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Abstract Remote sensing is an important tool for
studying patterns in surface processes on different
spatiotemporal scales. However, differences in the
spatiospectral and temporal resolution of remote sens-
ing data as well as sensor-specific surveying character-
istics very often hinder comparative analyses and
effective up- and downscaling analyses. This paper
presents a new methodical framework for combining
hyperspectral remote sensing data on different spatial
and temporal scales. We demonstrate the potential of

using the “One Sensor at Different Scales” (OSADIS)
approach for the laboratory (plot), field (local), and
landscape (regional) scales. By implementing the
OSADIS approach, we are able (1) to develop suitable
stress-controlled vegetation indices for selected varia-
bles such as the Leaf Area Index (LAI), chlorophyll,
photosynthesis, water content, nutrient content, etc.
over a whole vegetation period. Focused laboratory
monitoring can help to document additive and coun-
teractive factors and processes of the vegetation and to
correctly interpret their spectral response; (2) to trans-
fer the models obtained to the landscape level; (3) to
record imaging hyperspectral information on different
spatial scales, achieving a true comparison of the
structure and process results; (4) to minimize existing
errors from geometrical, spectral, and temporal effects
due to sensor- and time-specific differences; and (5) to
carry out a realistic top- and downscaling by deter-
mining scale-dependent correction factors and transfer
functions. The first results of OSADIS experiments
are provided by controlled whole vegetation experi-
ments on barley under water stress on the plot scale to
model LAI using the vegetation indices Normalized
Difference Vegetation Index (NDVI) and green NDVI
(GNDVI). The regression model ascertained from im-
aging hyperspectral AISA-EAGLE/HAWK (DUAL)
data was used to model LAI. This was done by using
the vegetation index GNDVI with an R2 of 0.83,
which was transferred to airborne hyperspectral data
on the local and regional scales. For this purpose,
hyperspectral imagery was collected at three altitudes
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over a land cover gradient of 25 km within a time-
frame of a few minutes, yielding a spatial resolution
from 1 to 3 m. For all recorded spatial scales, both the
LAI and the NDVI were determined. The spatial prop-
erties of LAI and NDVI of all recorded hyperspectral
images were compared using semivariance metrics
derived from the variogram. The first results show
spatial differences in the heterogeneity of LAI and
NDVI from 1 to 3 m with the recorded hyperspectral
data. That means that differently recorded data on
different scales might not sufficiently maintain the
spatial properties of high spatial resolution hyperspec-
tral images.

Keywords Hyperspectral remote sensing .

Spatiotemporal scale . Controlled long-term laboratory
experiment . Imaging spectroscopy . Semivariogram .
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Introduction

The scale is a basic concept for describing the hierar-
chical structure of landscapes, structures, and process-
es. With the development of remote sensing
techniques for different spatial and spectral resolu-
tions, scale issues and questions concerning scale tran-
sitions became one of the focal research topics of
scientists. Although a number of methods have been
applied in remote sensing for multiscale analysis in
landscape ecology, the effectiveness of many of these,
including some of the more commonly used ones, is
not always apparent and sometimes questionable. To
our knowledge, there is no universal method in remote
sensing for calculating the effects of different scales,
methods of scaling, and scale transitions. Each method
has its specific problems, limitations, and certain con-
ditions. The methods applied depend on the available
data products, the various geometric and spectral res-
olutions and the existing limitations of the data used.
According to Wu (2009), the reasons why no single
method has been proven to be effective can be put
down to the following criteria: (1) the heterogeneity of
the landscape surface and objects, (2) the nonlinearity
of retrieval models, and (3) different targets. Wu
(2009) points out that the research on scale and scale
effects in remote sensing is still at the very beginning.
Wu (2009) summarizes four essential reasons for the
difficult transfer of information over different scales:

(a) different instruments have different fields of view
(FOV) that correspond to different spatial resolutions;
(b) instruments of a comparable target measurement
have a different technical design and acquisition
parameters; (c) the scale at which models operate often
varies from model to model; and (d) different factors,
such as funding, the time of data recording and man-
power constrain the choice of scale, the mode, and the
intensity of measurements.

