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APPENDIX: DETAILED DESCRIPTION OF METHODS 3 

Environmental data 4 

I used 45 environmental variables to explain differences in species richness among grid cells 5 

with a resolution (i.e. cell size) of 10' longitude × 6' latitude, i.e. approx. 130 km², following 6 

the 1:25,000 ordnance survey maps for Germany. These parameters were transformed from 7 

digital maps with polygon-topology to the grid by intersection and exported into the database 8 

format that I used. 9 

Spatial Coordinates 10 

I used South and East enumeration of the 1:25,000 ordnance survey maps as southing and 11 

easting of the grid cells for incorporating spatial autocorrelation and defining neighbourhood 12 

matrices.  13 

Land Cover 14 

Corine Land Cover (CLC) data, provided by the “Statistisches Bundesamt” (1997), was used 15 

to calculate the following variables per grid cell: number of patches, average patch size, 16 

variation coefficient of patch size, number of different types, number of aggregated types 17 

(aggregated types are urban area, agricultural area, forests and near-nature area, wetland area, 18 

water surface area). 19 

Soil data 20 

Soil data was taken from the soil survey map ('Bodenübersichtskarte') 1:1,000,000 of the 21 

“Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)” (http://www.bgr.de). I 22 

calculated number of patches, average patch size, variation coefficient of patch size, number 23 
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of types, and number of aggregated types per grid cell. The soil types were aggregated to the 24 

following classes: soils of coasts and bogs, soils of floodplains and valleys, soils of lowlands, 25 

soils of loess landscapes, soils of low mountain, soils of high mountain, anthropogenic soils.  26 

Geological data 27 

For geological data, I used the geological survey map 1:1,000,000 ('Geologische 28 

Übersichtskarte') of the “Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)” 29 

(http://www.bgr.de). For each grid cell, I calculated number of patches, average patch size, 30 

variation coefficient of patch size, number of geological types, number of aggregated types 31 

(aggregated types are lime, sand, loess, clay, others). 32 

Climate data 33 

Climate data on a 1 km² grid scale were provided by the “Deutscher Wetterdienst, Dept. 34 

Klima und Umwelt”. The recording periods were 1951-1980 for the temperature data and 35 

1961-1990 for the precipitation data. I calculated grid cells averages and coefficients of 36 

variation for mean January temperature, mean July temperature, mean annual temperature, 37 

mean annual precipitation, and for the difference between mean July temperature and mean 38 

January temperature.  39 

Altitude  40 

Averages and coefficients of variation of altitude per grid cell were calculated after the 41 

ARCDeutschland500 dataset, scale 1:500.000, provided by ESRI.  42 

 43 

The scales of the maps were different among these data but grain and extent for this analysis 44 

were the same for all data classes. The grain of this analysis (i.e. 10' longitude x 6' latitude) 45 

was much larger than the resolution of even the coarsest scale map used, therefore the 46 

information per grid cell should be sufficiently detailed. As the different parameters are 47 
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transformed into principal components, differences in mapping scale should matter even less. 48 

However, finer resolution information on environmental variables might lead to reduced noise 49 

in the models.  50 

 51 

Plant distribution data 52 

Data on plant distributions came from the FLORKART database of the German Centre for 53 

Phytodiversity at the German Federal Agency for Nature Conservation (see 54 

www.floraweb.de). This database was collated from current and former regional floristic 55 

mapping projects, mainly based on the field work of thousands of volunteers. I used data with 56 

a resolution of 10' longitude and 6' latitude. 57 

 58 

As mapping was organised decentrally, mapping intensity proved to be heterogeneous 59 

throughout Germany. To reduce this bias, I considered mapping intensity by designating 50 60 

control species, all of which had to be present in order to include a grid cell in the analysis. 61 

These control species are ubiquitous and assumed to occur in every grid cell. Grid cells that 62 

lack any of the control species were regarded as not sufficiently sampled and excluded from 63 

the data set. 45 of the control species were the most ubiquitous species in Germany according 64 

to Krause (1998) and five are additional ubiquitous species which are either inconspicuous or 65 

difficult to determine (see Kühn et al. 2004). This left 1928 of the 2995 grid cells of Germany 66 

for analysis. Native plant species were identified after Kühn & Klotz (2002) yielding 2411 67 

species for analysis. Species numbers were log-transformed to achieve normality.  68 

