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In models of water flow in soil and roots, differences in the soil hydraulic properties

of the rhizosphere and the bulk soil are usually neglected. There is, however,

strong experimental evidence that rhizosphere and bulk soil hydraulic properties differ

significantly from each other due to various root-soil interaction processes. Two such

processes, which can also influence each other, are rhizosphere loosening or compaction

and mucilage deposition. In this work, we identified realistic gradients in rhizosphere

bulk density and mucilage concentration using X-ray CT imaging, respectively, model

simulation for two different soil types and soil bulk densities and related them to

soil hydraulic parameters. Using a 1D-single-root model, we then evaluated both the

individual and combined effects of these gradients on soil water dynamics using scenario

simulations. We showed that during soil drying, a lower rhizosphere bulk density

leads to an earlier onset of water stress and to a reduced root water uptake that is

sustained longer. The presence of mucilage led to a faster reduction of root water

uptake. This is due to the stronger effect of mucilage viscosity on hydraulic conductivity

compared to the mucilage- induced increase in water retention. Root water uptake

was rapidly reduced when both mucilage and rhizosphere bulk density gradients were

considered. The intensity of the effect of gradients in rhizosphere bulk density and

mucilage concentration depended strongly on the interplay between initial soil hydraulic

conditions, soil type and soil bulk densities. Both gradients in rhizosphere bulk density

and mucilage concentration appear as a measure to sustain transpiration at a lower level

and to avoid fast dehydration.

Keywords: mucilage, bulk density, rhizosphere model, root water uptake, COMSOL, rhizosphere

INTRODUCTION

The rhizosphere is defined as the small soil volume around the roots, whose physical, chemical,
and biological properties are significantly influenced by the plant roots (Hinsinger et al., 2009). The
properties of the rhizosphere soil are therefore significantly different to the properties of the bulk
soil further away from the roots. When a root penetrates the soil, it alters the arrangement of soil
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FIGURE 11 | Radial gradients of water content (θ) (A–D) and soil hydraulic conductivity (E–H) at the start of the simulation period for loam and sand, for low and high

soil bulk density, for the different scenarios (Table 3) and an initial pressure head of Hini = −10 cm.

FIGURE 12 | Radial gradients of water content (θ) (A–D) and soil hydraulic conductivity (E–H) at the start of the simulation period for loam and sand, for low and high

soil bulk density, for the different scenarios (Table 3) and an initial pressure head of Hini = −100 cm.

be expected if the mucilage is freshly exuded. Dry mucilage
has been shown to be firmly bound to soil particles, from
where it cannot diffuse freely into the soil (Ahmed et al., 2014;

Albalasmeh and Ghezzehei, 2014). We parameterized the liquid
diffusion coefficient of mucilage with a value from literature
(Sealey et al., 1995) and assumed that only fresh mucilage, but
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FIGURE 13 | Transpiration rates (A–D), cumulative transpiration rates (E–H), and cumulative transpiration rate relative to the control scenario (I–L) for loam and sand

as well as for low and high soil bulk density for an initial pressure head of Hini = −10 cm (for better visibility, we only show simulation day 7 to 15), an overview of the

different scenarios is given in Table 3.

not mucilage derivatives can diffuse into the soil. Our simulation
model predicted a rhizosphere thickness of ∼0.6mm, which
corresponds well to the experimentally found values by Holz et al.
(2018a).

Relation Between Rhizosphere Gradients
and Soil Hydraulic Parameters
We used the pedotransfer functions by Assouline (2006a,b)
and Carman (1937) to relate the changes in rhizosphere
bulk density to changes in soil hydraulic parameters. These
pedotransfer functions were originally developed based on
differently compacted soil samples from the field. Due to a
lack of more appropriate functions (Alaoui et al., 2011), we
assumed that these pedotransfer functions are also valid at
the rhizosphere scale. Further experimental studies on the
effects of changes in pore size distribution on soil hydraulic
properties at the rhizosphere scale are needed. In our model,
we use the Richards equation to simulate water flow in soil
at the continuum scale. The reduced rhizosphere bulk density

