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ABSTRACT

Aim To describe and explain geographical patterns of false absence and false
presence prediction errors that occur when describing current plant species ranges
with species distribution models.

Location Europe.

Methods We calibrated species distribution models (generalized linear models)
using a set of climatic variables and gridded distribution data for 1065 vascular
plant species from the Atlas Florae Europaeae. We used randomly selected subsets
for each species with a constant prevalence of 0.5, modelled the distribution 1000
times, calculated weighted averages of the model parameters and used these to
predict the current distribution in Europe. Using a threshold of 0.5, we derived
presence/absence maps. Comparing observed and modelled species distribution,
we calculated the false absence rates, i.e. species wrongly modelled as absent, and
the false presence rates, i.e. species wrongly modelled as present, on a 50 ¥ 50 km
grid. Subsequently, we related both error rates to species range properties, land use
and topographic variability within grid cells by means of simultaneous autoregres-
sive models to correct for spatial autocorrelation.

Results Grid-cell-specific error rates were not evenly distributed across Europe.
The mean false absence rate was 0.16 � 0.12 (standard deviation) and the mean
false presence rate was 0.22 � 0.13. False absence rates were highest in central
Spain, the Alps and parts of south-eastern Europe, while false presence rates were
highest in northern Spain, France, Italy and south-eastern Europe. False absence
rates were high when range edges of species accumulated within a grid cell and
when the intensity of human land use was high. False presence rates were positively
associated with relative occurrence area and accumulation of range edges.

Main conclusions Predictions for various species are not only accompanied by
species-specific but also by grid-cell-specific errors. The latter are associated with
characteristics of the grid cells but also with range characteristics of occurring
species. Uncertainties of predictive species distribution models are not equally
distributed in space, and we would recommend accompanying maps of predicted
distributions with a graphical representation of predictive performance.
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INTRODUCTION

Species distribution models serve as an important tool for

understanding the relationship between species ranges and envi-

ronmental parameters. Species distribution models are applied

in ecology and conservation biology to predict current and pro-

jected future species distributions (Huntley et al., 1995; Guisan

& Zimmermann, 2000). However, model uncertainty presents

many challenges, and can result from: (1) the context (i.e.

the boundaries of the system to be modelled), (2) model
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uncertainty (i.e. derived from the model concept, the computa-

tional implementation, or the model specification), (3) inputs

(i.e. description of the reference system and the external forces

that are driving changes in the reference system), (4) parameter

uncertainty (associated with the data and the methods used to

calibrate the model parameters), and (5) model outcome uncer-

tainty (i.e. the accumulated uncertainty associated with the

model outcomes of interest) (Walker et al., 2003). Most often,

data deficiencies and model specifications are seen as the main

drivers of uncertainty in species distribution models (Barry &

Elith, 2006; Heikkinen et al., 2006; Dormann et al., 2008). Uncer-

tainties in general, and prediction errors in particular, frequently

occur in species distribution models because these models nec-

essarily simplify the real world as well as ignore important aspects

of species ecology (e.g. Hampe, 2004). The number of prediction

errors varies considerably among modelling techniques (Muñoz

& Felicísimo, 2004; Segurado & Aráujo, 2004; Lawler et al., 2006;

Pearson et al., 2006; Meynard & Quinn, 2007; Dormann et al.,

2008), as well as with the degree of equilibrium with environ-

mental conditions (Araújo & Pearson, 2005) and species traits

(Pöyry et al., 2008; Hanspach et al., 2010). In the majority of

cases, when only species presence or absence is predicted, two

different types of prediction errors can occur: false absences and

false presences (see Table 1; Fielding & Bell, 1997). False absences

(also called false negatives or omissions) occur when an observed

presence is predicted as absent. False presences (false positives,

commissions) describe a predicted presence which is uncon-

firmed by an observation. Both errors are frequently combined in

indices like Cohen’s kappa (Cohen, 1960) or the area under the

curve (AUC) of a receiver operating characteristic (Hanley &

McNeil, 1982; Fielding & Bell, 1997) to obtain an overall estimate

of the predictive performance (Fielding & Bell, 1997). Though

such measures of predictive performance have been widely used,

they suffer from serious shortcomings (McPherson et al., 2004;

Lobo et al., 2008).

