q0.5 using the model regression. The 
calculated value is indicated by the dashed line (i.e., topthys = 79)
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conversion from 32-bit to 8-bit. In order to generalize the 
obtained results, we introduce the normalized smoothing 
strength q which is equal to

where σ is the smoothing strength of the tubeness filter 
and dr is the root diameter. Both parameters are 
expressed in number of voxels. For each q value, a GV 
transect along the root diameter axis is plotted (Fig. 4b). 
It is shown that, for low q values, the filtered root appears 
hollow and the GV transect has symmetrical peaks on 
both sides of the root diametrical axis and a minimum 
exactly at the root diametrical axis. For q values greater 
than 0.125, the transects have a concave parabolic shape 
with their symmetrical axis centered on the root diamet-
rical axis. For a given q value, the GV at the intersection 
of the parabola and the original root outline (i.e., the ver-
tical blue dashed lines in Fig.  4a, b) corresponds to the 
optimal lower threshold ( topthys  ) to use during hysteresis 
thresholding in order to precisely capture the original 
root diameter. To formalize the calculation of topthys  , we 
retrieved topthys  (i.e., the colored dots in Fig. 4b) for all q val-
ues and fitted a regression model (Fig.  4c) which 
describes best the relationship between those two param-
eters (i.e., highest possible R2 values). We then calculated 
t
opt
hys  for q = 0.5 using the model regression (i.e., topthys  = 79, 

see the dashed line on Fig.  4c). With the optimal lower 
threshold calculated and with a measurement of the 
diameter of the root to segment, the sigma value of the 
tubeness filter can be estimated (Eq. 5). It is important to 

(4)q =
σ

dr

note that, in case of image rescaling, the resolution factor 
( fs) needs to be accounted for in the measurement of dr . 
Thus, Eq. (4) is recast to:

where σi is the smoothing strength of the tubeness filter 
to use to properly segment a root of a certain diameter 
dr,i , q is the normalized smoothing strength and fs is the 
resolution factor. For the segmentation of fine roots, the 
images were segmented at the original resolution (i.e., 
fs = 1 ) whereas the bigger roots were segmented with an 
input image downscaled by a factor of 2 (i.e., fs = 0.5 ) in 
order to reduce processing time without considerable 
loss of information. To determine values for dr,i a priori, 
an increment approach was adopted to account for the 
continuous distribution of root diameters (Fig.  5). This 
approach requires three parameters, namely the mini-
mum root diameter ( dr,min) , the root diameter increment 
( dr,inc) and the maximum root diameter ( dr,max) . All 
three parameters are expressed in units of number of 
voxels. The minimum and maximum root diameters were 
determined by measuring the diameter of the finest and 
biggest root in the image with the “Measure” tool availa-
ble in ImageJ. The root diameter increment parameter 
refers to the increment at which roots of increasing diam-
eters are detected. Here, a root diameter increment value 
equal to 4 voxels was set, which yields an incremented σ 
value of 1 at the coarse resolution according to Eq.  (5). 
With these three parameters, an incremented calculation 
estimates the appropriate sigma values of tubeness for 
each resolution and scale considered and root diameters 
targeted. After filtering with tubeness and subsequent 

(5)σi = q.dr,i.f s

Fig. 5  Approach for the detection of roots of increasing diameters at the original and the coarse resolutions
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segmentation with hysteresis thresholding, the results 
were combined into one image with a logical “MAX” 
operation, i.e., a voxel is assigned to the root class if it is 
assigned to roots in at least one resolution or scale. This 
updated approach replaces the fixed scales and manually 
defined tlowhys  for each scale in Rootine v1. The result of the 
root segmentation step is in Fig. 2e.