There are many different definitions of scaling
(Meentemeyer 1989; Gibson et al. 2000; Dungan
2001; Wu 2009); but for remote sensing data, the
scaling definition after Quattrochi (1993) is most rel-
evant. According to Quattrochi (1993), the scale of
optical imaging data is “the combination of space,
electromagnetic wavelengths, their direction, and the
time intervals over which a spectrometric measure-
ment is made”. When considering new methods of
scaling techniques, we have to deal with new
approaches in up- and downscaling. In this respect,
the bottom-up approach—transferring information
from smaller to larger scales of observation—is re-
ferred to as upscaling, whereas the top-down approach
“downscales” information from a larger to a smaller
scale (Volk and Ewert 2011). In optical remote sens-
ing, different techniques can be employed to perform
up- or downscaling, which are widely applied and
accepted in the research field of spectroscopy. These
are (1) radiative transfer modeling, (2) spectral (un)
mixing, and (3) data fusion techniques. Malenovský et
al. (2007) demonstrate the scaling abilities for top-
and/or downscaling for spatial, spectral, directional,
and temporal scale optical remote sensing techniques
(Table 1).

What exactly are the specific problems involved in
using the existing methods for up- and downscaling in
remote sensing? In the following, three common meth-
ods are discussed.

Radiative transfer models for scaling Radiative trans-
fer models (RTM) are physical approaches for scaling
the spatial, spectral, and directional information of
landscape surfaces and observation objects. They can
range from simple 1D models for modeling purely
homogenous canopy structures to horizontally hetero-
geneous or discontinuous vegetation canopy models
such as the Discrete Anisotrophic Radiative Transfer
(DARD) models (Myneni 1991; Myneni and Ganapol
1991; Gastellu-Etchegorry et al. 2004). RTM are
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designed for scaling spectral derivatives and testing
different spectral indices with different spatial, spec-
tral, and directional resolutions. Spectral indices such
as the Normalized Difference Vegetation Index
(NDVI; Lillesand and Kiefer 1994) and others are
designed to describe the properties and detected
changes in biochemical and physical properties of
observed vegetation and landscape objects. Not all
spectral indices on the leaf level are directly applicable
on the next spatial scale of the canopy because of the
heterogeneity and geometry of the environment.
Haboudane et al. (2002) combined the leaf RT model
PROSPECT (Jacquemoud et al. 2009) with the canopy
RT model SAIL (Verhoef 1984) to test the ratio of two
spectral indices (Haboudane et al. 2008; Li et al.
2008). A further combination with a 3D geometry
model such as DARD would also be possible although
its application is difficult because limitations arise due
to the high complexity and heterogeneity of the vege-
tation and the landscape. Gascon et al. (2004) used the
DART model to simulate images of a tropical forest at
1 and 50 m ground resolution. However, the results of
the Leaf Area Index (LAI) modeling and the NDVI
were very different. This example demonstrates that a
retrieval of biochemical–physical variables using RT
modeling is possible, but must be correctly adapted at
a very high spatial resolution (Malenovský et al.
2007). RT models “are not designed for any down-
scaling” techniques and for the temporal scaling di-
mension. The RTM present a tremendous opportunity
in terms of their abilities for spatial, spectral, and
directional scaling but the reflectance of leaf, canopy,

and landscape objects is a complex system of different
scale dimensions. Hence, the correct parameterization
of the RT models is particularly important. Due to the
large number of possible input parameters for RT
models, the exact parameterization is still the limiting
factor, or at least the area with the highest errors. More
specific information and state-of-the art in theory and
application of RTM are available in Schönermark et al.
(2004).

Spectral (un)mixing for scaling Spatial homogeneity
is a rare phenomenon for the surface of landscapes.
Usually, one or more substances or objects provide
spectral information for an image pixel. The reflec-
tance value R of a pixel depends on the optical and
structural properties of both the surface and landscape
objects. The optical and structural properties as well as
the homogeneous or heterogeneous character of the
surface and landscape object determine whether the
mixing process is linear or nonlinear (Malenovský et
al. 2007; Wu 2009). Smith et al. (1985) were the first
to develop a method for the spatial downscaling of
remote sensing data—the spectral mixture analysis
(SMA). SMA is used to find the fractions or the
abundance of a number of surface elements (end mem-
bers) that explain the recorded mixed pixel reflectance
spectrum. There are different methods for the “end
member” selection such as using spectral libraries
modeled with RTM (Painter et al. 2003) using field
spectra from field measurements or image-derived
“end members” from the purest pixels of the spectral
image. The different techniques for automated image