Geographical patterns of prediction errors have rarely been

addressed, although it has been recognized that prediction

errors do not occur randomly nor are they distributed evenly

(La Sorte & Hawkins, 2007). Hortal & Lobo (2006) hypothesized

that prediction errors are spatially structured and accumulate

across many species, and results from other authors indicate the

existence of such accumulations (Thuiller et al., 2004a; Araújo

et al., 2005). Within this study, we describe the accumulation of

prediction errors, i.e. the incorrect description of the current

species distribution using predictive modelling, across geo-

graphical space and hypothesize that this can be attributed to:

(1) data quality and resolution, (2) species disequilibrium with

climate, and (3) range characteristics (Table 2).

The importance of the quality of the mapping data on species

distribution models has been highlighted by various studies

(Loiselle et al., 2008; Lobo et al., 2010; Rocchini et al., in press).

Data from areas that are not sufficiently sampled are con-

founded by a higher proportion of species that are falsely

described as absent, which in turn results in a higher false pres-

ence rate. Given that data quality is frequently environmentally

biased (Bierman et al., 2010), species distribution models would

wrongly describe the conditions assumed to be suitable for a

species, causing high rates of false absences (Hortal et al., 2008).

Since the distribution data used in this study are exhaustive atlas

data from the Atlas Florae Europaeae (Lahti & Lampinen, 1999),

we assume a minor importance of this error. Further, an overly

coarse resolution of the mapping units may increase modelling

error in heterogeneous areas, e.g. by averaging across the het-

erogeneity or recognizing the most abundant features only

(Trivedi et al., 2008). False absence errors might accumulate, for

example, in mountainous areas where many species only occur

under microclimatic conditions that are not represented in the

coarse-scale environmental variables, and therefore not

described by a model that is based on these data.

Areas with a large number of species that are not in equilib-

rium with climate should have a higher rate of false presence

errors. Several factors such as anthropogenic, historic, geo-

graphic and biotic interactions could be responsible for this. A

high intensity and/or a long history of human land use, as can be

found in central and southern Europe, may reduce the influence

of climate on species distributions and thus decrease the pre-

dictability of current species distributions. In Europe, moreover,

many plant species are still experiencing post-glacial dispersal

limitations (Svenning & Skov, 2004; Svenning et al., 2008) which

may lead to predictions of false presences in areas distant from

glacial refugia.

More difficult to delineate geographically are biotic interac-

tions which restrict ranges in some areas more strongly than

climate (Gaston, 2003). Hortal & Lobo (2006) hypothesized that

prediction errors are high where range margins coincide or in

areas where community-level or historic processes strongly

influenced species distribution. At range margins, increased cli-

matic stress will make a species more sensitive to other environ-

Table 1 Confusion matrix and the calculation of false absence and false presence rate.

Observed

1 0

Modelled 1 True presence False presence

0 False absence True absence

False absences/all observed presences =
1 - sensitivity = false absence rate

False presences/all observed absences =
1 - specificity = false presence rate
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mental factors, e.g. competition (Brown et al., 1996), and the

potential climatic niche may not be fully occupied, leading to the

prediction of false presences (Araújo et al., 2005). Additionally,

we expect a higher rate of prediction error at range margins

since the applied modelling algorithm (generalized linear

models, GLMs) rather smoothly describes species responses to

the environment, leading to an unspecific increase of both false

absence and false presence errors in areas with many range

margins. Furthermore, characteristics of species ranges may

influence patterns of predictive performance both as a statistical

artefact (Thuiller et al., 2004b) and/or as an effect of species

ecology (Stockwell & Peterson, 2002).

So far, a comprehensive study on the possible accumulation of

prediction errors and its determinants is lacking, although an

aggregation of prediction errors has important conservation

implications (Hortal & Lobo, 2006). Here, we analyse the geo-

graphical patterns of false presence and false absence rates across

Europe based on more than 1000 plant species distribution

models. The results are used to test the hypotheses derived from

previous studies (see above, summarized in Table 2). We explain

such observed prediction errors by the spatial characteristics of

mapping units and the respective species.

