

Endpoint "Bioconcentration Factor" (BCF)

Monika Nendza Analytisches Laboratorium, Luhnstedt, Germany Alessandra Roncaglioni Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy

Definition – substances

A substance is considered bioaccumulative if it biomagnifies in food chains.

Gobas et al. 2009. Revisiting bioaccumulation criteria for POPs and PBT assessments. IEAM 5 (4), 624–637.

Definition – processes

Bioaccumulation

uptake from the environment via any possible pathway

Biomagnification

uptake via foodweb resulting in increased concentrations in higher trophic levels

Bioconcentration

uptake from the surrounding phase via absorption, e.g. lipid diffusion

Gobas et al. 2009.

Revisiting bioaccumulation criteria for POPs and PBT assessments. IEAM 5 (4), 624-637.

REACH ANNEX XIII

A substance fulfils the **bioaccumulation criterion (B-)** when:

- the bioconcentration factor (BCF) is higher than 2 000.
- The assessment of bioaccumulation shall be based on measured data on bioconcentration in aquatic species. Data from freshwater as well as marine water species can be used.

A substance fulfils the **very bioaccumulative criterion (vB-)** when:

- the bioconcentration factor is greater than **5 000**.

Comparison of quantitative B-criteria (BCF (BioConcentration Factor), BAF (BioAccumulation Factor), log K_{ow} (1-octanol/water partition coefficient)).

Institution/Authors	BCF	log <i>K</i> ow
Kelly et al. 2007		> 2
Brown & Wania 2008		> 3,5
CLP Regulation	> 100 > 500	>3 >4
OSPAR	> 500	>4
CPA Green Screen	> 1000	> 4,5
Washington State	> 1000	> 5
US EPA	> 1000	
REACH ESIS KEMI Schweden DK EPA	> 2000	> 3, > 4,5
Stockholm Convention EU POP Environment Canada	> 5000	> 5

1. Question to stakeholders:

Which quantitative criterion should be focussed by OSIRIS?

BCF data quality

Many parameters may affect the experimental test:

Test conditions:

- ✓ Test typology (e.g.: OECD 305, etc ...)
- \checkmark Duration of uptake and depuration phase
- ✓ Exposure typology (e.g.: flow through, ...)
- ✓ Tissue analysis (e.g.: total body, lipid content, specific tissue)
- ✓ Water conditions: temperature, particle/total or dissolved organic carbon contents, pH, etc.
- ✓ Light conditions (intensity, spectral quality)
- Detection method (e.g.: radio-label, analytical, etc ...)
- ✓ Incorrect use of radio-labelled compounds

Properties of the chemical:

- Physicochemical properties (Log Kow, water solubility)
- ✓ Toxicity
- ✓ Purity of chemical

Organism used for the test:

- ✓ Fish species, age, life stage, gender, size and physiological conditions (e.g.: lipid content, test organism health, etc...)
- ✓ Respiration rate and growth rate

BCF databases

Dimitrov (Dimitrov *et al.*, 2005)

EURAS (http://www.euras.be/)

Arnot (Arnot *et al.*, 2006)

- Single BCF value
- ✓ Log kow value
- ✓ Gold standard
- ✓ 543 compounds
- ✓ Single or multiple BCF values
- ✓ Reliability score
- ✓ 842 compounds
- ✓ Single or multiple BCF values
- ✓ Reliability score

Analytisches

Inter/intra databases experimental variability

300 common compounds \implies Range < 0.4 log units = 45%

2. Question to stakeholders:

How much uncertainty is acceptable?