Table 1 Scaling abilities for top-and/or downscaling of the remote sensing techniques described (modified from Malenovský et al.
(2007))

Scale dimension Direction Radiative transfer Spectral Data merging OSADIS
Models (RTM) (Un)mixing

Spatial Upscaling ++ – ++ ++

Downscaling − ++ − ++

Spectral Upscaling + − − ++

Downscaling − − − ++

Directional Upscaling + − − −
Downscaling − − − −

Temporal Upscaling − − − ++

Downscaling − − ++ ++

− Scaling has not been investigated or is impossible; + there are examples for this scaling dimension, but with limitations; ++ there are
good examples for this scaling dimension

Environ Monit Assess (2013) 185:1215–1235 1217



end member selection have been published by
Dennison and Roberts (2003). Spectral (un)mixing
techniques have been realized in different fields of
image spectroscopy using different kinds of optical
remote sensing data. Painter et al. (2003) for example
applied a multiple “end member” SMA to AVIRIS
data for analyzing snow cover areas while Metternicht
and Zinck (2003) used SMA for soil salinity with the
DAIS sensor.

Merging data for scaling There are many optical sen-
sors with different characteristics in the spatial, spectral,
temporal, or directional dimension. The aim of data
fusion techniques is therefore to combine the informa-
tion from a multisource dataset for spatial and temporal
downscaling. Traditionally, image fusion techniques use
an image with a low spatial resolution (multispectral
image) for downscaling to a higher spatial resolution
image with a higher panchromatic image. A number of
merged examples can be found with LANDSAT TM
and SPOT images (Zhou et al. 1998), QUICKBIRD,
IKONOS, and HYPERION (Zeng et al. 2009), or the
merging of hyperspectral data such as AISA and multi-
spectral LANDSAT ETM images (Chen et al. 2003;
Silvan-Carrdenas and Wang 2010). Several statistical
approaches have been used for the implementation of
fusion algorithms such as the wavelet transformation
(Zhou et al. 1998; Li et al. 2002; Saunders et al. 2005),
the intensity–hue–saturation transformation, the princi-
pal component analysis, the Ranchin transformation
(Zhou et al. 1998; Ranchin et al. 2003) and different
machine learning techniques (Tuia et al. 2009). For
temporal scaling or vegetation monitoring, there are
many different data fusion approaches available, dealing
with different spatial and/or temporal scale dimensions.
The global NDVI are derived from advanced very high
resolution radiometer (AVHRR), SPOT-VGT, and
MODIS earth observation data (Tarnavsky et al. 2008),
for the global monitoring of the environment and vege-
tation SPOT-4/-5/IRS, AVHRR/MSG, ASTER, IKO-
NOS/QuickBird/OrbView/GeoEye, and DMC/SPOT-
1/-2 Imagery Part II are used (Baraldi et al. 2010;
Gobron et al. 2010).

All of the aforementioned processes and methods
cover individual areas of up- or downscaling of spatial,
spectrodirectional, or temporal aspects. Temporal
upscaling, the investigation of the spectral response of
structures, functions, and processes over time, is current-
ly not covered by any of the methods described above.

The objectives of the study presented here are: (1)
to develop, test, and apply a new methodical frame-
work for combining hyperspectral remote sensing data
on different spatial and temporal scales to monitor
vegetation variables on plot, local, regional, and glob-
al scales; (2) to transfer the modeling results obtained
from the long-term laboratory experiment to the local/
regional scale to hyperspectral data with differently
recorded geometrical spatial resolutions from 0.5 to
3 m; (3) to carry out analyses to compare the spatial
heterogeneity of hyperspectral data with differently
recorded soil/ground resolutions of 0.5–3 m; and fi-
nally, (4) to illustrate the potential of using one sensor
at different scales to monitor vegetation properties.

A methodological framework for multiscale
analysis

The monitoring of vegetation and land surface variables
at different scales can be realized through an approach
that will be applied in this paper—the “One Sensor at
different Scales”Approach (OSADIS). In this approach,
the same hyperspectral sensor is used at three different
observation scales scale 1 (plot scale), scale 2 (local
scale), and scale 3 (regional scale), which are presented
in Fig. 1. Scales 1–3 are outlined in more detail in the
following section, whereas scale 4 (the global scale) will
not be discussed in this paper.

