
In Silico Models in the OSIRIS Web-Tool: Skin Sensitisation

Mark Cronin School of Pharmacy and Chemistry Liverpool John Moores University England

Skin Sensitisation: Current Knowledge

In Silico Approaches for Predicting Skin Sensitisation

- SMARTS Strings
- DEREK
- TIMES
- TOPKAT
- M-CASE

In the Web-Tool

- CAESAR
- OECD (Q)SAR Application Toolbox

In Silico Approaches for Predicting Skin Sensitisation

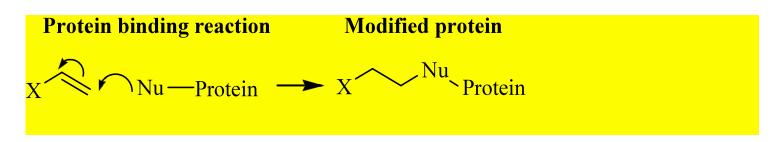
- SMARTS Strings Fragments (organic chemistry)
- DEREK Structural alerts
- TIMES Hybrid QSAR and metabolism
- TOPKAT QSAR
- M-CASE QSAR
- CAESAR QSAR
- OECD (Q)SAR Application Toolbox Categories

In Silico Approaches for Predicting Skin Sensitisation

- SMARTS Strings Mechanistic (chemistry)
- DEREK Mechanistic (chemistry / biology)
- TIMES Mechanistic (chemistry / biology)
- TOPKAT Non-mechanistic
- M-CASE Non-mechanistic
- CAESAR Non-mechanistic
- OECD (Q)SAR Toolbox Mechanistic (chemistry)

In Silico Approaches for Predicting Skin Sensitisation

- SMARTS Strings Freely available (via e-mail)
- DEREK Commercial (not for profit)
- TIMES Commercial
- TOPKAT Commercial
- M-CASE Commercial
- CAESAR Freely available via internet server
- OECD (Q)SAR Toolbox Freely downloadable


SMARTS Strings Described Reaction Chemistry Mechanistic Applicability Domains

Michael acceptor S_NAr S_N2 Schiff base Acyl transfer $S_{\rm N}1$ Non-reactive, non-proreactive

Enoch SJ et al (2008) Chem. Res. Toxicol. 21:513-520

Rules for Mechanistic Domain Assignment

Michael Acceptor Domain

Identification characteristics:

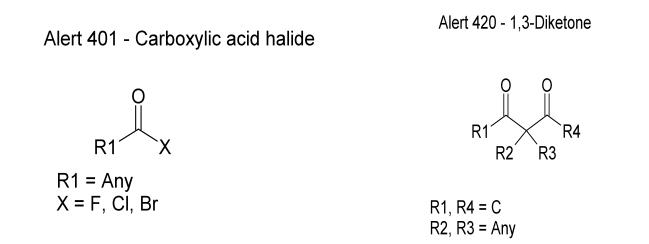
Double or triple bond with substituent X -CHO, -COR, -CO₂R, -CN, -SO₂R, -NO₂, also 2- or 4- pyridino p-, o-quinones

Enoch SJ et al (2008) Chem. Res. Toxicol. 21:513-520

SMARTS Strings – Identify Chemistry

Mechanism	SMARTS pattern
S _N Ar	$ \begin{array}{l} c1([F, Cl, Br, I, \$(N(=O) \sim O)])c([F, Cl, Br, I, \$(N(=O) \sim O), \$(C\#N), \$(C=O), \\ \$(C(F)(F)F), \$(S=O)])cc[F, Cl, Br, I, \$(N(=O) \sim O), \$(C\#N), \$(C=O), \\ (\$(C(F)(F)F), \$(S=O)])cc1 \\ c1([F, Cl, Br, I, \$(N(=O) \sim O)])c([F, Cl, Br, I, \$(N(=O) \sim O), \$(C\#N), \$(C=O), \\ (\$(C(F)(F)F), \$(S=O)])ccc1([F, Cl, Br, I, \$(N(=O) \sim O), \$(C\#N), \$(C=O), \\ (\$(C(F)(F)F), \$(S=O)])cccc1([F, Cl, Br, I, \$(N(=O) \sim O), \$(C\#N), \end{cases} $
	(S(C(F)(F)F), S(S=O))) S(C=O), S(C(F)(F)F), S(S=O)) c1([F, Cl, Br, I, S(N(=O) ~ O)]) c1([F, Cl, Br, I, S(N(=O) ~ O)]) S(C=O), S(C(F)(F)F), S(S=O)) c1([F, Cl, Br, I, S(N(=O) ~ O)]) c1([F, Cl, Br, I, S(N(=O) ~ O)]) c1([F, Cl, Br, I, S(N(=O) ~ O)]) c1([F, Cl, Br, I, S(N(=O) ~ O)])
	(C=O), (C(F)(F)F), (S=O)]) $c1([F, Cl, Br, I, (N(=O) \sim O)])ncccn1$ $c1([F, Cl, Br, I, (N(=O) \sim O)])ncncc1$ $c1([F, Cl, Br, I, (N(=O) \sim O)])ncc([F, Cl, Br, I, (N(=O) \sim O), (C#N),$
	(C=O), (C(F)(F)F), (S=O))nc1 c1nc([F, Cl, Br, I, (N(=O) ~ O)])ncn1

