
Extending Rcpp

Dirk Eddelbuettel Romain François

Rcpp version 0.9.15 as of October 13, 2012

Abstract

This note provides an overview of the steps programmers should follow to extend Rcpp (Eddelbuettel and François,
2012, 2011) for use with their own classes. This document is based on our experience in extending Rcpp to
work with the Armadillo (Sanderson, 2010) classes, available in the separate package RcppArmadillo (François,
Eddelbuettel, and Bates, 2012). This document assumes knowledge of Rcpp as well as some knowledge of C++
templates (Abrahams and Gurtovoy, 2004).

1 Introduction

Rcpp facilitates data interchange between R and C++ through the templated functions Rcpp::as (for conversion
of objects from R to C++) and Rcpp::wrap (for conversion from C++ to R). In other words, we convert between
the so-called S-expression pointers (in type SEXP) to a templated C++ type, and vice versa. The corresponding
function declarations are as follows:

// conversion from R to C++
template <typename T> T as(SEXP m_sexp) ;

// conversion from C++ to R
template <typename T> SEXP wrap(const T& object) ;

These converters are often used implicitly, as in the following code chunk:

// we get a list from R
List input(input_) ;

// pull std::vector<double> from R list
// this is achieved through an implicit call to Rcpp::as
std::vector<double> x = input["x"] ;

// return an R list
// this is achieved through implicit call to Rcpp::wrap
return List::create(

_["front"] = x.front(),

_["back"] = x.back()

) ;

1

> fx <- cxxfunction(signature(input_ = "list"),

+ paste(readLines("code.cpp"), collapse = "\n"),

+ plugin = "Rcpp"

+)

> input <- list(x = seq(1, 10, by = 0.5))

> fx(input)

$front

[1] 1

$back

[1] 10

The Rcpp converter function Rcpp::as and Rcpp::wrap have been designed to be extensible to user-defined
types and third-party types.

2 Extending Rcpp::wrap

The Rcpp::wrap converter is extensible in essentially two ways : intrusive and non-intrusive.

2.1 Intrusive extension

When extending Rcpp with your own data type, the recommended way is to implement a conversion to SEXP. This
lets Rcpp::wrap know about the new data type. The template meta programming (or TMP) dispatch is able to
recognize that a type is convertible to a SEXP and Rcpp::wrap will use that conversion.

The caveat is that the type must be declared before the main header file Rcpp.h is included.

#include <RcppCommon.h>

class Foo {

public:
Foo() ;

// this operator enables implicit Rcpp::wrap
operator SEXP() ;

}

#include <Rcpp.h>

This is called intrusive because the conversion to SEXP operator has to be declared within the class.

2.2 Non-intrusive extension

It is often desirable to offer automatic conversion to third-party types, over which the developer has no control
and can therefore not include a conversion to SEXP operator in the class definition.

To provide automatic conversion from C++ to R, one must declare a specialization of the Rcpp::wrap template
between the includes of RcppCommon.h and Rcpp.h.

2

#include <RcppCommon.h>

// third party library that declares class Bar
#include <foobar.h>

// declaring the specialization
namespace Rcpp {

template <> SEXP wrap(const Bar&) ;

}

// this must appear after the specialization,
// otherwise the specialization will not be seen by Rcpp types
#include <Rcpp.h>

It should be noted that only the declaration is required. The implementation can appear after the Rcpp.h file
is included, and therefore take full advantage of the Rcpp type system.

2.3 Templates and partial specialization

It is perfectly valid to declare a partial specialization for the Rcpp::wrap template. The compiler will identify the
appropriate overload:

#include <RcppCommon.h>

// third party library that declares template class Bling<T>
#include <foobar.h>

// declaring the partial specialization
namespace Rcpp {

namespace traits {

template <typename T> SEXP wrap(const Bling<T>&) ;

}

}

// this must appear after the specialization,
// otherwise the specialization will not be seen by Rcpp types
#include <Rcpp.h>

3 Extending Rcpp::as

Conversion from R to C++ is also possible in both intrusive and non-intrusive ways.

3

3.1 Intrusive extension

As part of its template meta programming dispatch logic, Rcpp::as will attempt to use the constructor of the
target class taking a SEXP.

#include <RcppCommon.h>

#include <RcppCommon.h>

class Foo{

public:
Foo() ;

// this constructor enables implicit Rcpp::as
Foo(SEXP) ;

}

#include <Rcpp.h>

// this must appear after the specialization,
// otherwise the specialization will not be seen by Rcpp types
#include <Rcpp.h>

3.2 Non intrusive extension

It is also possible to fully specialize Rcpp::as to enable non intrusive implicit conversion capabilities.

#include <RcppCommon.h>

// third party library that declares class Bar
#include <foobar.h>

// declaring the specialization
namespace Rcpp {

template <> Bar as(SEXP) ;

}

// this must appear after the specialization,
// otherwise the specialization will not be seen by Rcpp types
#include <Rcpp.h>

3.3 Templates and partial specialization

The signature of Rcpp::as does not allow partial specialization. When exposing a templated class to Rcpp::as, the
programmer must specialize the Rcpp::traits::Exporter template class. The TMP dispatch will recognize that a spe-
cialization of Exporter is available and delegate the conversion to this class. Rcpp defines the Rcpp::traits::Exporter

4

template class as follows :

namespace Rcpp {

namespace traits {

template <typename T> class Exporter{

public:
Exporter(SEXP x) : t(x){}

inline T get(){ return t ; }

private:
T t ;

} ;

}

}

This is the reason why the default behavior of Rcpp::as is to invoke the constructor of the type T taking a
SEXP.

Since partial specialization of class templates is allowed, we can expose a set of classes as follows:

#include <RcppCommon.h>

// third party library that declares template class Bling<T>
#include <foobar.h>

// declaring the partial specialization
namespace Rcpp {

namespace traits {

template <typename T> class Exporter< Bling<T> >;

}

}

// this must appear after the specialization,
// otherwise the specialization will not be seen by Rcpp types
#include <Rcpp.h>

Using this approach, the requirements for the Exporter< Bling<T> > class are:

� it should have a constructor taking a SEXP

� it should have a methods called get that returns an instance of the Bling<T> type.

4 Summary

The Rcpp package greatly facilitates the transfer of objects between R and C++. This note has shown how to
extend Rcpp to either user-defined or third-party classes via the Rcpp::as and Rcpp::wrap template functions.
Both intrusive and non-intrusive approaches were discussed.

5

References

David Abrahams and Aleksey Gurtovoy. C++ Template Metaprogramming: Concepts, Tools and Techniques from
Boost and Beyond. Addison-Wesley, Boston, 2004.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL http://www.jstatsoft.org/v40/i08/.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ Integration, 2012. URL http://CRAN.

R-Project.org/package=Rcpp. R package version 0.9.13.

Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo tem-
plated linear algebra library, 2012. URL http://CRAN.R-Project.org/package=RcppArmadillo. R package
version 0.3.2.4.

Conrad Sanderson. Armadillo: An open source C++ algebra library for fast prototyping and computationally
intensive experiments. Technical report, NICTA, 2010. URL http://arma.sf.net.

6

http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=RcppArmadillo
http://arma.sf.net

	Introduction
	Extending Rcpp::wrap
	Intrusive extension
	Non-intrusive extension
	Templates and partial specialization

	Extending Rcpp::as
	Intrusive extension
	Non intrusive extension
	Templates and partial specialization

	Summary

