Climate change induced carbon competition: bioenergy versus soil organic matter reproduction - an indicator based assessment

U. Franko¹, F. Witing², G. Jäckel³, M. Volk⁴

¹Department of Soil Physics, Halle, Germany
²Department of Bioenergy, Leipzig, Germany
³Department of Coordination and Integration of Water Sciences, Leipzig, Germany
⁴Department of Computational Landscape Ecology, Leipzig, Germany
Problem

Climate change driven by fossil fuel burning
➔ mitigation: renewable energies

Climate change will alter the soil carbon cycling
➔ soil organic matter (SOM): globally important pool

Production of bioenergy has an impact on both:
Replacement of fossil energy
Changing the soil carbon cycle
Objective

On a regional scale:

- Estimation of **SOM turnover conditions** driven by global warming

- Assessment of **bioenergy impact on SOM** (carbon re-production cycle)

- Provide an **combined assessment scheme** to identify “hot spots” of carbon competition
Study region: Central Germany

Data base:

Climate (821 cells):
Future (2001 – 2100):
IPCC scenarios A1B, A2 and B1
Past (1961-2000): C20 data
Regionalized using REMO & WETTREG

Soil:
German soil map BUEK1000
(scale 1:1,000,000; Hartwich et al., 1998)

• problem:
 – Identification of sub regions with potential biomass competition between bioenergy and SOM

• scaling approach:
 – Identification of Bioenergy Producing Units (BPU)

• required:
 Indicator to assess bioenergy impact on carbon re-production cycle
 Indicator to assess SOM turnover driven by global warming
Assessment of biogas production

Knowledge base about biogas plants:

Location
Data from Das et al. (2012)

Carbon catchment area
Subplots from Voronoi interpolations
available agricultural area → AA
CORINE data (CLC2006; Keil et al., 2010)

Carbon consumption
Installed capacity → IC
Data from Das et al. (2012)

Definition of BPU’s
Indicator for carbon consumption → CAP=IC/AA
Classification approach

Capacity Index

\[\text{CAP} = \frac{\text{IC}}{\text{AA}} \]

1\text{st} and 3\text{rd} quartile of a lognorm dist.

- low: \(\text{CAP} \leq 0.042 \)
- Medium: \(0.042 < \text{CAP} \leq 0.131 \)
- high: \(\text{CAP} > 0.131 \)
Results: CAP

Capacity Index \(\Rightarrow \) \(\text{CAP} = \frac{\text{IC}}{\text{AA}} \)

(Carbon transformed to biogas)
Conditions for SOM turnover (soil organic matter)

CCB model: Franko et al. (2011), Geoderma (166) 119-134
Assessment of soil management

SOM supply = \frac{c_{amount} \times Quality}{time}
Biologic Active Time (BAT)

- BAT is an indicator for environment conditions of microbes
- BAT is a function of soil temperature, soil moisture and soil aeration
- annual BAT is calculated from air temp., rainfall and soil texture

equal input

65 dt Crep /a

different result:

<table>
<thead>
<tr>
<th>SAND</th>
<th>LOAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1500</td>
</tr>
</tbody>
</table>

BAT_y=44 d

BAT_y=29 d
Assessment of soil management

SOM supply = \(\frac{C_{\text{amount}} \times Quality}{\text{biologic active time}} \)

Final SOM level according to Management (SOM supply)

- High SOM supply
- Low SOM supply
Climate change: BAT

predicted change: ca. +2.5 K ; -20 mm
Sustainable SOM supply

\[\text{past climate} \]
\[\text{SOM} = \frac{C_{\text{input past}}}{B\text{AT}_{\text{past}}} \]

\[\text{future climate} \]
\[\text{SOM} = \frac{C_{\text{input future}}}{B\text{AT}_{\text{future}}} \]

\[\text{carbon demand will increase} \]
\[CDI = \frac{C_{\text{future}}}{C_{\text{past}}} = \frac{B\text{AT}_{\text{past}}}{B\text{AT}_{\text{future}}} \]
Results: carbon demand index

CDI: carbon demand for soil

Increase of SOM supply to sustain SOM level

soil texture
Combined Assessment

carbon demand for biogas

carbon demand for soil org. matter

CAP level
- high
- medium
- low

CDI level
- high
- med
- low
Results: BPU assessment

<table>
<thead>
<tr>
<th>CAP</th>
<th>CDI</th>
<th>BPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
<td>No alert</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>No alert</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Warning</td>
</tr>
<tr>
<td>Medium</td>
<td>Low</td>
<td>No alert</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>No alert</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Warning</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>Hot spot</td>
</tr>
</tbody>
</table>

- **hot spots:** adaptation strategies may be developed on *local scale*

paper accepted in JPNSS
Conclusions / Summary

Methodology:

Definition of **BPU as spatial system**

CDI and CAP: indicators for large scale assessment of potential carbon competition

Advantages: **low data requirements** and transferable

Results for Central Germany:

general increasing carbon demand to sustain SOM

„hot spot“ areas ≈ 5% ; „warning“ level ≈ 30%

⇒ further CAP increase should take into account CDI values

Search for adaptation strategies requires more detailed database
Thank you for attention!

..... any questions

Acknowledgements

This study was partly supported by the Helmholtz Association of German Research Centres within the project funding “Biomass and Bioenergy Systems” and Helmholtz Impulse and Networking Fund of Helmholtz Interdisciplinary Graduate School for Environmental Research (HIGRADE).
Basic principle of CCB Candy Carbon Balance

SOM dynamics in dependence of

- **site conditions**
- **Initial conditions**
- **soil management**
 - reproduction flux C_{rep}

- turnover conditions
 - BAT

C_{org}-Dynamics in annual time steps

Graph (1996-2010)