METHODS

Species distribution models

Species distribution data for vascular plants were obtained

from the Atlas Florae Europaeae database (AFE), maintained

by the Botanical Museum, University of Helsinki, Finland at a

resolution of 50 ¥ 50 km (Lahti & Lampinen, 1999). We used

2219 cells of the AFE grid covering Europe (Fig. 1) for species

distribution modelling. Species with fewer than 50 presences

were excluded to allow reliable modelling. Monthly, interpo-

lated climate data (Mitchell et al., 2004) at a 10′ ¥ 10′ grid

resolution, were averaged for the period 1961–90 and aggre-

gated to the AFE grid resolution. We derived a set of 17 stan-

dard climatic variables which are commonly used to explain

large-scale patterns of species distribution (see Appendix S1 in

Supporting Information).

Species distribution models were developed for 1065 plant

species using GLMs with a binomial error distribution and a

logit link function (logistic regression models). To avoid col-

linearity among the explanatory variables, we performed a

principal components analysis with all standardized climatic

Table 2 Potential sources of prediction errors for species distribution models using generalized linear models and their hypothesized
influence on predictive performance in a grid cell. An increase or decrease of the error rate (FA, false absence rate; FP, false presence rate)
according to a certain hypothesis is indicated by a plus or minus sign. The rightmost column gives the variables that were used within this
study to test the corresponding hypothesis.

Source of error FA FP Analysed variable

Data quality and resolution

Environmental bias and incomplete description of the environmental response of

a species (Hortal et al., 2008)

+

Mean climatic values do not resemble the conditions experienced, e.g. envelopes in

mountainous areas are biased towards warmer conditions (Trivedi et al., 2008)

+ Altitudinal range

Species are not detected due to low sampling effort (Anderson, 2003; Gu &

Swihart, 2004)

+

Disequilibrium

Lack of habitat (habitats not widely distributed, e.g. saline habitats, habitats

disturbed by human land use), historical extinctions (e.g. due to recent fires, or

other stochastic incidents), impeded colonization due to historical and

geographical (dispersal and dispersal barriers, distance to glacial refuges; Svenning

et al., 2008) or biotic factors (biotic interactions; Brown et al., 1996; Schweiger

et al., 2008)

+ Human land-use intensity

Range characteristics

Local adaptation in widespread species may lead to overestimation of the niche

(Stockwell & Peterson, 2002)

+ Relative occurrence area

Absences close to suitable climatic conditions in the environmental space (large

ranging species) reduce the predicted ranges size and increase the probability to

include false absences in the data. Absences far from climatic suitable conditions

(small ranging species) generate predictions close to potential distribution and

increase the probability of making false presence errors (Lobo, 2008)

+ - Relative occurrence area

Range edge: higher environmental stress makes species sensitive, e.g. biotic

interactions (Brown et al., 1996)

+ Range edge rate

Due to the shape of the logistic regression curve and the need to set a threshold to

convert probabilities into presence/absence, we expect the largest uncertainties

where the modelled probability of occurrence changes from low to high, i.e. at the

modelled range edges

+ + Range edge rate

Patterns in prediction error
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variables. The first three principal components (explained vari-

ance 79.3%) were included as independent variables in the

models. We included second-order polynomials to allow for

curvilinear effects. We simplified the models by applying an

automated model backward selection that minimized the Baye-

sian information criterion (BIC), to avoid overfitting.

Prevalence of the data, i.e. the proportion of the number of

presences to the number of presences and absences, has been

shown to have important effects on the measure of the perfor-

mance of species distribution models and the selection of the

threshold used to convert probability into absences and pres-

ences (Jiménez-Valverde et al., 2009). When comparing the per-

formance of different models, prevalence should be kept

constant at an intermediate level (McPherson et al., 2004; Liu

et al., 2005). Thus, for each plant species, we randomly sampled

our data points retaining a constant prevalence of 0.5. We used

all presences and sampled the same number of absences if the

number of presences was lower than the absences per species,

and vice versa. Sampling of data points and subsequent model-

ling using these points was repeated 1000 times. We calculated

the average of the derived model estimates and weighted them

by the BIC of the model, i.e. estimates of models with a lower fit

were down-weighted. Using the averaged estimates, we pre-

dicted the probabilities of occurrence for each grid cell within

the study area, i.e. model validation was performed with the

same grid cells that were used for model calibration. We con-

verted the predicted probabilities into presence/absence data by

using the pre-defined prevalence of 0.5 (Liu et al., 2005) as a

threshold and obtained false absences and false presences for

each grid cell and each species by comparisons with the actual

observations.