Example later: how to combine evidences

(Q)SAR models for BCF

objective: prediction of individual data, a piece of the ITS strategy

LOGP BASED ESTIMATIONS

•Worst-case function (Nendza, 1991)

bilinear function describing the maximum BCF associated with a given lipophilicity

•Linear LogP functions e.g.: LogBCF = 0.76·logP - 0.31

Estimation software

•EPISuite

LogP based EPA tool to predict several environmental properties, including BCF (BCFBAF v3.00)

	LogP	Equation	
Ionic <5	<5	LogBCF = 0.50	
	5 - 6	LogBCF = 0.75	
	6 - 7	LogBCF = 1.75	
	7 - 9	LogBCF = 1.00	
	> 9	LogBCF = 0.50	
Non-ionic	< 1	logBCF = 0.50	
	1 - 7	$\log BCF = 0.6598*\log P - 0.333 + \sum$ correction factors	
compounds	> 7	$\log BCF = -0.79*\log P + 7.554 + \sum$ correction factors	

BCF classification model

(objective: make an educated guess about chemicals who's experimental determination of BCF may be waived because it does not produce risk-relevant information or is unworkable to perform)

BCF classification model:

- The objective is to reliably identify nonB compounds based on multiple physico-chemical properties related to bioavailability.
- The optimised model is protective, i.e. no false negatives, though at the cost of false positives.
- The classification model can be formalised as a component of an ITS.

BCF classification parameter:

- lipophilicity
- water solubility
- volatility
- dissociation
- molecular charge
- molecular size
- degradability

BCF Datasets

> test dataset: CEFIC LRI compilation: 382 existing industrial chemicals
325 nonB, 57 B or vB (15 %); log BCF: -0.52 to 4.56; log *K*_{OW}: -2.13 to > 10; MW: 68 to 943 g/mol
> validation dataset: pesticides and new chemicals (confidential from UBA) 49 large complex structures
42 nonB, 7 B or vB (14 %); log BCF: 0.18 to 4.17; log *K*_{OW}: -0.89 to > 10; MW: 298 to 1061 g/mol
> confirmation dataset: 83 known B/vB chemicals log *K*_{OW}: 0.08 to > 10; MW: 136 to 801 g/mol

Estimation software

 EpiSuite v4.0.
 based on fragment (substructure) methods <u>http://www.epa.gov/oppt/exposure/pubs/episuitedI.htm</u>
 SPARC on-line calculator based on linear solvation energy relationships <u>http://ibmlc2.chem.uga.edu/sparc/</u>

	log <i>K</i> ow < 3	log <i>K</i> ow 3 - 4.5	log <i>K</i> ow 4.5 - 10	log <i>K</i> ow > 10
T-Set: nonB	148	109	63	5
В	0	18	39	0
V-Set: nonB	2	9	22	9
В	0	1	6	0
C-Set: nonB	0	0	0	0
В	2	3	77	1

Classification statistics:

Accuracy (overall performance):

$$\frac{(TP+TN)}{T \circ t} \times 100$$

Sensitivity (false negatives):

$$\frac{TP}{TP + FN} \times 100$$

Specificity (false positives):

$$\frac{TN}{TN + FP} \times 100$$

Efficacy (true negatives):

$$\frac{TN}{Tot} \times 100$$

Classification statistics:

	Accuracy	Sensitivity	Specificity	Efficacy
log K _{OW} T-Set	55.0 %	100 %	47.1 %	40.1 %
log K _{OW} V-Set	36.7 %	100 %	26.2 %	22.4 %
Dissociation T-Set	25.7 %	100 %	13.8 %	11.5 %
Dissociation V-Set	28.6 %	100 %	17.1 %	14.3 %
Henry Constant T-Set	18.3 %	100 %	4.0 %	3.4 %
Henry Constant V-Set	49.0 %	100 %	40.5 %	34.7 %
Hydrolysis T-Set	22.0 %	100 %	8.3 %	7.1 %
Hydrolysis V-Set	59.2 %	100 %	52.4 %	44.9 %
Biodegradability T-Set	27.7 %	100 %	15.1 %	12.8 %
Biodegradability V-Set	16.3 %	100 %	2.4 %	2.0 %
Combined model T-Set	67.8 %	100 %	62.2 %	52.9 %
Combined model V-Set	79.6 %	100 %	76.2 %	65.3 %

Analytisches Laboratorium

Summary of the BCF classification model:

- The combined classification model reliably identifies nonB compounds based on multiple physico-chemical properties related to bioavailability.
- The optimised model is protective, i.e. no false negatives, though at the cost of false positives.
- Classification statistics indicate about 60 % reduction potential in BCF testing.
- The external validation confirms favourable performance.
- The confirmation dataset (B/vB compounds) served to define the limits of the applicability domain of the classification model.
- The combined classification model can become a powerful component in an ITS (Integrated Testing Strategies) framework for the identification of bioaccumulative (B/vB) chemicals under REACH.

