Endpoint "Skin Sensitization"

Sensitization testing in the frame of REACH: Any reliable *in vitro* alternatives in sight?

Andreas Luch & Matthias Peiser

Department of Product Safety Federal Institute for Risk Assessment (BfR)

Outline

Risiken erkennen – Gesundheit schützen

- I. Current knowledge on chemical sensitization (in skin)
- II. Current developments in the field of in vitro testing
- III. Prospects: When will reliable in vitro tests be available?

Current knowledge on skin sensitization

in brief

Allergic Contact Dermatitis (ACD)

Issues and Implications

Risiken erkennen – Gesundheit schützen

- 3000-5000 chemical contact allergens ("elicitors")
- Incidence_{dermat. clinic}: 2-7/1000/year
- Lifetime prevalence: ~15% (Survey 2000)
- Occupational dermatoses: ~25%
- Psychological strain/persistance/occupational disability
- Multifactorial disease

Major Challenges

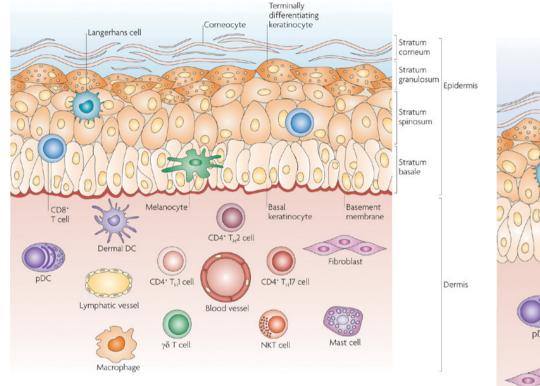
EU Cosmetics Directive 7th Amendment

- Marketing ban since 2003 for testing finished products in animals
- Phasing out of testing in animals and stepwise marketing ban in 2009 and 2013

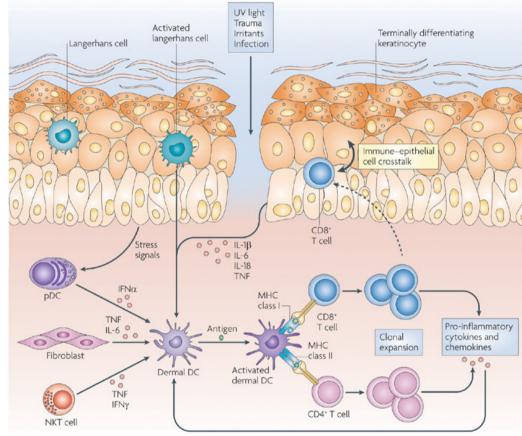
REACH Legislation in the EU

- 30,000 chemicals beyond volume of >1 ton/year require toxicological evaluation
- 70% of testing being conducted between 2011-2017

