

EDA-EMERGE Specialized Course 6 & Local Course 1:

<u>"Advanced course and practical exercise on Chemometrics, LC-LTQ Orbitrap MSn and computer tools for chemical structure generation and elucidation" &</u>

"Introduction to R and multivariate statistic"

Venue:	UFZ, Leipzig, Germany
Organizer:	Dr. Werner Brack
Date:	23.10 to 25.10.2013
Time:	9 h00 – 18h30, 9 h00 – 18h30, 9h00 – 11h30

Course description

The SC6 was held together with LC1 in a three day EDA-EMERGE training course block on Chemometrics, LC-LTQ Orbitrap MSn and computer tools for chemical structure generation and elucidation (SC6) and on using R for multivariate statistic (LC1). The course focused on teaching, desktop analytical tools, concepts for effect directed analysis and chemical structure elucidation in water quality monitoring. This included a 3h introduction to R software and statistics (Dr. Steffen Neumann, Leibniz Institute Halle), 6h of lectures and tutorials in chemometrics (Prof. Jan Christensen, University of Copenhagen) and 15h of lectures, coursework and tutorials on chemical structure elucidation (Dr. Martin Krauss, UFZ Leipzig and Dr. Emma Schymanski, EAWAG Switzerland). At least 6h of self-study was necessary to revise the literature material provided by the course instructors, in addition to preparing for the tutorials.

The training was practice orientated and intensive, involving lectures and tutorials by international experts using state of the art computer based tools, real field data and LC-MS spectra of chemical pollutants. The lectures were followed by tutorials where students worked independently and then in groups using software packages such as Latentix and R. Furthermore, the participants were introduced to the basics of multivariate statistics, Latentix, R and how to apply these tools in chemical structure elucidation of complex LC data.

This amounted to a minimum total academic involvement of 30 hours (1.0 ECTS) for the participants.

AGENDA

Tuesday, 23.10.2012				
Time	Title	Lecturer		
9:00-11:00	Introduction to R, part I	Steffen Neumann		
11:00-	Coffee Break			
11:20				
11:20-	Introduction to R, part II	Steffen Neumann		
13:00				
13:00-	Lunch Break			
14:00				
14:00-	Multivariate Statistics, part I	Jan Christensen		
15:40				
15:40-	Coffee Break			
16:00				
16:00-	Multivariate Statistics, part I	Jan Christensen		
18:30				

Wednesday, 24.10.2012 – Advanced LC-MS course			
Time	Title	Lecturer	
9:00-9:30	Introduction to the workshop (recapitulation of previous content in summer workshop)	Martin Krauss	
9:30-10:45	Molecular formula calculation (7 golden rules, adducts, isotopes, MS/MS; SIRIUS, MOLGEN-MS/MS, MZmine, online program) & Practical exercises	Martin Krauss	
10:45-	Coffee Break		
11:00			
11:00-	In silico fragmentation (MetFrag, MassFrontier); Canidate	Emma Schymanski	
12:15	retrieval and fragments; exact mass versus formula search &		
	Practical exercises		
12:15-	Lunch Break		
13:15			
13:15-	Retention and behavior prediction (log KOW, CHI, correlations,	Martin Krauss	
14:15	retention index; compare models versus candidate elimination) & Practical exercises		
14:15-	Toxicity behavior and prediction (structural alerts, bioclipse,	Emma Schymanski	
15:00	openTox, chemprop) & Practical exercises	j j	
15:00-	Coffee Break		
15:15			
15:15-	What if s – the hard cases (not in ChemSpider, databases, no	Martin Krauss,	
15:45	matches; structure generation; TPs: special cases)	Emma Schymanski	
15:45-	Extended practical exercices and discussion	All	
18:30			

Thursday, 25.12.2012				
Time	Title	Lecturer		
09:00-	Individual tutorials in PC-cabinet	All		
11:30				
11:30	End of training event			
	-			

COURSE CONTENT

- Multivariate Fingerprinting
 - Analytical data in environmental sciences
 - Data structure
 - Multivariate data
 - PCA visualization
- Contaminant Fingerprinting
 - Pattern recognition
 - What is a fingerprint
 - Tiered approaches for oil fingerprinting
 - Building a database
 - Retention time alignment
 - Normalization
 - Chemometrix
- Source identification of polycyclic aromatic hydrocarbons (PAHs) from multiple sources
 - Chemical analysis
 - Data pre-processing
 - Data structure
 - Chemical interpretation
- Molecular formula generation
 - High resolution mass spectrometry
 - Molecular formula from accurate mass
 - Heuristic filtering of molecular formulas
- Overview of compound and spectral databases
- Compound database and mass spectral database searching
- Candidate selection via *in silico* fragmentation
 - Basics
 - MetFrag
 - MetFusion
- Advanced analytical strategies
 - LC-HR-MS structure elucidation strategy
 - Using ionization behavior or deuterium exchange
- Molgen MS/MS
- Where to start identification?

- Screening
- Targets, suspects, non-targets
- Peak picking
- Making the "big list of compounds smaller
- Related suspect screening
- Detecting isotopes and adducts)
- Structure elucidation beyond compound databases the trickier cases
 - Size of databases versus compound spaces
 - Structure generation and unknown spectra
 - Filtering strategies for structure elucidation
 - Examples