at the root-soil interface is thereby accounted for by adjusting
the van Genuchten parameters according to the pedotransfer
functions by Assouline (2006a,b). In reality, it can be expected
that the reduced rhizosphere bulk density at the root-soil
interface is the result of averaging differences in rhizosphere
bulk density on the pore scale i.e., averaging gaps and the
density of unchanged soil aggregates (Carminati et al., 2013).
Considering that the loss of root-soil contact not only reduces,
but prevents water flow, the unsaturated hydraulic conductivity
could be lower than predicted by the pedotransfer functions
by Assouline (2006a,b). Carminati et al. (2008) predicted a
decrease in unsaturated conductivity due to a loss of contact
between soil aggregates by a few orders of magnitude. This
would lead to a greater reduction in transpiration due to the
gradient of rhizosphere bulk density than predicted by our
simulation model. A possibility to take into account a stronger
reduction in unsaturated conductivity due to a reduced contact
area is the increase of the tortuosity parameter l (Equation
11) such as proposed by Schlüter et al. (2012) and Carminati
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FIGURE 14 | Transpiration rates (A–D), cumulative transpiration rates (E–H), and cumulative transpiration rate relative to the control scenario (I–L) for loam and sand

as well as for low and high soil bulk density for an initial pressure head of Hini = −100 cm, an overview of the different scenarios is given in Table 3.

et al. (2008). However, currently there are no pedotransfer
functions to parameterize the tortuosity parameter when facing
gap formation.

To evaluate the effect of mucilage concentration on the soil
water retention curve and further on soil hydraulic parameters,
we used the model by Kroener et al. (2014). Qualitatively, the
impact of mucilage on soil hydraulic parameters matches well
with findings from previous studies such as Carminati et al.
(2010) and Carminati and Vetterlein (2013). Quantitatively,
however, the effect depends much on the parametrization
of the fitting parameters of this model. We chose these
fitting parameters using experimental results on the influence
of soil texture on the mucilage-related increase in water
content at a given water potential from Kroener et al.
(2018). However, this experimental information gives rather a
plausible range than actual values for the fitting parameters
and our parameter choice can be expected to have affected the
simulation results.

Challenges of the Non-linearity of the
Parameterization of the Mucilage Model
Several parameter functions show a huge non-linearity, e.g.,
the soil water retention and soil hydraulic conductivity
functions of the Mualem-van Genuchten parameterisation, the
Millington-Quirk model (Equation 3) and the models describing
how rhizosphere bulk density and mucilage (Equation 5–8)
alter hydraulic functions. These non-linearities could lead to
convergence problems in the numerical scheme, especially if all
feedback mechanisms betweenmucilage spreading and hydraulic
dynamics were considered.

Therefore, we had to make a few simplifications in this study,
namely: (a) to calculate the spreading of mucilage around a root,
we assumed a water content that is constant in space and time; (b)
we assumed a stationary radial mucilage distribution throughout
the entire simulation period; (c) we neglected hydrodynamic
dispersion of mucilage, which is quite reasonable due to the
rather slow water fluxes; (d) We assumed superposition of the
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effects of rhizosphere bulk density and mucilage concentration
on soil hydraulic parameters; this is possibly a simplification,
because the effect of mucilage on soil hydraulic properties
depends strongly on pore size.

Despite these simplifications, the results show very realistic
distributions, indicating that this approach manages the
challenge to be both reasonable and feasible at the same
time. This approach to first simulate spreading of mucilage
and then based on this the hydraulic dynamics allows to
simulate the coupled physical processes and avoids several
numerical convergence problems that could have been
expectable due to the highly non-linear parameterisations and
feedback mechanisms.

The Impact of Rhizosphere Gradients in
Rhizosphere Bulk Density and Mucilage
Concentration on Water Dynamics
We found that the gradients of rhizosphere bulk density and
mucilage concentration have a significant influence on the
hydraulic properties of the rhizosphere (Figures 9, 10). However,
their influence on the absolute amount of water taken up by
the root is–depending on the initial conditions and the duration
of water absorption by the root–rather small (Figures 13E–H,
14E–H). The greatest effect of rhizosphere properties on root
water uptake was observed in the scenarios in which gradients
of rhizosphere bulk density and mucilage concentration were
combined. While the lower rhizosphere bulk density led to
a lower water retention, the presence of mucilage led to an
increased viscosity. In combination, this significantly reduced
the hydraulic conductivity of the soil and consequently resulted
in an earlier water stress onset and a stronger reduction in the
transpiration rate. However, considering that the limiting factor
for root water uptake was not the available water volume but the
reduced soil hydraulic conductivity, the process of root water
uptake took longer, but the roots eventually took up the same
amount of water. The gradients in rhizosphere bulk density and
mucilage concentration therefore keep transpiration at a lower
level for a longer time, which prevents fast dehydration and can
be regarded as beneficial.