Toxicological Safety Evaluation

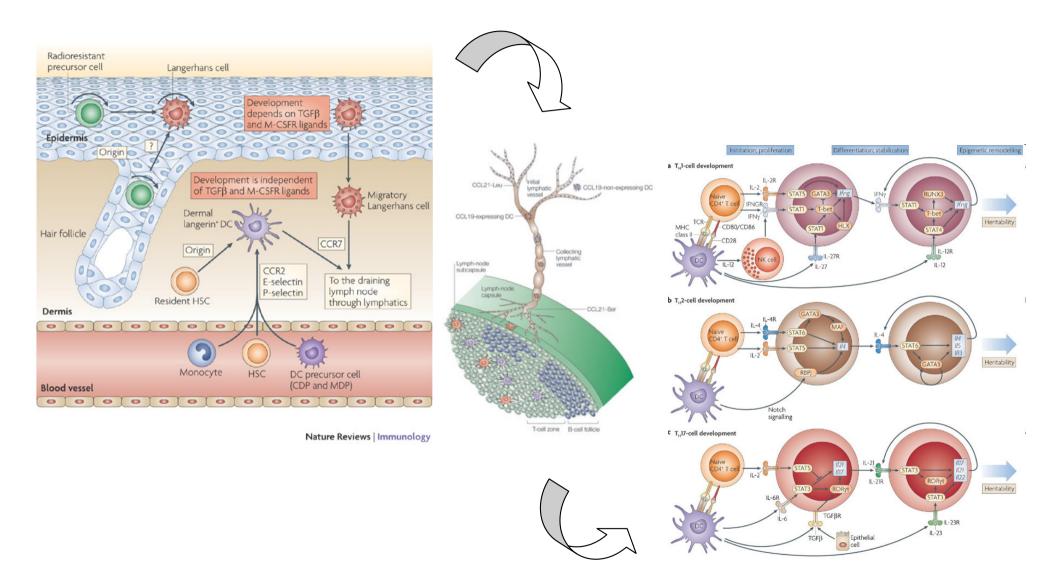

• Animal experiments skin for sensitization/irritation (EU-25, 2005): ca. 60,000 animals [skin sensitization: 22,184 guinea pigs and 21,350 mice]

 Current test systems based on alterations of phenotype and cytokine/chemokine release of dendritic cells


Ian Kimber et al. (2001) Toxicol Sci 59: 198-208

Skin Anatomy and Cellular Effectors

Nature Reviews | Immunology

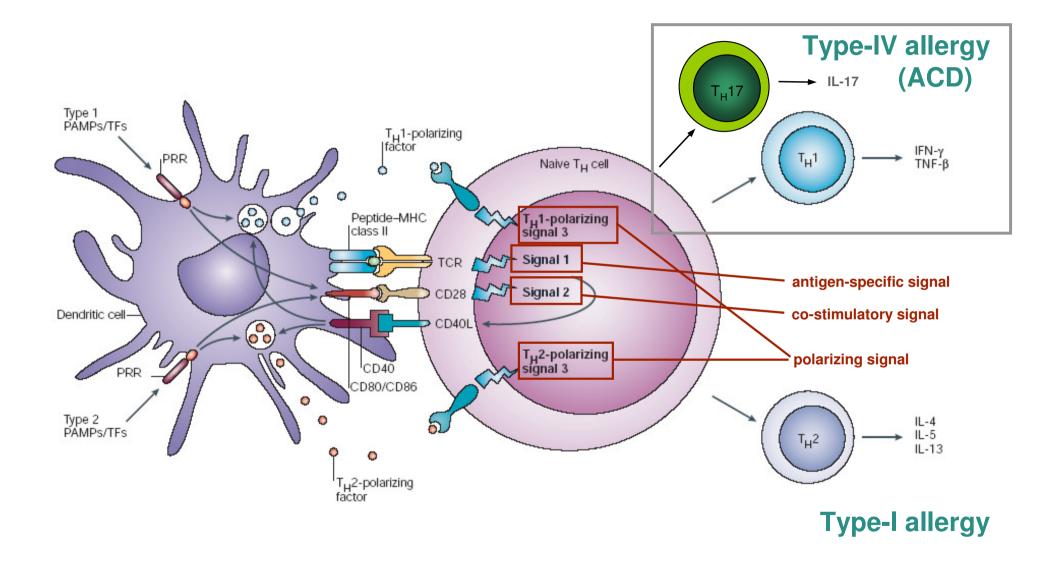

Frank O. Nestle et al. (2009) NRI 9: 679-691 Gwendalyn J. Randolph et al. (2005) NRI 5: 617-628

Nature Reviews | Immunology

Luch, OSIRIS Workshop, March 2, 2010

Page 8

DC Homeostasis, Migration & T-Cell Interaction


Miriam Merad et al. (2008) NRI 8: 935-947 Gwendalyn J. Randolph et al. (2005) NRI 5: 617-628

Nature Reviews | Immunology

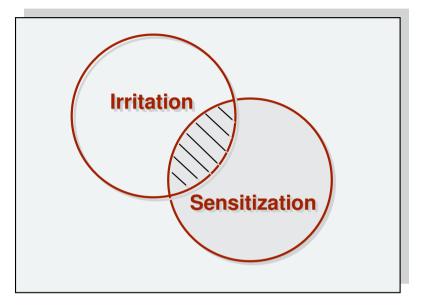
Luch, OSIRIS Workshop, March 2, 2010

T-Cell Stimulation and Polarization

Martien L. Kapsenberg (2003) NRI 3: 984-993 (modified)

Biological Endpoints?