Postprocessing
The postprocessing steps aim at removing artefacts which 
occurred in the course of segmentation. Such artefacts 
may include for instance segmented particulate organic 
matter or isolated pores whose GV are in the same range 
as the one of the roots. First, a 3D Median filter avail-
able in ImageJ is applied on the segmented images in 
order to smoothen the root surfaces. The degree of fil-
tering is determined by the kernel size of the filter which 
needs to be given as an input parameter. On one hand, 
this filtering operation is favorable as it trims some over-
segmentation voxels extending from the roots into the 
surroundings. On the other hand, this trimming also 
causes some fine root segments to be disconnected from 
the root system. After 3D Median filtering, the uncon-
nected objects are removed using a connectivity crite-
rion. This operation is performed with the “Keep Largest” 
function available in the “MorpholibJ” plugin library [29]. 
Prior to “Keep Largest”, an extra slice is added at the top 
of the stack to ensure the connectivity of all root seg-
ments from top to bottom. This is necessary when the 
seed from which all roots emerge is not part of the image. 
In the case of Zea mays, adding this step is essential as it 
allows keeping the brace and crown roots which do not 
directly emerge from the seed but always enter the ROI 
from the top.

A new feature of Rootine v.2 is to implement a “false 
negatives” recovery step. This step labels and evaluates 
every object unconnected to the root system and test 
whether it fulfills shape criteria which evoke the typi-
cal shape of roots. Those unconnected objects are either 
segmented clusters of pores and/or segmented particu-
late organic matter (i.e., false positives) or root segments 
which were disconnected due to the trimming effect of 
the previously applied 3D Median filter (i.e., false nega-
tives). Here, we evaluate every unconnected object based 
on two criteria, i.e., its “Vesselness” and its size. To eval-
uate the vesselness, a simplified formulation of the ves-
selness function proposed by [19] was adopted and a 
“vesselness score” of individual objects was derived. This 
is based on the analysis of the length of the semi-axes of 
fitting ellipsoids to binary objects instead of evaluating 
the Hessian matrix (i.e., the 2nd derivative of GV) of each 
voxel. The semi-axes of the fitting ellipsoids are denoted 
as �1 , �2 and �3 . By convention and in order to make 

abstraction of the local orientation of the considered 
object in the 3D space, we pose �1 ≤ �2≤ �3 . For every 
object, we then compute the following geometrical ratios:

The first ratio accounts for the deviation from a blob-
like structure. For a blob-like object (i.e., �1 ≈ �2≈ �3 ), 
Rb will attain high values whereas it will have low val-
ues for elongated objects (i.e., �1 ≈ �2≪ �3 ). The second 
ratio is essential for distinguishing between plate-like 
and cylinder-like structures. For a plate-like object (i.e., 
�1 ≪ �2≈ �3 ), Ra will reach its maximum whereas it will 
be low for elongated objects. Based on the defined ratios, 
we evaluate how similar an object is to a cylinder by 
deriving its vesselness score (ν) according to Eq. (8).

The vesselness score can have values ranging from 0.13 
for a perfect sphere to ≈ 1 for an infinitely long cylinder. 
The relationship between the length of the semi-axes of 
the fitting ellipsoids, the calculated geometrical ratios 
and some properties of the vesselness score are illustrated 
in Fig.  6 for simple geometrical objects, i.e., a sphere, a 
plate and a cylinder. In addition to the vesselness cri-
terion, a size criterion is used in order to exclude small 
objects which originate mostly from the noise level in 
the image and may by chance fulfill the vesselness crite-
rion. The size criterion is given by a single value being 
equal to the greatest length of the semi-axes of the fitting 
ellipsoid, i.e., �3 . In practice, evaluating the unconnected 
objects is performed in three steps. All steps rely on 
operations available in the “MorpholibJ” plugin library. 
Firstly, a label is assigned to every unconnected object 
via the “Connected Components Labeling" function. Sec-
ondly, for every unconnected object, the length of the 
semi-axes �1 , �2 and �3 of the fitting ellipsoids are com-
puted with the “Analyze Regions 3D” function. Thirdly, 
the vesselness score is calculated and assigned to each 
label using the “Assign Measure to Label” function. An 
object is then considered a false negative only if the fol-
lowing conditions are met:

where νi and �3,i are the vesselness and the size score of 
the object i and tv and ts are the vesselness and the size 
threshold, respectively. The vesselness and the size 
threshold are input parameters which need to be given 

(6)Rb =
�1√

�2 ∗ �3

(7)Ra =
�2

�3

(8)ν = exp
(

−Rb2
)

.exp(−Ra2)

νi > tv and �3,i > ts
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and calibrated by the user. After discriminating between 
false positives and false negatives, the false negatives are 
added to the connected root system whereas the false 
positives are discarded. Figure  7 illustrates this new 
approach of the postprocessing scheme implemented 
in Rootine v.2. The effect of the post processing steps is 
shown in the difference between Fig. 2e, f.