What is an ITS?

Conceptual scheme

Uncertainty and combination of data

(example kindly provided by Universitat Rovira i Virgili – Tarragona)

1,2,3,4-tetrachloro-benzene

Data source	Reliability score	log BCF										
EURAS	2	3.2	3.2									
Arnot	1	3.0	3.0	3.4	3.4	3.4	3.4	3.4	3.6	3.8		

		Basic probability assignments								
Data source	Reliability weight	m {nB}	(nB} m {B} m		m {nB, B, vB} unknown					
EURAS	0.47	0.50	0	0	0.50					
Arnot	0.53	0.18	0.55	0.09	0.18					

	Basic probability assignments								
Data source	m {nB}	m {B}	m {vB}	m {nB, B, vB} unknown					
Combined	0.33	0.29	0.05	0.33					

Uncertainty and combination of data

(example kindly provided by Universitat Rovira i Virgili – Tarragona)

	combined probability assignment (m_3)			Readily Not Re		eadily	y length of belief-plausibility intervals					
name	Readily	Not Readily	Readily, Not Readily	[Bel	<i>PI</i>]	[Bel	PI]	Biowin5	CERI	Biowin5 ⊕ CERI	uncertainty reduction (%)	decision
chloromethane	0.47	0.21	0.32	0.47	0.79	0.21	0.53	0.4	0.6	0.32	20	Uncertain
2,4-dimethylphenol	0.84	0	0.16	0.84	1	0	0.16	0.4	0.4	0.16	60	Readily
3-chloro-1-propene	0.73	0.09	0.18	0.73	0.91	0.09	0.27	0.4	0.4	0.18	55	Readily
dichloromethane	0.375	0.375	0.25	0.38	0.63	0.38	0.63	0.4	0.4	0.25	38	Uncertain
2-nitropropane	0	0.95	0.05	0	0.05	0.95	1	0.08	0.6	0.05	38	Not Readily
2-methylbenzenamine	0.05	0.87	0.08	0.05	0.13	0.87	0.95	0.08	0.6	0.08	0	Not Readily
1,4-benzenediamine	0	0.97	0.03	0	0.03	0.97	1	0.08	0.4	0.03	63	Not Readily

Uncertainty Reduction in Environmental Data with Conflicting Information

A. Fernandez, R. Rallo, F. Giralt, Environ. Sci. Technol. 2009, 43, 5001-5006

The webtool (developed by SIMPPLE)

http://osiris.simpple.com

Some features of the webtool

- ✓ Substance management: create, edit, delete substances
- ✓ Study record management (*in vivo*, *in vitro* and *in silico* test data, phys-chem. data), ITS oriented
- ✓ ITS management (assessment) and execution
- ✓ BCF, mutagenicity, skin sensitization and aquatic toxicity
- ✓ IUCLID5 import. Partial support, only data relevant to ITS
- Weight of Evidence approach (WoE). Integration of Consensus models: Bayesian Nets and Dempster-Shafer model
- OSIRIS database integration. Integration with datasets included in ChemProp
- ✓ Access to the Chemical Space Navigation tool developed by URV
- Framework for user manual and contextual help

How it works

1.Create a substance. Substances are identified by a name, and its CAS number has to be provided.

2.Add study records of the substance. Study records are tests (*in vivo and in vitro*), *QSAR*'s and physico-chemical properties. Direct input and IUCLID5 import.

3.Create an assessment on the substance, selecting the desired endpoint and the information requirements.

4.Execute the assessment, and follow its guidance to reach a conclusion.

Thank you very much for your attention!

Questions? Comments?