Risiken erkennen – Gesundheit schützen


- Immune cell migration
- Allergen presentation in lymph node
- Proinflammatory cytokine/chemokine release
- T cell differentiation
- Tissue damage (cell death)

Irritation vs Sensitization: Predictive biomarkers?

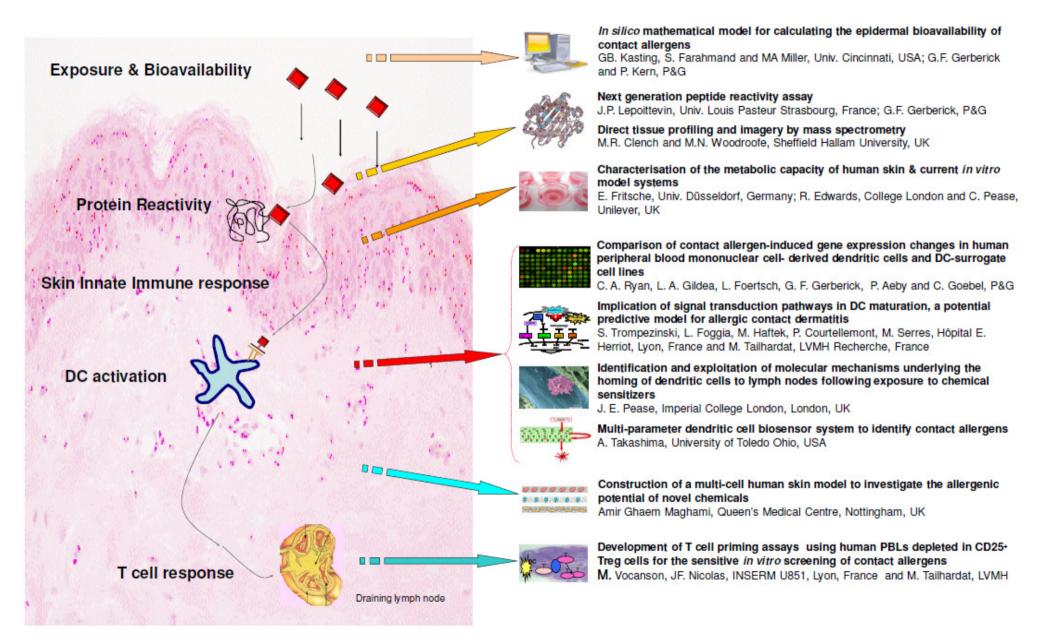
Skin irritating compound:

IL-1 α , IL-8, IL-18, IL-6, IL-10, TNF α , LIF

Skin sensitizing compound:

Sensitization phase:CD86, MHC-II, CD54, CD58, IL-1 β , IL-18, IL-12, IL-6, TNF β , ATP, LTB₄, ROS, histamine, PGE₂, histamine, CCL2, IgM (liver)

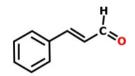
Elicitation phase: IL-1 β , IL-18, IL-6, IL-10, TNF β , ATP, IFN- γ , IL-17 Resolution phase: IL-10, TGF- β


Current developments in *in vitro* testing ?

Risiken erkennen – Gesundheit schützen

COLIPA Skin Tolerance Task Force: Portfolio of research projects

Luch, OSIRIS Workshop, March 2, 2010

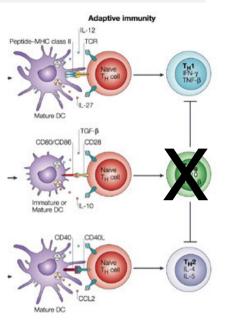


Expression profiling of MoDCs and MUTZ-3 after 24 h cinnamaldehyde

00000

FC induced by CIN

Gene symbol


Biological processes classification of genes significantly up-regulated by CIN in both PBMDCs and MUTZ-3 cells.		
Accession no.	Gene name	
Apoptosis-related (3)		
NM_006410	HIV-1 Tat interactive protein 2, 30 kDa	
NM_003311	Pleckstrin homology-like domain, family A, member 2	
NM_014452	Tumor necrosis factor superfamily, member 21	
Cell adhesion-related (3)		
NM_003812	ADAM metallopeptidase domain 23	
NM 000094	Collagen, type VII, alpha 1	