Quantification and analysis
Following postprocessing, the images can be analyzed 
and quantified in terms of root length and diameter. The 
quantification of root length from X-ray CT data has to 
be preceded by a step of skeletonization which conducts 
a medial axis transform of the segmented root image. 
This results in an image where all roots are reduced to 
a 1 pixel wide object which makes the calculations of 
root length more reliable and faster. This is achieved by 
sequentially applying the “Skeletonize (2D/3D)” and 
“Analyze Skeleton (2D/3D)” methods available in the 
BoneJ plugin library [30]. The root recovery is assessed 
by plotting the root length calculated after skeletoniza-
tion of the segmented root system and the root length 
analyzed with WinRHIZO (WR). By imposing a line of 
best fit to the relationship between both root lengths (CT 
and WR), the root recovery and the error consistency 
(i.e., the slope and the coefficient of determination of the 
line of best fit, respectively) can be evaluated. The quan-
tification of the root diameter distribution is performed 

with the “Local Thickness” plugin available in BoneJ. This 
method assigns to every root voxel a value correspond-
ing to the diameter of the largest sphere which locally fits 
into the root. The results of the local thickness images are 
intersected with the skeleton images with a logical “AND” 
operation. The resulting images are skeletonized root sys-
tems where each medial axis voxel contains the local root 
diameter information. This intersection is performed in 
order to avoid that big roots contribute to more voxels 
than smaller roots in the histogram. The histogram of the 
obtained images is then computed to retrieve the root 
length corresponding to every diameter class. Note that, 
even though roots were destructively sampled at two dif-
ferent layers for six replicates, the results are shown here 
by pooling all replicates and all layers together for each 
scenario. For both the root length and the root diameter 
distribution, the root length is normalized by dividing by 
the volume of the soil layer and the results are expressed 
in terms of RLD.

Summary of the workflow and its parameters
This section concludes the description of the workflow 
of Rootine v.2. Figure 1 and Table 1 provide an overview 
of the steps of the workflow and the tunable parameters 
involved to obtain a segmented root system from an 
input grayscale data acquired with X-ray CT. Table  1 
also list the effect and the sensitivity of the parameters 

Fig. 6  Vesselness score, Rb and Ra values for a sphere, a plate and a cylinder
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on the segmentation accuracy. Note that the effect and 
sensitivity of the parameters have been assessed visu-
ally thanks to the acquired user-experience during the 
calibration of the method for our specific dataset. The 
mention of the sensitivity of the parameters has the 
sole purpose of giving general advice to potential users 

during the calibration of Rootine v.2 for their specific 
dataset.

Results
Root recovery and root diameter evaluation
In the worse case scenario, Rootine v.2 outperformed its 
preceding version by an increase of the root recovery up 

Fig. 7  Illustration of the postprocessing steps implemented in Rootine v.2. First, a 3D Median filter is applied on the results of the root 
segmentation step. Then, all connected objects are kept by applying the “Keep Largest” function. In order to ensure full connectivity of the roots at 
the top of the stack, a slice is added at the top (left-hand side of the figure). The remaining unconnected objects are subjected to a test evaluating 
their shape, i.e., their “vesselness” and size. This is illustrated here by showing a Z-Projection of a 400 × 400 × 400 image from the best case scenario 
dataset (right-hand side of the figure). The green scale bar indicates the vesselness score whereas the red scale bar indicates the size score. The 
intensity of the yellow color depicts the combination of these two scores. If an object meets both the vesselness and size threshold, it is considered 
as a false negative and will subsequently be added to the connected root system. If not, it will be considered as a false positive and will be 
discarded