 69 

Statistical Analysis 70 

The 45 environmental variables were transformed in a principal component analysis on the 71 

correlation matrix to condense most of the environmental variance on the first few principal 72 
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components (PCs). I only used the first four PCs, which explained roughly 41% of the 73 

variation in the dataset. 74 

 75 

I used Ordinary Least Squares (OLS) regression as non-spatial model to relate log-76 

transformed species richness to predictors. OLS regression can be written in matrix notation 77 

as y = βX + ε where y is the vector of observation, β is the vector of regression coefficients 78 

(including the intercept) and X is the matrix of explanatory variables. ε is the normally 79 

distributed error (i.e. the residuals) with ε ~ N(0, V) where the variance-covariance matrix 80 

V=σ²I with σ² as the variance and Ι as the identity matrix (i.e. ones as diagonal elements and 81 

zeros for all off-diagonal elements).  82 

 83 

In a conditionally autoregressive (CAR) model, the variance-covariance matrix is defined as 84 

V=(Ι−ρW)-1M where ρ is a spatial autocorrelation coefficient, W as a matrix of n×n spatial 85 

weights derived from a defined neighbourhood and M as an n×n matrix with the conditional 86 

variances (σ1²,…,σn²) of y (i.e., the variances of y given the realized values of the spatial 87 

neighbours) on the diagonal and zeros in the off-diagonal positions (Lichstein et al. 2002, 88 

Haining 2003). In the present analysis, I assumed that the conditional variances of y were 89 

constant, i.e. M=Iσ².  90 

In Simultaneous autoregressive (SAR) models we have V= σ²[(Ι−ρW)'(Ι−ρW)]-1. SAR models 91 

have several ways to incorporate spatial autocorrelation (SAC): The error model (ESAR) 92 

corrects for SAC in the error term (y = βX + ρWξ + ε, where ξ is the autocorrelated error and 93 

ε is the uncorrelated error), the lag model corrects for SAC in the response variable 94 

(y = ρWy + βX + ε) and the spatial Durbin model (or mixed autoregressive model, 95 

y = ρWy + βX - ρWβX + ε) combines both error and lag model (Anselin 1988). To my 96 

knowledge there is currently no sufficient and consistent ecological theory to provide a basis 97 
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for decided which of these autoregressive models to (but some hints are given in econometric 98 

literature, Anselin & Bera 1998). I chose a data driven approach (Haining 2003) to find the 99 

model which provided the best fit to the data (as measured by AIC) and which was most 100 

effective in the removal of spatial autocorrelation (as measured by Moran's I). 101 

 102 

Crucial in all these models is the specification of the neighbourhood which defines the local 103 

zone of influence. I defined several neighbourhoods which include all grid cells within a 104 

distance of 1.5, 2 and 2.9 cells Euclidean distance (i.e. all 8 adjacent neighbours, the 12 105 

neighbours including the second nearest one, and 24 nearest neighbours including the closest 106 

third order neighbours around a focus grid cell) respectively. I chose these distance classes as 107 

they stepwise included larger neighbourhoods. Neighbourhood weights were row 108 

standardized for SAR models as recommended by Anselin (1988) and binary to provide a 109 

symmetric neighbourhood matrix as necessary for CAR models.  110 

 111 

I included all four PCs and their second and third order polynomials as predictors. However, 112 

in the spatial model only PC4² remained significant. Since this was not relevant for the main 113 

message of this article, the result is not shown. 114 

 115 

Legendre et al. (2002) distinguish between spatial dependence (or spatial structure) and 116 

spatial autocorrelation. The former implies that a response variable is structured because it 117 

depends upon explanatory variables that are themselves spatially structured. However, as the 118 

failure to include important (spatially structured) may also result in spatial autocorrelation 119 

(Cliff & Ord 1981, Haining 2003), both concepts can sometimes be linked. The removal of 120 

spatial structure, however, does not necessarily remove spatial autocorrelation. I used this 121 

concept in the analysis to remove large-scale trends from my dataset. Therefore, I used a third 122 

order polynomial trend surface regression (Legendre & Legendre 1998) i.e., I used an OLS 123 
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regression to explain log(species richness) as a function of southing + easting + 124 

southing*easting + southing² + easting² + southing²*easting + southing*easting² + southing³ 125 

+ easting³. All higher-order parameters except southing² were significant, which was then 126 

removed. The residuals of this model were used as response in a regression on the four PCs 127 

(results see table S2). Although originally intended as a method to partial out the spatial 128 

structure of a pattern, it is appropriate in this context: At the spatial scale of this analysis, it is 129 

highly unlikely that local dispersal processes etc. will lead to a spatially structured species 130 

richness pattern per se. Therefore, large-scale environmental parameters will be most 131 

important for plant distribution patterns. A spatial gradient will thus integrate across several 132 

large-scale environmental gradients not represented in the variables which I used for the 133 

principal component analysis. It is hence a suitable way to account for unknown large-scale, 134 

spatially structured environmental gradients. 135 

 136 

The fit of different spatial and the non-spatial model to the four PCs was compared using AIC 137 