			PBMDCs	MUTZ-3 cells
Apoptosis-related (3)				
NM_006410	HIV-1 Tat interactive protein 2, 30 kDa	HTATIP2	1.66	2.05
NM_003311	Pleckstrin homology-like domain, family A, member 2	PHLDA2	2.14	2.90
NM_014452	Tumor necrosis factor superfamily, member 21	TNFRSF21	2.18	2.44
Cell adhesion-related (3)				
NM_003812	ADAM metallopeptidase domain 23	ADAM23	6.06	2.87
NM_000094	Collagen, type VII, alpha 1	COL7A1	2.03	2.82
NM_177444	PTPRF interacting protein, binding protein 1 (liprin beta 1)	PPFIBP1	1.80	2.54
Cell differentiation-related (1)			
NM_001430	Endothelial PAS domain protein 1	EPAS1	3.09	3.05
Endocytosis-related (1)				
NM_013437	Low density lipoprotein-related 12	LRP12	1.95	2.24
G-protein-related (1)				
NM_005294	G-protein-coupled receptor 21	GPR21	2.27	2.72
Immune response/inflammat	ory response-related (8)			
NM_006889	CD86 molecule	CD86	1.70	2.47
NM_004001	Fc fragment of IgG, low affinity Ilb, receptor (CD32)	FCGR2B	2.04	2.16
NM_201563	Fc fragment of IgG, low affinity IIc, receptor for (CD32)	FCGR2C	2.06	3.04
NM_002032	Ferritin, heavy polypeptide 1	FTH1	1.53	2.90
NM_139010	Hemochromatosis	HFE	2.68	2.60
NM_000576	Interleukin 1, beta	IL1B	1.97	2.06
NM_000584	Interleukin 8	IL8	1.67	2.10
NM_138554	Toll-like receptor 4	TLR4	2.12	2.49

Francois Python et al. (2009) TAAP 239: 273-283

T-Cell Priming Assay co-incubating DCs & T_{reg} -depleted lymphocytes

Development of T cell priming assays using human PBLs depleted in CD25+ Treg cells for the sensitive *in vitro* screening of contact allergens

Novel testing strategies for *in vitro* assessment of allergens EU FP6, "Sens-it-iv", 2005-2010

WP1: Database of reference compounds	WP2: EC-DC Interactions - Cellular responses NCTC IL-18 assay DC migration assay 3D skin models	WP3: T cell-based assays DC-T cell interaction In vitro T cell priming assay T cell amplification assay
WP4: Genomic analysis Identification of new biomarkers	WP5: Proteomic analysis Identification of new biomarkers	WP6: Metabonomic analysis Metabolic activation of pro- and pre-haptens
WP7: Data management	WP8: In vitro assay development Technology transfer Round robin	WP9: Dissemination of knowledge Public relations

WP2B: Finding the most in vivo-like epithelial cell line and EC markers: IL-8, IL-6, CD47, CD54 and CXCL5

WP2D: Finding the in vitro conditions supporting the most in vivo-like EC-DC interactions: MUTZ-3 in coculture with Calu-3 in an airlifted two-layer system transwell system, Episkin epidermis and skin epidermal equivalents

Deliverables

a) Characterization of the lung epithelial cells and available epithelial cell lines and identification of the most in vivo-like cell line, using techniques for protein analysis.

b) Establishment of protocols for optimal culture conditions for epithelial cell lines.

c) Determining the effect of allergens on lung epithelial cells and cell lines in terms of function, protein expression and metabolism. Identification of markers involved in the initiation of allergic responses.

d) Genome-wide comparison of tissue (skin, lung, tonsils) dendritic cells, primary cell-derived dendritic cells and cell lines. Identification of the most in vivo-like dendritic cells.

e) Determining the effect of allergens on dendritic cells in terms of function, gene expression, protein expression and metabolism. Identification of markers involved in the initiation of allergic responses.

f) Establishing a 3-dimensional model of epithelial cell-dendritic cell interaction using cell lines.
g) Incorporation of T cells into the 3-dimensional model. Identification of changes in gene and protein expression in interacting epithelial cells and dendritic cells after allergen stimulation, induced by selected T cell populations.