Page 12 of 19Phalempin et al. Plant Methods           (2021) 17:39 

to 73% of the total root length, against 29% for Rootine 
v.1 (Fig.  8a). The coefficient of determination is roughly 
equal for both algorithms (i.e., R2 = 0.76 and 0.79 for 
Rootine v.1 and v.2, respectively). A 2D Maximum 
Z-Projection of a selected sample (circled in black in 
Fig. 8a) shows that the over-segmentation is low (Fig. 8b). 
Detected roots appear relatively smooth and there are 
barely any root voxels extending into their surroundings. 
In the 2D Maximum Z-Projection, some root segments 
are disconnected from the root system. Those segments 
are the ones added by the false negatives recovery step 
during postprocessing. Figure 8b also shows that the gain 
in root length with Rootine v.2 is mainly contributed by 
additional fine roots (operationally defined as roots hav-
ing a diameter ≤ 180 μm). The increased fine root recov-
ery is also reflected in the root diameter distribution 
(Fig.  9a). On top of a higher root recovery of the fine 
roots, Rootine v.2 also better captured the root diameter 
of the big roots (operationally defined as roots having a 
diameter ≥ 900 μm) as compared to its preceding version. 

This can be seen on Fig. 9a where Rootine v.2 agrees bet-
ter with WR data for the diameter classes larger than 
900  μm as compared to Rootine v.1. The second peak 
(corresponding to the primary roots) only underesti-
mates WR values by 4 voxels for Rootine v.2, whereas 
this second peak is completely absent for Rootine v.1. 
The better agreement of the root diameter distribution 
with Rootine v.2 can also be assessed visually by super-
imposing the segmented images of both algorithms and 
by directly comparing them with the grayscale X-ray 
CT data (Fig.  9b). The visual comparison of the results 
obtained with the region growing method, the Root1 
algorithm, Rootine v.1 and Rootine v.2 for a subvolume 
of the worse case scenario shows that Rootine v.2 outper-
formed other root segmentation state of the art methods 
as well (Fig. 10).

In the best case scenario, the root recovery amounts 
to 114% of the total root length against 99% for Root-
ine v.2 and Rootine v.1, respectively (Fig. 8c). Again, the 
coefficient of determination is roughly equal for both 

Table 1  Summary of the parameters, their values, their effects and their sensitivity on the segmentation accuracy

Step Parameter Value Effect Sensitivity on the 
segmentation 
accuracyWorse case Best case

Image filtering Contrast threshold ( tcon) 60 60 Controls the degree of smoothening (i.e., 
noise removal) of the input image

Medium

Edge enhancement Blur radius 1 0.9 Both parameters control the degree of 
sharpening of the image, i.e., increase the 
contrast at the boundaries between roots 
and pores and soil matrix

High

Mask weight 0.7 0.8

Background removal Root gray value factor ( fr) 0.10 0.18 Sets the average gray value of the roots Very high

Root gray value range ( Rr) 65 70 Controls the root gray value window around 
the average root gray value. If set too 
high, overestimation of roots into their 
surroundings will occur. If set too low, loss 
of roots will occur

Very high

Detect fine roots Minimum root diameter ( dr ,min) 4 4 Controls the root recovery of the fine roots. 
If set too high, the fine roots are not 
detected. If set too low, over-segmenta-
tion may occur depending on the noise 
level of the image

High

Detect coarse roots Maximum root diameter ( dr ,max) 28 28 Controls the accuracy of the root diameter 
outline of the biggest root. If set too 
high, the diameter of the biggest root is 
overestimated and computational time is 
wasted. If set too low, the diameter of the 
biggest root is underestimated

Medium

False positives removal Kernel size of median filter 3 2 Controls the degree of smoothening of the 
roots and trimming of over-segmented 
voxels. If set too high, root loss occurs 
whereas low values result in the presence 
of false positives

High

False negatives recovery Size threshold ( ts) 25 25 Both parameters control the quality of the 
false negatives added in the root system. 
If set too low, many false positives are 
considered negatives, If set too high, root 
loss occurs