(Akaike's Information Criterion, AIC=-2LL + 2n where LL is the log-likelihood of the model 138 

and n is the numbers of parameters in the fitted model) (Quinn & Keough 2002). Since the 139 

four PCs are orthogonal to each other (thus avoiding collinearity problems often associated 140 

with model selection procedures), I used error-probabilities (p-values) within a method to 141 

assess the importance of covariates, which was much faster than model simplification and 142 

calculation of AIC. I also calculated a pseudo-R² = 1-DA/D0 with DA as the deviance of the 143 

model of interest and D0 as the deviance of the non-spatial intercept-only model. For 144 

Gaussian distributed errors, the deviance is the sum of squared residuals (therefore, for OLS 145 

with variance=deviance, pseudo-R²=R²). I used Moran's I correlograms (Legendre & 146 

Legendre 1998) to evaluate the amount of spatial autocorrelation of the residuals. Moran's I is 147 

an autocorrelation coefficient and could be regarded as spatial equivalent to Pearson's 148 

correlation coefficient. Significance was assessed after 1000 permutations. 149 
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 150 

The error-model (ESAR) with a neighbourhood distance of 2 grid cells yielded the best fit 151 

(AIC) and was the only one that reduced spatial autocorrelation to a non-significant amount. 152 

 153 

I did all calculations in R (R Development Core Team 2005) using functions 'spautolm' for 154 

CAR models and 'errsorsarlm' and 'lagssarlm' for SAR models from package SPDEP (Bivand 155 

et al. 2005) and ncf (Bjørnstad 2004) for spatial correlograms. 156 

 157 

 158 



Short communication: 
Incorporating spatial autocorrelation may invert observed patterns (electronic supplement) 
  

  8

REFERENCES 

Anselin, L. (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht. 

Anselin,L. & Bera,A.K. (1998) Spatial dependence in linear regression models with an 
introduction to spatial econometrics. Handbook of applied economic statistics (ed. by A. 
Ullah and D.E.A. Giles), pp. 237-289. Marcel Dekker, New York. 

Bivand, R., Anselin, L., Bernat, A, Carvalho, M, M., Chun, Y., Dormann, C., Dray, S., 
Halbersma, R., Lewin-Koh, N., Ono, H., Tiefelsdorf, M. & Yu, D. (2005) spdep: Spatial 
dependence: weighting schemes, statistics and models. R package version 0.3-17. 

Bjørnstad, O. N. (2004) ncf: spatial nonparamteric covariance functions. R package version 
1.0-6. http://onb.ent.psu.edu/onb1/R. 

Cliff, A.D. & Ord, J.K. (1981) Spatial Processes: Models and Applications. Pion, London. 

Dormann, C.F. (2006) Effects of incorporating spatial autocorrelation into the analysis of 
species distribution data. Global Change Biology in press. 

Haining, R.P. (2003) Spatial data analysis: Theory and practice. Cambridge University Press, 
Cambridge. 

Krause, A. (1998) Floras Alltagskleid oder Deutschlands 100 häufigste Pflanzenarten. Natur 
und Landschaft 73, 486-491. 

Kühn, I., Brandl, R., & Klotz, S. (2004) The flora of German cities is naturally species rich. 
Evolutionary Ecology Research 6, 749-764. 

Kühn,I. & Klotz,S. (2002) Floristischer Status und gebietsfremde Arten. BIOLFLOR – Eine 
Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland (ed. by 
S. Klotz, I. Kühn and W. Durka). Schriftenreihe für Vegetationskunde 38, pp. 47-56. 
Bundesamt für Naturschutz, Bonn. 

Legendre, P., Dale, M.R.T., Fortin, M.J., Gurevitch, J., Hohn, M., & Myers, D. (2002) The 
consequences of spatial structure for the design and analysis of ecological field surveys. 
Ecography 25, 601-615. 

Legendre, P. & Legendre, L. (1998) Numerical Ecology. Developments in environmental 
modelling 20. Elsevier, Amsterdam. 

Lichstein, J.W., Simons, T.R., Shriner, S.A., & Franzreb, K.E. (2002) Spatial autocorrelation 
and autoregressive models in ecology. Ecological Monographs 72, 445-463. 

Quinn, G.P. & Keough, M.J. (2002) Experimental design and data analysis for biologists. 
Cambridge University Press, Cambridge. 