WP3/8: DC-TC Interaction / In vitro Assay Development

WP3: Establishing and implementing tools for addressing DC – T-cell interactions: T cell based assay capable of identifing contact allergens

Deliverables

a) Phenotypic, genomic and proteomic signatures of circulating and tissue infiltrating effector and memory T cells specific for the selected compounds (chemicals and proteins) and identification of immunodominant T cell epitopes in the same compounds.

b) Definition of compound-interacting proteins as mediators for innate and adaptive immune responses of T cells, DCs and ECs.

c) Definition of compound-driven changes on tissue cell types, DC subsets, T cell homing and polarization.

d) Development of predictive assays to assess allergenicity of novel compounds.

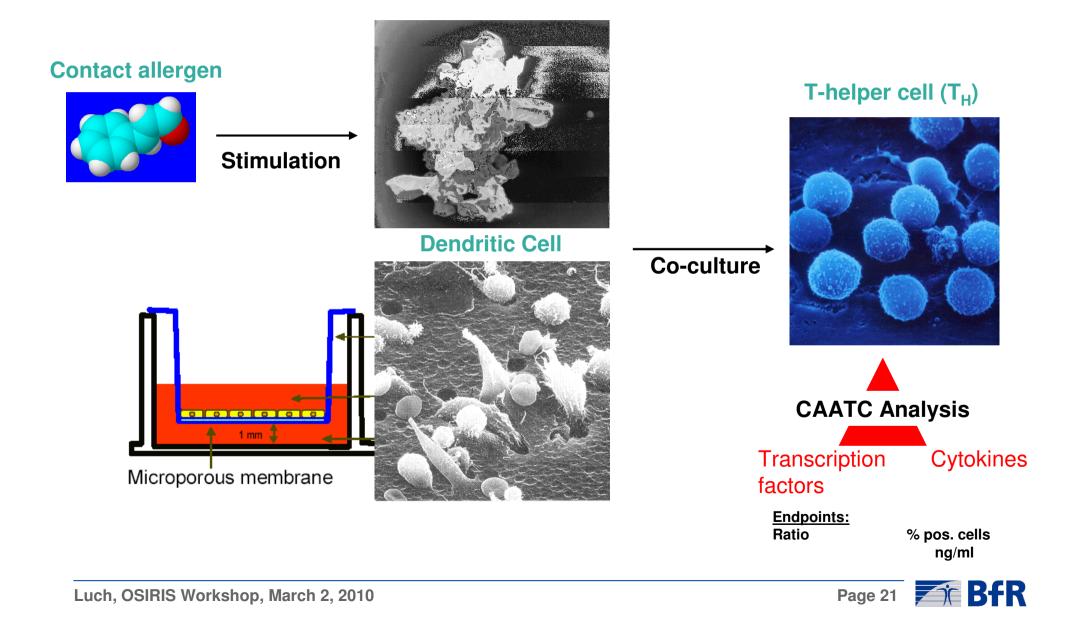
WP8: In vitro assay development: MUTZ-3, U937 and THP-1 and biomarkers CD86 and IL-8

Rationale

"The aim of WP8 is to develop *in vitro* assays by improving existing assays for sensitization using innovations in the area of cell culturing and novel marker."

In vitro T cell priming assay for prediction of antigenicity

Dietz, L. et al., manuscript in preparation



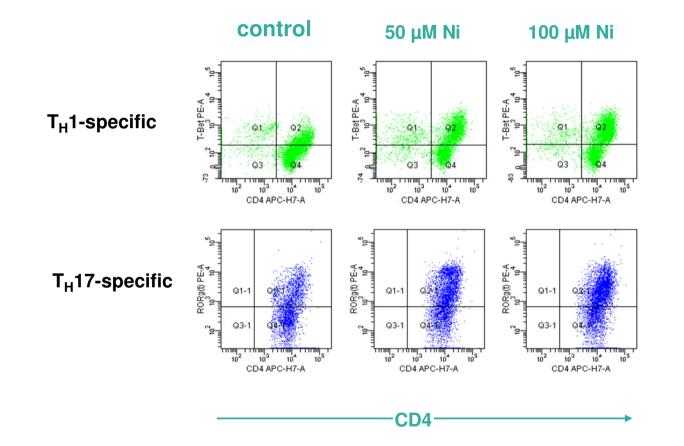
BfR: DC-TC Interaction

"Contact Allergen Activated T-Cell (CAATC)-Assay" using dendritic cells from skin: characterization of the sensitizing potency of chemicals via dendritic cell-induced expression of lineage specific T cell transcription factors