The initial soil hydraulic conditions had a strong effect on the
scenarios with rhizosphere bulk density gradient. Our measured
rhizosphere bulk density gradient led to a higher water retention
when the soil was initially wet and to a lower water retention
when the soil was drier, at field capacity. Depending on the
initial pressure head, the water content in the rhizosphere was
therefore either higher or lower than in the surrounding bulk
soil at the start of the simulation. During a drying scenario, root
water uptake could be maintained longer if the rhizosphere water
content was initially higher.

The gradients in rhizosphere bulk density and mucilage
concentration may play an important role in the distribution of
root water uptake of an entire root system. To study this effect,
however, a three-dimensional model of water flow in soil and
roots (e.g., Mai et al., 2019) must be coupled with rhizosphere
bulk density and mucilage concentration gradients along the
root system. Such a model could then also be used to examine

the effects of rhizosphere processes on soil water dynamics at a
larger scale (e.g., field scale). For model validation, experimental
measurements are needed, which take into account the spatial
variability of water infiltration and soil hydraulic properties due
to differences in the vegetation cover and therefore differences in
mucilage release and soil bulk density. An appropriate method
was proposed by Lassabatere et al. (2019). Combining a 3D
rhizosphere model with further experimental measurements
would provide important information on how rhizosphere
processes can help achieve a resilient and healthy soil water
system (Keesstra et al., 2018; Visser et al., 2019).

According to our simulation results, gradients in rhizosphere
bulk density and mucilage concentration lead to an initially
lower, but longer lasting root water uptake. A general statement
on whether gradients in rhizosphere bulk density or mucilage
concentration lead to a higher or lower root water uptake
cannot be made, however, as this depends on the characteristics
of the gradients, the initial soil hydraulic conditions, the soil
type, the soil bulk density, the soil hydraulic properties, and–in
the case of mucilage–on the model parameterization. Aravena
et al. (2014) found that rhizosphere compaction leads to an
increase in water flow toward the roots in a very loose soil.
In our experiments, however, the predominant effect of the
rhizosphere bulk density gradients was not a compaction, but
a loosening of the rhizosphere, and our simulations therefore
showed reduced water flow to the roots. Using model simulation,
Schwartz et al. (2016) observed that the presence of mucilage
in a sandy soil led to a delay in the onset of water stress and
thus to a longer maintenance of higher transpiration rates. Our
model simulations on a loamy and a sandy soil, however, led
to contrasting observations, which has several reasons. Schwartz
et al. (2016) assumed constant mucilage concentrations in the
rhizosphere and did not consider radial gradients. The presence
of radial gradients, however, has an enormous effect on soil
hydraulic conductivity and consequently influences root water
uptake (Figures 10, 13, 14). At low pressure heads, highmucilage
concentrations lead to a larger soil hydraulic conductivity, while
low mucilage concentrations lead to a lower soil hydraulic
conductivity (Figure 10). When radial gradients are considered,
the low mucilage concentration at the outer edge of the
rhizosphere results in a low soil hydraulic conductivity, which
limits water transport to the root. When no radial gradients
are considered, the soil hydraulic conductivity of the entire
rhizosphere is larger than that of the bulk soil and water transport
to the root is promoted. This phenomenon of an earlier reduction
in transpiration at low mucilage concentrations was also shown
by Carminati et al. (2016a).

CONCLUSION

In this study, we used a mechanistic simulation model to
evaluate the impact of gradients in rhizosphere bulk density
and mucilage concentration on soil water dynamics. These
gradients lead to differences in soil hydraulic properties and
consequently to differences in root water uptake. Our simulations
showed that the experimentally observed decrease in rhizosphere
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bulk density in the immediate vicinity of the root leads to
an earlier onset of water stress and to lower transpiration
rates. The decreasing radial mucilage concentrations increase
the viscosity in the rhizosphere, which leads to a decrease
in soil hydraulic conductivity. This in turn also leads to an
earlier onset of water stress. When both gradients in rhizosphere
bulk density and mucilage concentration are considered, root
water uptake decreases even faster. However, considering that
the limiting factor for root water uptake was not the available
water volume but the reduced soil hydraulic conductivity, the
process of root water uptake took longer, but the roots eventually
took up the same amount of water. Gradients in rhizosphere
bulk density and mucilage concentration thus appear as a
measure to sustain transpiration at a lower level and to avoid
fast dehydration.

Our simulations proved the importance of considering
gradients in rhizosphere bulk density and mucilage
concentration. Low values of rhizosphere bulk density
and mucilage concentration lead to extremely low
hydraulic conductivities, which are then the limiting
factor for water flow to the roots. However, these lows
in rhizosphere bulk density and mucilage concentration
occur only in a limited portion of the rhizosphere and
therefore cannot be accounted for with mean values of
rhizosphere properties.
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