For the OSADIS approach, we used the imaging
spectrometer sensors: AISA-EAGLE (400–970 nm) and
AISA-HAWK (970–2,500 nm). AISA stands for Air-
borne Imaging Spectrometer for Applications (Mäkisara
et al. 1993) developed by SPECIM (Spectral Imaging
LTD., Finland). Table 2 summarizes the main properties
of the imaging spectrometers that are being used. The
relevant spectral and geometric sensor properties required
are set according to the research objectives and the scale
of the spatial observation. The permanent availability of
the sensors guarantees data acquisition at any required
time on the landscape scale using different aircraft.

Experimental design

Scale 1. The plot scale—monitoring experiment
of the complete plant cycle in the laboratory

In order to investigate the plot scale, the AISA imag-
ing hyperspectral sensors were used in the laboratory.
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Fig. 1 The basic concept of monitoring the biophysical variables of vegetation on different spatial and temporal scales with the
imaging hyperspectral sensors AISA-EAGLE/HAWK (DUAL)

Table 2 Characteristics of the imaging hyperspectral sensors AISA-EAGLE/HAWK, SPECIM (Spectral Imaging LTD, Finland)

Sensor head AISA-EAGLE VNIR AISA-HAWK II SWIR

Mass 11 kg 18 kg

Dimensions (L/W/H) 380/220/55 mm 220/275/470 mm

Spectral range 400–970 nm 970–2,500 nm

Spectral resolution 2.9 nm 8.5 nm

Spatial pixels, up to 1,024 320

Camera CCD camera MCT camera

SNR 350:1–1,400:1 (depend on band configuration) 800:1 (peak)

Spectral binning options 1× 2× 4× 8×

Spectral bands 488 252 122 60 254

Spectral sampling/band 1.25 nm 2.3 nm 4.6 nm 9.2 nm

Image rate 30 40 60 85

Focal length 23x mm 18.5 mm 9 mm 22.5 mm

FOV 29.9° 36.7° 62.1° degree 24.0° degree

Swath width 0.53× altitude 0.66× altitude 1.20× altitude 0.43× altitude

Ground resolution at 1,000 m altitude 0.52 m 0.65 m 1.2 m 1.34 m

Additional parts for Eagle and Hawk

Mirror scanner Mirror scanner for local applications (field plots)

FODIS Fiber optic down welling irradiance sensor
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The AISA EAGLE/HAWK (DUAL) imaging hyper-
spectral sensors were mounted on a lifting-platform at
a height of 2.6 m above the ground (Fig. 2). In front of
both AISA sensors’ optical lenses, the rotating mirrors
were installed to guide the illumination to the sensors
line and to retrieve imaging data. A dark room of
approximately 4×4 m made of lightproof material
was constructed for the hyperspectral measurements.
The use of this kind of darkroom prevents any disrup-
tive factors from having an effect over the entire series
of tests. Light was provided from artificial light sour-
ces using 2000-W tungsten–halogen–quartz lamps
(Kaiser StudioLight, Kaiser Fototechnik, Buchen,
Germany). The observation height was set at 2 m
above the canopy of plant material. A spectralon re-
flectance panel (61×61 cm, Spectralon SRT-99-240,
Labsphere, Inc.) was placed directly above the vege-
tation sample container at the beginning of each mea-
surement scan. The leaf sample container and the
white reference were irradiated under the same light
conditions. Using the spectral reflectance factors of
the spectralon target enabled the radiance that was
reflected from the vegetation sample to be calculated.

For comparison with the AISA imaging spectrometer
data, non-imaging hyperspectral data was collected us-
ing the ASD FieldSpec 3 (Analytical Spectral Device,
Inc., Boulder, CO, USA). The ASD spectrometer (350–
2,500 nm, 2,150 spectral channels, 1.4–2 nm spatial
resolution) was mounted at the same height as the scan-
ning spectroradiometer AISAwith a FOVof 8°. For the
ASD, we used a conversion lens with a FOV of 8° to
sample a vegetation plot of 30×30 cm.