High

Vesselness threshold ( tv) 0.85 0.9 High
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versions (i.e., R2 = 0.92 and 0.90 for Rootine v.1 and 
v.2, respectively). Similarly to the worse case scenario, 
a 2D Maximum Z-Projection of the segmented roots 
of a selected sample (Fig.  8b) offers a visual compari-
son of the segmentation results of both versions. Here 
again, the over-segmentation is low as roots appear 
smooth and devoid of any over-segmented voxels at 
their boundaries. The increase in root recovery is also 
mostly contributed by the addition of fine roots. The 

agreement of the root diameter distribution is equally 
good for both versions (Fig. 9c).

Discussions
Segmentation accuracy
In the worse case scenario, most of the roots that were 
missed by Rootine v.1 and v.2 belonged to the category 
of the fine roots. This was expected considering that one 
of the main challenges of the benchmark dataset is a low 

Fig. 8  Root recovery of Rootine v.2 for the worse and best case scenario. a, c Comparison with the former Rootine v.1 and the RLD determined 
with destructive sampling and scanning of washed-off roots (WinRHIZO) for the worse case and the best case scenario, respectively. The dashed 
line indicates the 1:1 line. b, d Visual comparison of the segmented root systems obtained with Rootine v.1 and Rootine v.2 for the corresponding 
sample circled in black on a and c for the worse case and the best case scenario, respectively. Roots detected by both algorithms are depicted in 
black, the ones only detected by Rootine v.2 are shown in blue, whereas roots only detected by Rootine v.1 are shown in red
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image resolution as compared to the small diameter of 
the fine maize roots. Indeed, the analysis of the cumula-
tive frequency of root diameter of the WR data revealed 
that the fine roots comprise roughly 45% of the total 
root length. Fine roots pose a tremendous challenge due 
to the presence of partial volume voxels at the bound-
ary of the roots and their surroundings. This challenge 
is even bigger when the contrast between the roots and 

their surroundings is low, which was true for the worse 
case scenario. We attempted to capture more fine roots 
at the original resolution by reducing the minimum 
root diameter to two voxels (i.e., resulting in a smooth-
ing strength of σ = 1). However, this resulted in too much 
over-segmentation. Still, Rootine v.2 was able to capture 
twice as much of the fine roots as compared to Rootine 
v.1 in the worse case scenario. This can be attributed to 

Fig. 9  Root diameter distribution and root outline accuracy for the worse and best case scenario. a, c RLD distribution as a function of root 
diameter for Rootine v.1 and v.2 and the destructive sampling data obtained by scanning washed-off roots (WinRHIZO) for the worse case and the 
best case scenario, respectively. The semitransparent ribbon denotes the standard error of the measurements (n = 12). b, d Visual comparison of the 
segmented root diameter outlines for both Rootine v.1 and Rootine v.2 supported by the original X-ray CT grayscale data for the worse case and the 
best case scenario, respectively. Roots detected by both algorithms are depicted in black, the ones only detected by Rootine v.2 are shown in blue, 
whereas roots only detected by Rootine v.1 are shown in red. Dashed horizontal black lines highlight the fact that Rootine v.2 better captures root 
diameter in comparison with Rootine v.1



Page 15 of 19Phalempin et al. Plant Methods           (2021) 17:39 	

the background removal step during preprocessing and 
to the false negatives recovery step during postprocess-
ing. The background removal prevented the presence of 
false positives even when segmenting the images at the 
original resolution. In contrast, the soil heterogeneity and 
the low signal-to-noise ratio of the worse case scenario 
forced [6] to downscale the images by a factor of 2 prior 
root segmentation. The authors argued that segment-
ing the images at the original resolution resulted in too 
much over-segmentation. By applying an adequate back-
ground removal operation, Rootine v.2 was able to avoid 
over-segmentation while improving the recovery of fine 
roots considerably. On top of an adequate background 
removal, the ADT step increases the GV intensities of the 
roots prior tubeness filtering which is favorable for their 
subsequent detection. The false negatives recovery step 
also contributed to a fair amount of the root recovery. By 
computing the RLD before and after this step, this con-
tribution can be evaluated. On average, it amounted to 
25.5% (± 1.9% standard error, n = 12) of the total RLD. So 
the false negatives recovery step explained more than half 
of the gain in root recovery between Rootine v.1 and v.2.