Analysis of prediction errors

To quantify the rate of prediction errors, we overlaid all mod-

elled species distribution maps and counted the number of true

presences, true absences, false presences and false absences per

grid cell. We calculated the false absence rate as the number of

false absences over the number of all observed presences and the

false presence rate as the number of false presences over the

number of all observed absences per grid cell (see Table 1). We

examined the relationship between error rates (log transformed

to normalize data) using linear models with a set of explanatory

variables, namely the intensity of human land use, altitudinal

range and species range properties (Table 2; for maps of

explanatory variables see Appendix S2). The intensity of human

land use was measured as human appropriation of net primary

productivity (%) and we calculated mean values for each grid

cell (Haberl et al., 2007). To estimate orographical heterogeneity

within a grid cell, we calculated the altitudinal range in metres

from a digital elevation model with a resolution of approxi-

mately 90 m (CIAT, 2004). Mean relative occurrence area per

Figure 1 Spatial distribution of (a) false absence rates and (b) false presence rates in Europe (Lambert azimuthal equal area projection)
based on of 1065 plant species distribution models using the grid cells of Atlas Florae Europaeae (2714 cells of nearly 50 ¥ 50 km; see
Table 1 for calculation).
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grid cell was calculated as the mean of the relative occurrence

area of all species occurring within a grid cell. Species-specific

relative occurrence area was calculated as the sum of observed

presences divided by the number of all grid cells within the

study area (Lobo et al., 2008). Large values of mean relative

occurrence area indicate that most species in the gird cell have

predominantly large ranges, and vice versa. We also calculated

how many species have their range edge in a grid cell, which we

will refer to as the ‘range edge rate’. The range edge is represented

by both occupied and unoccupied grid cells. Therefore, a cell

was regarded to mark an edge of a species’ range when at least a

third of the neighbouring cells (first-order lateral and diagonal)

were absences (when a species is present in the cell of interest) or

presences (when a species is absent in the cell of interest).

To account for spatial autocorrelation in model residuals, we

applied simultaneous autoregressive models (spatial error

model using up to eight nearest neighbours if available; Bivand,

2009). We performed a hierarchical variance partitioning (Mac

Nally, 1996; Walsh & Mac Nally, 2008) to obtain the independent

effects of the explanatory variables. As a coefficient of determi-

nation, we calculated the squared Pearson correlation coefficient

between the original and fitted values of the false absence and

false presence rates separately for the non-spatial term and the

spatial term (pseudo R2; Kissling & Carl, 2008). All statistical

analyses were performed in the R environment (R Development

Core Team, 2008).

RESULTS

Geographical patterns of prediction errors

Modelling and validation of the 1065 species distribution

models resulted in a species-specific false absence rate of 0.12 �

0.06 (mean � standard deviation), and a species-specific false

presence rate of 0.23 � 0.09. The aggregation of error rates

across species yielded a grid-cell-specific false absence rate of

0.16 � 0.12 and grid-cell-specific false presence rate of 0.22 �

0.13. In 60% of the grid cells, the false presence rates exceeded

the false absence rates. We found a strong geographical pattern

of prediction errors. False absence rates were high in central

Spain, the Alps and parts of south-eastern Europe, while they

were low in western, central and eastern Europe (Fig. 1a). False

presence rates were high in northern Spain, France, Italy and

south-eastern Europe, while low values occurred in northern

Europe (Fig. 1b).

Explanatory models of prediction errors

The false absence rates were explained by all explanatory vari-

ables (Table 3). The independent effects of range edge rate and

intensity of human land use most strongly contributed to the

explanation of variance (Fig. 2). False absence rates were high

when range edge rate and land-use intensity were high (Table 3).

The false presence rates were also explained by all explanatory

variables (Table 3), the most important variables being relative

occurrence area and range edge rate (Fig. 2). Both variables were

positively associated with the false presence rates.

DISCUSSION

Several recent studies have provided information about uncer-

tainties for species distribution analysis concerning method-

ological issues, species and species traits (see, e.g., Elith &

Graham, 2009). In our study, we identified geographical patterns

of grid-cell-specific prediction errors. We argue that the prob-

lems associated with the spatial pattern of prediction errors in

the analysis of the current distribution of species are fundamen-

tal, and one should be cautious when potential future distribu-

tions are predicted with species distribution models. Simply

calculating validation values per species (AUC, kappa) conceals

the spatial variability of predictive performance and valuable

information on the reliability of the model outcome is lost

(Lobo et al., 2008). Further, depending on the inferences made

from a study, the focus may lie more strongly in reducing one or

the other type of error: a low false absence rate may be more

desirable for studies prioritizing areas for conservation, while

studies trying to identify sites where a species may be found

demand a low proportion of false presences (Fielding & Bell,

1997).