To determine the plant physiological and biochem-
ical status, chlorophyll content (Minolta SPAD 502

Chlorophyll meter, Spectrum Technologies, Plainfield,
IL, USA), leaf area index (LAI, LAI 2000 Plant Can-
opy Analyzer, Li-Cor, Lincoln, NE, USA), chloro-
phyll fluorescence parameters (Mini-PAM, pulse
amplitude modulated fluorometer, Walz, Germany)
plant height, biomass, leaf water content, C and N
content, soil moisture (theta probes), and matrix po-
tential measurements were taken in addition to hyper-
spectral data acquisition. Laboratory measurements
such as temperature, radiation intensity, air humidity,
and observations of soil moisture and matrix potential
were recorded hourly.

Different plants such as summer barley (Hordeum
vulgare L), rapeseed (Brassica napus), wheat (Triticum
spec.) European ash (Fraxinus excelsior), spruce (Picea
abis), and rape (B. napus) were exposed or not exposed
(for control purposes) to different stress scenarios
(drought and flood stress) either over the entire vegeta-
tion period or over a 3–5 months vegetation period.
Over this vegetation period, all spectral (imaging hyper-
spectral data—AISA-EAGLE/HAWK, non-imaging
ASD spectrometer) and vegetation parameter measure-
ments were taken twice a week. Soil and climate param-
eters were recorded hourly in the climate chamber.

Scale 2. The field scale using a lifting platform

The next scale level (scale 2) represents the local scale.
The respective test plots reflecting field conditions
with an observation extent of approximately 20×
20 m were examined using a lifting platform. The
hyperspectral sensors (AISA-EAGLE/HAWK) were
mounted on the lifting platform at various altitudes
(2–12 m) above the vegetation canopy. The aim of

Fig. 2 The use of imaging hyperspectral sensors AISA-
EAGLE/HAWK (DUAL) in the laboratory experiment; a tech-
nical configuration of the hyperspectral sensors, b controlled
vegetation scenarios of the spring barley experiment 2009, c

RGB/CIR and NDVI derived from the AISA-EAGLE hyper-
spectral image from spring barley (April 27 to July 13, 2009), d
NDVI from different DOY. Time period, April 27 to July 20,
2009
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these experiments was to record the causal relation-
ships between spectral imaging hyperspectral signals
(reflectance and radiance) and the target parameters
measured (e.g., to derive biophysical and biochemical
canopy state variables such as LAI, pigment content,
vegetation water content, and nutrient status) under
field conditions. The lifting platform enables tests to
be conducted on the influence of different sensor
angles, the bidirectional reflectance distribution func-
tion (BRDF) effects on the spectral response of imag-
ing, and the definition of transfer functions of the
spectral response from scale 1 (laboratory) to scales
2 (local) and 3 (regional).

Scale 3. The local and regional scale—airborne
remote sensing

To provide airborne hyperspectral imaging data for
innovative studies, we used a microlight aircraft
(Trike, D-MUFZ) for small-scale hyperspectral cam-
paigns (Fig. 3) and a Cessna 207 or Piper for extensive
hyperspectral campaigns (Fig. 4) as a sensor platform.
Figure 3 shows the hyperspectral sensor AISA-
EAGLE together with a GPS/INS unit RT3100 (Ox-
ford Technical Solutions LTD., UK) mounted onto the
microlight aircraft as well as the aircraft itself in
operation.

The availability of the sensor (AISA-EAGLE/
HAWK) and the microlight aircraft as an additional
platform for a sensor in addition to a Cessna or Piper
airplane enable a very flexible application. Depending
on the area size and the monitoring rate of our study
sites, we selected the appropriate platform (microlight
aircraft or Cessna, Piper) for the sensor. Our “OSADIS
Approach” implies that all hyperspectral airborne sur-
veys will be flown at different spatial scales with
ground resolutions of 0.5–3 m within a very short time
frame (approximately 2–3 h).

Methodology and data processing of the multiscale
approach

The approach described for combining hyperspectral
information on different spatial and temporal scales
into a unified set of spectral data is provided in Fig. 5.