In the best case scenario, the RLD inferred from X-ray 
CT was higher than the one measured with WR. This 
is an indication of the presence of false positives and/
or over-segmentation at the boundaries of root voxels. 
We rule out the latter since the visual inspection of the 
images showed virtually no root voxels extending into 
their surroundings. The overestimation of root length 
with Rootine v.2 could be due to the false negatives recov-
ery step during which some actual false “positives” were 
considered as being false “negatives” and added back to 
the root system. For the best case scenario, the contri-
bution of this step to the total RLD was lower than for 
the worse case scenario and amounted to 12.5% (± 0.8% 
standard error, n = 12). The overestimation of the root 
recovery could also be due to the uncertainties associated 

with the root washing procedure and further analysis 
with WR. The Z-Projection shown in Fig. 8d is one of the 
samples whose X-ray CT RLD data point exceeded the 
RLD data measured with WR (i.e., the sample circled in 
black above the 1:1 line in Fig. 8c). When taking a closer 
look at Fig.  8d, it is obvious that the increase in root 
recovery is partly due to the addition of real roots. During 
root washing, a soil sample is placed on a sieve, the soil is 
then washed off with water and the roots remaining on 
the sieve (here having a 1 mm mesh size) are picked with 
a tweezer and stored in ethanol prior to analysis. Some 
fine roots can easily go unnoticed on the sieve due to 
their size. The fact that the overestimation of WR data 
by Rootine v.2 occurs specifically for the fine roots is an 
indication supporting this argument. On top of the root 
washing, errors in WR data might be induced by an une-
ven distribution of the roots on the tray during scanning. 
An uneven distribution of the roots might cause two 
fine roots located very close to each other to be detected 
as one root with a larger diameter instead. During the 
analysis with the WinRHIZO software, a noise threshold 
value has to be set to exclude small dirt particles from 
the root length calculation. A high noise threshold value 
leads to smooth root surfaces but also results in the loss 
of fine roots. An improper setting of this parameter may 
then also induce errors. We rule out the effect of storing 
roots in ethanol on the WR results as this procedure has 
proved to be valid to conserve root samples without con-
siderable influence on the measurements of root length 
(i.e., < 1% of underestimation) and diameter (i.e., 5% of 
underestimation) [31]. Both the potential loss of roots 
during washing and the underestimated detection of fine 
roots by WinRHIZO could explain the overestimation of 
the root recovery in the best case scenario. Note that if 
the RLD data characterized with WR is underestimated, 
it is likely that the root recovery in the worse case sce-
nario is overestimated.

Fig. 10  Results of Rootine v.2 and v.1, Root1 and Region growing for a subvolume from the worse case scenario. a Results obtained with Region 
growing. b Results obtained with Root1. c Results obtained with Rootine v.1. d Results obtained with Rootine v.2
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The segmentation accuracy was evaluated based on 
quantitative aspects such as the root recovery and the 
comparison of root diameter distribution. Addition-
ally, the segmentation accuracy was also evaluated visu-
ally based on qualitative aspects, i.e., how accurately the 
root diameter outlines were segmented. With Rootine 
v.1, the primary roots often showed irregular shapes. 
With Rootine v.2, primary roots were segmented with a 
higher accuracy and showed a prominent circular shape 
when viewed in a 2D X–Y cross section. This can be seen 
in Fig.  9b, d. This increase in accuracy can most likely 
be ascribed to the fact that more scales were considered 
during the tubeness filtering at the coarse resolution with 
Rootine v.2. However, this difference in capturing the 
root diameter outlines was not big enough to be reflected 
in the root diameter distribution in the best case sce-
nario. By visually comparing the results of Rootine v.1 
and v.2, it was also noticeable that the latest version 
showed less false positives and less segmentation arte-
facts. Such segmentation artefacts include for instance 
the over-segmentation of roots growing along the plas-
tic wall of the pot. Rootine v.1 did not feature a pot wall 
detection and removal step. Since the root average GV 
is close to the one of the pot wall (see the corresponding 
GV of 

−
vr and P1 in Fig. 3b), it was often observed on the 

results of Rootine v.1 that segmented root were extend-
ing into the plastic wall. This was particularly true in the 
best case scenario. With Rootine v.2, the pot removal step 
prevented that from happening.