False absence rates

The most important factor influencing false absence rates was

range edge rate. In grid cells where range edges accumulate, the

false absence rates were high. At range margins, several factors

may lead to such a type of bias. For instance, lower species

abundance at the margins can lead to a lower detectability and

thus to wrong absences in the observational data. Also, several

Table 3 Result of the simultaneous autoregressive model of the
false absence rate (pseudo R2 of the non-spatial term = 0.04,
pseudo R2 of the spatial term = 0.71) and false presence rate
(pseudo R2 of the non-spatial term = 0.13, pseudo R2 of the
spatial term = 0.85) of 1065 plant species distribution models
across Europe (response variables were log-transformed and
explanatory variables standardized prior to analysis).

Estimate Standard error P-value

False absence rate

Intercept -1.7 0.05 < 0.001

Altitudinal range -0.053 0.01 < 0.001

Human land-use intensity 0.085 0.01 < 0.001

Range edge rate 0.046 0.01 < 0.001

Relative occurrence area -0.081 0.02 < 0.001

False presence rate

Intercept -1.2 0.06 < 0.001

Altitudinal range 0.041 0.01 < 0.001

Human land-use intensity -0.018 0.01 < 0.05

Range edge rate 0.031 0.003 < 0.001

Relative occurrence area 0.18 0.01 < 0.001

Patterns in prediction error
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additional factors, such as biotic interactions (Brown et al.,

1996; Schweiger et al., in press), which may overshadow the

limiting effects of climate under particular circumstances, may

lead to geographically varying disequilibrium of a species with

climate. This is of particular relevance for the applied modelling

technique of GLMs. Within a GLM specified to model presence/

absence data, a linear function is fitted that translates the pres-

ences and absences to occurrence probabilities defined by one or

more environmental variables. Such a GLM equally weights the

influence of presences and absences on the model parameters

and the linear character of the function smoothes the response

of species to the environment. Consequently, the very general

description of the species response may lack precision where

probabilities of occurrence change from low to high, i.e. at the

range margins. How this translates to prediction errors depends

on the frequency of ‘wrong’ observed absences (under the

assumption that all observed presences are right). If they domi-

nate at range margins, a GLM based on climate variables will

underestimate the species range and the few ‘true’ observed

presences will not be modelled as such, leading to an increased

false absence rate as we have observed. However, in the opposite

case, when the ‘wrong’ absences are in the minority, they will be

modelled as presences resulting in a high false presence rate (see

below).

The second grid cell characteristic connected to species range

properties, the mean relative occurrence area, was also very

important. Relative occurrence area has been repeatedly shown

to influence prediction errors with ambiguous results (Fielding

& Haworth, 1995; Araújo & Williams, 2000; Manel et al., 2001;

Elith et al., 2002; Stockwell & Peterson, 2002). While the hypoth-

esis that false absence rates are higher when many large-ranging

species are present (Lobo, 2008) could not be confirmed, our

results support opposite findings by Manel et al. (2001). In areas

where large-ranging species dominate, i.e. in northern and

eastern Europe (see also Appendix S2), their presences were

modelled well. However, a high false absence rate in areas where

small-ranged species dominate, i.e. in southern Europe, indi-

cates that the presences of such species were modelled quite

poorly.

The influence of the land-use intensity on the error rates did

not follow our expectations. Intensive human land use is usually

thought to negatively affect biodiversity, leading to a decreased

false absence rate and increased false presence rate (Roy et al.,

1999). The positive effect of land-use intensity on false absence

rates therefore seems counterintuitive. It is possible that mod-

erate transformation of natural habitats may lead to increased

heterogeneity on a landscape scale, thus harbouring more

species and leading to increased false absence rates.

Furthermore, the expected influence of altitudinal range

within a grid cell could not be confirmed. Although large alti-

tudinal ranges have been shown to be an important source of

uncertainty (Trivedi et al., 2008; Randin et al., 2009), we did not

find strong support for an increase of false absences with

increasing environmental heterogeneity (Luoto & Heikkinen,

2008). False absence rates were high in the Alps where altitudinal

range is largest (see Appendix S3), but not in other mountain-

ous areas of Europe (e.g. the Pyrenees, the Carpathians).