R Development Core Team (2005) R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. 



Short communication: 
Incorporating spatial autocorrelation may invert observed patterns (electronic supplement) 
  

  9

Statistisches Bundesamt (1997). Daten zur Bodenbedeckung für die Bundesrepublik 
Deutschland 1:100.000. Statistisches Bundesamt, Wiesbaden.  
 
 



Short communication: 
Incorporating spatial autocorrelation may invert observed patterns (electronic supplement) 
  

  10

Table S1 Loadings of environmental variables on the first four dimensions of a Principal 
Component analysis on 45 environmental variables across Germany. 

 PC1 PC2 PC3 PC4 
avg July temperature -0.64 0.01 0.39 -0.11 
cv of July temperature 0.63 0.51 0.02 0.02 
avg January temperature -0.54 -0.06 0.57 0.26 
cv of January temperature -0.05 -0.05 0.02 0.06 
temperature difference July-January 0.09 0.07 -0.31 -0.35 
avg mean annual temperature -0.66 -0.04 0.57 0.10 
cv of mean annual temperature 0.64 0.39 0.00 -0.02 
avg annual p 0.65 0.23 0.19 0.07 
cv of annual precipitation 0.48 0.49 0.00 0.07 
avg altitude 0.81 0.35 -0.06 -0.01 
cv of altitude -0.02 0.13 -0.03 0.06 
number of CLC patches 0.31 0.33 0.42 -0.30 
number of CLC types -0.35 0.20 0.45 -0.38 
avg size of CLC patches -0.16 -0.30 -0.46 0.31 
cv of size of CLC patches -0.19 -0.20 -0.32 0.38 
number of aggregated CLC types -0.31 -0.25 -0.13 -0.42 
agricultural area -0.28 -0.18 -0.30 0.38 
wetlands area -0.14 -0.20 -0.13 0.04 
urbanised area -0.25 0.26 0.59 -0.07 
forest or near-nature area 0.58 0.19 -0.01 -0.42 
watersurface area -0.12 -0.19 -0.07 -0.28 
number of geological patches -0.20 0.45 -0.26 -0.24 
number of geological types -0.26 0.67 -0.19 -0.01 
avg size of geological patches 0.30 -0.34 0.30 0.21 
cv of size of geological patches 0.17 -0.05 -0.09 -0.23 
number of aggregated geological types -0.33 0.50 0.11 0.34 
area of lime subsoil 0.14 0.33 0.02 0.18 
area of loess subsoil -0.19 0.26 0.20 0.49 
area of sandy subsoil -0.32 -0.11 0.24 -0.41 
area of clay subsoil -0.15 -0.05 0.04 0.24 
area of other subsoil 0.44 -0.04 -0.30 0.06 
number of soil patches -0.54 0.49 -0.30 -0.08 
number of soil types -0.56 0.58 -0.30 -0.08 
number of aggregated soil types -0.65 0.42 -0.13 -0.05 
number of natural soil types -0.52 0.56 -0.37 -0.07 
number of natural aggregated soil types -0.60 0.39 -0.26 -0.03 
avg size of soil patches 0.55 -0.33 0.26 0.09 
cv of size of soil patches -0.11 0.08 -0.12 -0.12 
area of anthropogenic soils -0.22 0.12 0.40 -0.12 
area of soils of high mountains 0.07 0.07 -0.04 0.00 
area of coastal soils -0.29 -0.36 -0.29 0.07 
area of soils of loess landscape -0.13 0.38 0.13 0.59 
area of soils of low mountains 0.77 0.35 0.05 -0.01 
area of soils of planes -0.26 -0.47 -0.33 -0.32 
area of soils of valleys and floodplains -0.48 -0.05 0.28 -0.21 
Eigenvalues 7.88 4.59 3.43 2.60 
Percentage variance 17.50 10.20 7.62 5.78 
Cumulative percentage variance 17.50 27.71 35.33 41.11 
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Table S2 Results of an Ordinary Least Square regression of log-transformed species richness in 

Germany on four environmental Principal Components after statistically controlling for large-scale 

spatial gradients (i.e., using residuals of a third order polynomial trend surface regression).  

 

 Estimate Std. Error t value p 

Intercept -0.00 0.001 0.00 1.000 

PC1, Altitude -0.16 0.023 -7.12 <0.001 

PC2, Geodiversity 0.39 0.03 13.12 <0.001 

PC3, Urbanization -0.04 0.034 -1.3 0.2 

PC4, Loess -0.22 0.039 -5.66 <0.001 

 
 