A simple tool is freely available to use the SMARTS strings


Enoch SJ et al (2008) SAR QSAR Environ. Res. 19:555-578

Derek for Windows / Derek Nexus

- Knowledge based expert system
- www.lhasalimited.org
- Searches molecule for structural alerts (fragments) of a molecule associated with skin sensitisation
- Fragments developed by expert toxicologists
- If no fragments are found, then DfW states "nothing to report" – not necessarily a negative prediction

Derek for Windows / Derek Nexus

Derek (ver 11) contains 65 alerts for skin sensitsation

It does not have a "skin sensitisation database"

- Alerts are supported by data
- Some approaches to applicability domain exist

TIMES

- A hybrid system
 - QSARs for reactive chemistry
 - Prediction of skin metabolism
- www. oasis-Imc.org
- Identifies reactive chemistry associated with protein binding (47 alerting groups)
- Skin metabolism simulator predicts plausible metabolites (from 236 transformations)
- Approximately 800 compounds (LLNA, GPMT, BfR)
- Assessment of applicability domain

ΤΟΡΚΑΤ

A (statistical) QSAR system based on QSARs developed from discriminant analysis of 2-D structural descriptors

Molecular connectivities, e-state indices

- Approximately 300 compounds (GPMT)
- Predicts non/ weak / moderate / strong sensitisers
- Optimum prediction space (OPS) for applicability domain
- http://accelrys.com/products/discovery-studio/ predictive-toxicology.html

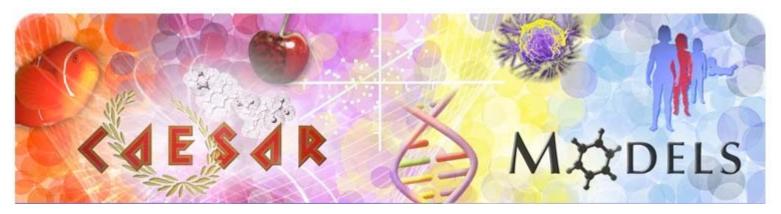
M-CASE

- A (statistical) QSAR system based on molecular fragments
- Molecules are divided up into fragments from two to *n* atoms
- Fragments related statistically to any biological activity
 - Fragments are related to sensitisation (biophores) or non-sensitisation (biophobes)
- Fragments could be used as structural alerts or more commonly in a regression approach

M-CASE

- It is possible to put a mechanistic interpretation on fragments
- Over 1000 compounds (Human data)
- Identifies fragments in a molecule not found in the training set i.e. a form of applicability domain
- www.multicase.com

OECD Toolbox – Not in Webtool


.

🔤 OECD Toolbox 1.1.01							
QSAR Application Toolbox							
© 2008 Organisation for Economic Cooperation and Development							
Chemical input	Profiling	Endpoints	Category definition	Filling data gap	Report		
Apply		1 (Target)					
Profiling methods Benigni/Bossa rulebase BfR rulebase for eye irritation BfR rulebase for skin irritation BioWin MITI fragments	Structure						
Cramer rules			• Δ too	l to Dr	ofile for		
EcoSAR Classification	⊟Profile	CANADA Bioaccu					
OASIS Acute Toxicity MOA Organic functional groups Fortein Binding Osuperfragment profiling Verhaar scheme	—Database Affiliation	Danish EPA EPISUITE_OBS_D OASIS Aquatic OASIS Genotox US-EPA ECOTOX	reactiv	ve che	mistry		
Empiric	Inventory Affiliation OECD categorization	Danish EPA EU EINECS US EPA TSCA (N/A)					
A Metabolism		Discrete chemical					
Documented Observed Liver metabolism Observed Microbial metabolisr Simulated	Observed Liver metabolism Observed Microbial metabolisr		Neutral Organics Nucleophilic substit Group 14 - Carbon C Group 15 - Nitrogen N				
GI tract simulator	Chemical elements	Group 15 - Nitrogen N Group 16 - Oxygen O Group 17 - Halogen			55		
Liver metabolism simulator		Halogens Non-Metals	forma	tion			
Show Category Boundaries	Lipinski Rule	Molecule satisfies t					
Create a new profiler							
Delete profiler							
Single chemical							

www.oecd.org

CAESAR Model – Not in Webtool

- QSAR approach based on nearest neighbours as defined by 2-D descriptors
- 211 compounds (LLNA)
- www.caesar-project.eu

Conclusions

- Webtool contain five QSAR approaches
- QSAR approaches will overlap, but differ significantly
 - Mechanistic vs non-mechanistic
 - Modelling approaches
 - QSAR vs protein binding
 - Number of compounds
 - LLNA vs GPMT vs Human
- This is not an exercise to find the "best" QSAR
- Different approaches may provide complementary information
- We need a method to integrate the predictions

Acknowledgements

European Union 6th Framework OSIRIS Integrated Project (GOCE-037017-OSIRIS)