False presence rates

The most important variables describing false presence rates

were the two range-specific grid cell characteristics, relative

occurrence area and range edge rate, while the impact of the

abiotic characteristics, altitudinal range and land-use intensity,

were negligible. The strong positive effect of relative occurrence

area on false presence rates follows our hypothesis that within

grid cells with many large-ranging species, the probability of

making false presence errors is higher (Stockwell & Peterson,

2002). Combined with the false absence errors, this means that

in areas where large-ranging species dominate, too many species

Figure 2 Hierarchical partitioning of the simultaneous autoregressive models for false absence rates and false presence rates across Europe
based on 1065 plant species distribution models. The bar length and the numbers beside each bar give the independent effect in per cent.
Direction of the bars (positive/negative) indicates a positive or negative association of each variable with the error rates (see estimates in
Table 3).
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are predicted, thus increasing false presence rates and decreasing

false absence rates. The contrary applies to areas in which small-

ranged species dominate. Here, too few species are predicted,

resulting in low false presence rates but high false absence rates.

Also, the positive association of range edge rate with false

absence rates follows our expectations and hints at the impor-

tance of modelling technique for predictive performance. Our

results show that range edge rate similarly well explains both

false presence and false absence rates. This means that our

models erratically over- or under-estimated the species ranges at

their margins, probably depending on the species-specific data

quality and (dis-)equilibrium with climate (see above). Areas in

southern Europe (see Appendix S2) are particularly prone to

such errors.

Alternative hypotheses

Acknowledging the large proportion of variance that was

explained only by the spatial term of the simultaneous autore-

gressive models (Appendix S3), we present five alternative

hypotheses that might be responsible for the variation of pre-

diction errors. First, biotic interactions (e.g. competition, facili-

tation, herbivory/predation) restrict ranges in some areas more

strongly than climate (Schweiger et al., in press). While the cool

range margins are thought to be predominantly controlled by

climate, southern and western range margins (warm margins)

may be shaped by biotic interactions (Brown et al., 1996), poten-

tially leading to high prediction errors in warmer areas where

such margins accumulate. Though we could not directly test this

hypothesis, we found some indication for it, as false presence

rates increased with mean annual temperature (Pearson corre-

lation with log-transformed false presence rate: 0.68). In addi-

tion, the high species richness in southern Europe may also lead

to higher competition among species and thus to higher false

presence rates in the south. Second, the abundance of vicarious

species, i.e. closely related species with similar ecological

requirements replacing each other in space, e.g. in the Mediter-

ranean, may decrease predictive performance. Ranges of such

species are more strongly determined by environmental barriers

and dispersal limitation (Médail & Verlaque, 1997; Farnsworth,

2007; Krauss et al., 2010). Third, we assume that current species

distributions might be influenced considerably by past land-

use patterns (Motzkin et al., 1999; Donohue et al., 2000). For

instance, the high false presence rate in the Mediterranean is

a likely consequence of the long land-use history in this area.

Fourth, another source of prediction errors may be

the differing qualities of mapping in Europe (Mahecha &

Schmidtlein, 2008). Lower sampling intensities in southern and

eastern Europe may lead to increased error rates in these areas.

The patterns of the spatial component of model residuals give

an indication of this source of errors (Appendix S3). Lastly,

Thuiller et al. (2004a) found that a truncation of species distri-

bution data and environmental space used for model calibration

leads to an overestimation of species probabilities of occurrence.

We assume that cells in areas were distribution data are trun-

cated for many species, e.g. in the Mediterranean, where many

species extend to northern Africa, are characterized by higher

error rates.

Though we cannot test these hypotheses, we hope that it may

help to guide future research on the topic in order to gain

further understanding of variation of predictive performance in

space.

CONCLUSIONS

Geographical patterns in prediction errors of species distribu-

tion models exist and should be taken into account, since species

ranges are shaped by a multitude of factors (Gaston, 2003) as are

the prediction errors. In general, results from species distribu-

tion models may be less (or more) reliable than measures of

predictive performances per species suggest. Thus, we suggest

that models of actual species distributions or species numbers as

well as future projections should be accompanied by a measure

of uncertainty in space (Rocchini et al., in press).
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