Numbers of tunable parameters
One of the objectives of this work was to develop an algo-
rithm in which the numbers of tunable parameters is 
reduced. Note that we consider as “tunable” the param-
eters which require adjustments and calibration when 
applied to other datasets (i.e., experiments with different 
plants, scan settings and/or soil heterogeneity).

In Rootine v.1, we identified twelve tunable parameters 
in total, namely five for the preprocessing, six for the root 
segmentation and one for the postprocessing. For the 
preprocessing, one parameter was used for filtering the 
original grayscale image (i.e., the contrast threshold of 
the 3D NLM filter), two for edge enhancement (i.e., the 
blur radius and the mask weight of the Unsharp mask fil-
ter) and two for masking the pores by single thresholding 
(pores were masked with different thresholds at the origi-
nal and at the coarse resolution). For the root segmenta-
tion step at the original resolution, one σ value and the 
corresponding tlowhys  for hysteresis thresholding method 
were used. For the root segmentation step at the coarse 
resolution, three σ values were used. The obtained results 
of the tubeness filtering were then merged and one tlowhys  
for the hysteresis thresholding method was used to 

segment the results of the coarse root detection (this 
amounts to four parameters). The upper threshold for 
hysteresis thresholding ( thighhys ) was kept constant and high 
enough for every tubeness filtering scale and is thus con-
sidered non-tunable. For the postprocessing, Rootine v.1 
relied on one parameter, i.e., the kernel size of the 3D 
Median filter.

In Rootine v.2, the pore masking thresholds were 
replaced by the root GV factor ( fr) and the root GV 
range ( Rr) . The parameters of the 3D NLM filter and the 
Unsharp mask filtering are also used in the new version. 
With the introduction of the automatic calculation of the 
σ values and topthys  and keeping thighhys  high enough and con-
stant for every tubeness filtering scale, the number of 
parameters required for the root segmentation was 
reduced to two (i.e., dr,min , dr,max ). As they have been set 
once for the new root segmentation approach, we con-
sider the parameters q, fs and dr,inc as “quasi-fixed” and 
therefore non-tunable. For the postprocessing, a smooth-
ening step of the root outline was performed with the 
“3D Median” filtering step requiring one parameter (i.e., 
the kernel size). The false negatives recovery step added 
two parameters, i.e., the vesselness (tv) and the size (ts) 
thresholds. In total, the number of tunable parameters in 
Rootine v.2 was reduced to ten, i.e., five for the preproc-
essing of the image, two for the root segmentation and 
three for the postprocessing. It is worth noting that more 
parameters are required to use the full functionalities of 
Rootine v.2, i.e., the coordinates of the ROI mask. Those 
coordinates need to be directly evaluated on the image 
and are not considered to influence the segmentation 
results if appropriate values are given. The comparison 
between the tunable parameters used in Rootine v.1 and 
Rootine v.2 for every image processing step is shown in 
Table 2.

Runtime and overall usability of Rootine v.1 and v.2
Besides the segmentation accuracy and the number of 
parameters, the assessment of the performance of a 
segmentation algorithm also has to take into account 
the time it takes to process the images. This is impor-
tant for application in high-throughput root phenotyp-
ing based on X-ray CT data analysis. To process a stack 
having a dimension of 1750 × 1750 × 3000 voxels (in X, 
Y and Z dimension, size ≈ 8.6 GB), it took Rootine v.1 
3.8 h to complete the preprocessing, the segmentation 
and the postprocessing steps. In comparison, Rootine 
v.2 took 6.8 h to complete the same steps. The second 
version is 1.8 times slower than the first version for the 
analyzed image size. This is mainly due to the consid-
eration of more scales during tubeness filtering at the 
coarse resolution. For both algorithms, the evaluation 
of the runtime was performed on a workstation having 
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64 Intel® Xeon® Gold 6142 cores running at 2.60 GHz 
each. To this date, filtering with the tubeness filter rep-
resents the bottleneck of the workflow. This is related to 
the fact that the tubeness filter is only implemented in 
a single threaded fashion in the ImageJ software. There 
should be no fundamental constraint that would restrict 
its parallelization and Rootine (regardless of the ver-
sions) would benefit a lot from it. Note that there exists 
a multithreaded implementation of the tubeness plugin 