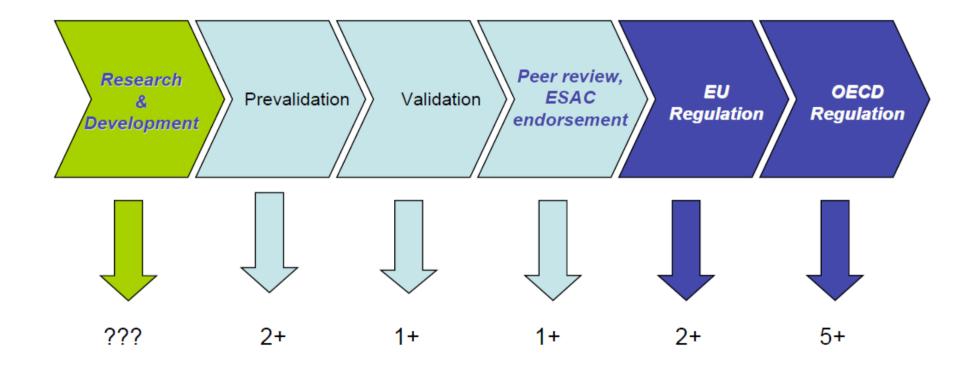
BfR: DC-TC Interaction

"Contact Allergen Activated T-Cell (CAATC)-Assay"

New assay to detect T-cell polarization


- Immune cells from skin desirable, skin exposed in vivo
- Dendritic cells directly exposed to chemical allergen
- Coculture of migrated dendritic cells with naïve T cells
- Identification of **Biomarkers** in polarized T_H cells
- Detection of **Proliferation** in T cells, $T_H 1$, $T_H 17$

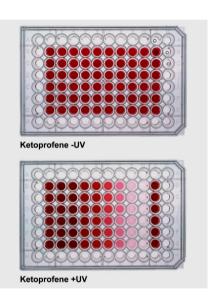
BfR: DC-induced T cell transcription factors *in vitro*


Risiken erkennen – Gesundheit schützen

Prospects: When will reliable in vitro tests be available?

Irene Manou et al. (2005) Altern Lab Anim 33, S1: 21-26.

Example: Murine LLNA on its way toward a test guideline


18 years to regulatory acceptance

2002	Adopted as OECD TG 429
1997-1998	Regulatory review
1992-1996	Comparison with human data
1990-1996	Comparison with guinea pig database
1989-1997	Interlaboratory validation
1992	Publication of standard protocol
1987-1990	Interlaboratory development
1986	First paper
1984	LLNA conceived

Example: Accelerated acceptance of 3T3 NRU Phototox

6 years to regulatory acceptance

1994	3T3 NRU phototoxicity test published
1992-1994	Prevalidation
1995-1997	Validation
2000	EU Annex V 67/548 EEC
2004	Adopted as OECD TG 432

What is currently in the pipeline?

OECD:

- Two modified versions of traditional LLNA (non-radioactive protocols)
- TG 429 update
- Two updates for "In vitro skin Corrosion", TG 430/431
- New TG in vitro test for skin irritation

\rightarrow No *in vitro* sensitization assay (in 2009)

ECVAM validation:

- "Direct binding peptide reactivity assay"
- hCLAT assay (human cell line activation test: CD54/86 @ THP-1)
- MUSST assay (myeloid U937 skin sensitization test: CD86 @ U937)

Thank you for your attention !

Andreas Luch

Federal Institute for Risk Assessment Thielallee 88-92 • 14195 Berlin • Germany Phone +49-30-8412-4538 Andreas.Luch@bfr.bund.de • www.bfr.bund.de