which was developed in the context of ImageJ Ops [32]. 
We have however not tested it. It is worth noting that 
both algorithms can be run in a user interaction-free 
mode (i.e., from the command line) once the param-
eters are adjusted. This provides an advantage and, in 
our opinion, reduces the necessity of having a fast algo-
rithm as the macro can run in the background and/or 
overnight. When it comes to root system architecture 
studies, a longer runtime can be well accepted as long 
as the root recovery is substantially increased. Despite 
the longer time required to segment the images, we are 
confident that the increase of the overall usability of 
Rootine v.2 can save the user some time for the adjust-
ments of the parameters. Indeed, Rootine v.2 features 
input parameters which are linked to root physiological 
properties such as their GV and their diameter. These 
tunable parameters are easy to adjust as they can be 
directly assessed visually on a test image.

Conclusion
Rootine v.2 has been developed for improved root seg-
mentation accuracy in X-ray CT data. It exploits intrin-
sic properties of root systems such as the connectivity of 
root branches and the cylindrical shape of roots to dis-
tinguish roots from the background. It was demonstrated 
that Rootine v.2 outperforms its precursor version in 
terms of root recovery as well as other state-of-the-art 
root segmentation methods. The gain in root recovery 
could be mainly ascribed to the absolute difference trans-
form of the grayscale data prior to shape detection with a 
series of tubeness filters and to a false negatives recovery 
step. The other major advancements of Rootine v.2 are (i) 
a pot wall detection and removal step, (ii) a calculation of 
the root average gray value based on a histogram analysis 
and (iii) an automatic calculation of thresholds for hys-
teresis thresholding of the tubeness image. Moreover, the 
analysis of the root diameter distribution is readily inte-
grated in the new version. The total number of tunable 
parameters for the entire workflow was reduced from 
twelve to ten. Rootine v.2, in comparison to Rootine v.1, 
functions less in a “black box” fashion as its parameters 
can be more easily interpreted and are easier to adjust. 
The proposed method has the potential of improving 
high-throughput root phenotyping procedures based on 
X-ray CT data analysis. Similarly to its preceding version, 
Rootine v.2 is a macro for the image processing software 
ImageJ and is made freely available to the public.

Abbreviations
ADT: Absolute difference transform; CT: Computed tomography; GV: Gray 
value; NLM: Non-local means; ROI: Region of interest; RLD: Root length density; 
WR: WinRHIZO.

Table 2  Tunable parameters used in Rootine v.1 and v.2

Parameters 

Rootine v.1 Rootine v.2 

Image filtering 

Contrast threshold 
 ( ) 

Contrast threshold 
 ( ) 

Edge enhancement 

Blur radius Blur radius 

Mask weight  Mask weight  

Pore masking Background removal 

Pore threshold  at the 
original resolution 

Root gray value factor 
( )

Pore threshold at the 
coarse resolution 

Root gray value range 
( ) 

Detect fine roots 

Sigma value (σ1) 
Minimum root diameter 

( ) 
Low threshold for 

hysteresis thresholding 
( ) 

Detect coarse roots 

Sigma value (σ2) 

Maximum 
root  

diameter ( ) 

Sigma value (σ3) 

Sigma value (σ4) 

Low threshold for 
hysteresis thresholding 

( ) 

False positives removal 

Kernel size of median filter 

Kernel size of median filter 

False negatives recovery 

Size threshold ( ) 

Vesselness threshold ( ) 
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