The procedure for hyperspectral data on the plot
scale Over the entire vegetation period, all imaging
hyperspectral data (AISA-DUAL) were taken twice a

week for specific selected field crop vegetation. To
minimize the influences of factors such as radiation
and geometry over the entire measurements, we always
used the same measurement design (see “Experimental
design” section). After being recorded, radiometric cor-
rections were performed on the hyperspectral data based
on the procedure CaliGeo (Spectral Imaging Ltd;
Mäkisara 1998) run under ENVI (ITT Visual Informa-
tion Solution, Boulder, CO, USA). The semi-
atmospheric corrections and the transformation of radi-
ances to reflectances were carried out using a spectralon
reflectance panel (61×61 cm, Spectralon SRT-99-240,
Labsphere, Inc.) using a procedure after Carter (1994).
The semigeometric correction was realized using a mas-
ter–slave geometric correction approach under ENVI.
After preprocessing, the hyperspectral data are referred
to as ground reflectance data with a spatial ground
resolution of 0.2 cm and a FOV of 0.5×0.5 m. These
datasets provide hyperspectral information input for
different semi-empirical and empirically based remote
sensing techniques (i.e., vegetation indices, spatial var-
iability indicators, physical-based–RT models PROS-
PECT; Jacquemoud et al. 2009) SAIL (Verhoef 1984)
and different classification approaches. Additionally, the
ground reflectances are the base for an imaging spectral
library and for different classification approaches.

For comparison with the AISA EAGLE/HAWK
imaging spectrometer data, non-imaging hyperspectral
data were collected using ASD FieldSpec 3 (Analyti-
cal Spectral Device, Inc.).

The procedure for hyperspectral data on the local,
regional, and global scale To keep the disturbing
influences from radiation and geometry factors of
vegetation (BRDF) as low as possible, the hyperspec-
tral images were recorded with a ground resolution of
0.5, 1, 2, and 3 m for the same land cover gradient or
other test sites. The time intervals between the
recorded datasets were about 60 min.

After recording the airborne AISA-EAGLE/HAWK
raw data were radiometric-corrected based on the pro-
cedure CaliGeo (Spectral Imaging Ltd; Mäkisara
1998) run under ENVI (ITT Visual Information Solu-
tion). After the radiometric correction, ocular linear,
and nonlinear miscalibrations in the hyperspectral data
were reduced by implementing an image-driven, ra-
diometric recalibration and rescaling method (Reduc-
tion of miscalibration effects; Rogaß et al. 2011). The
atmospheric correction was performed using the
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software procedure ATCOR4 (Richter and Schlapfer
2002) and the radiative transfer in ATCOR. The pro-
gram corrects at-sensor radiance images for solar lu-
minance, aerosol scattering, and the Raleigh. The
ATCOR program has been adapted for the specific
band characteristics of the AISA-EAGLE/HAWK sen-
sors. The orthorectification of the airborne hyperspec-
tral image was carried out using a digital elevation
model together with the geocoding procedure
CaliGeo.

After preprocessing, the hyperspectral data were re-
ferred to as ground reflectance data with the different
spatial ground resolutions of 0.5, 1, 2, and 3 m. These

spatially very different datasets can serve as input data
for many semi-empirical and empirical remote sensing
techniques such as vegetation indices, physically based
models RTmodels, i.e., PROSPECT (Jacquemoud et al.
2009), SAIL (Verhoef 1984), and analytical methods
such as the principal components analysis or spectral
unmixing methods etc. Due to the approach of only
using one sensor (AISA-DUAL), a spectral harmoniza-
tion is not necessary. The geometric characteristics for
the 0.5, 1, 2, and 3 m images of the hyperspectral data
are different. To investigate scaling effects, hyperspec-
tral data were recorded at the local and regional level
with different spatial resolutions (c.f. Fig. 1). The

Fig. 3 a AISA-EAGLE (400–970 nm) and GPS/INS-RT3100
mounted on the UFZ’s microlight aircraft (Trike), b the UFZ’s
microlight aircraft (D-MUFZ), c “Schleusenheger Wiesen” near
Dessau recorded on July 3, 2008 with the UFZ’s microlight

aircraft, images from the hyperspectral sensor AISA-EAGLE,
400–970 nm, 1 m ground resolution, 252 spectral bands, CIR-
AISA-EAGLE hyperspectral image with data cube

Fig. 4 a AISA-Eagle/HAWK Dual sensor mounted on Cessna
207, b “Döberitzer Heide” near Berlin, CIR-image from a
hyperspectral sensor on the AISA-EAGLE, 400–970 nm
swath-mosaic, 2 m ground resolution, 252 spectral bands, date
of recording August 16, 2009 with a Cessna 207, c Cottbus,

CIR-image from hyperspectral sensors of the AISA-EAGLE/
HAWK (AISA-DUAL) 400–2,500 nm with data cube, 367
spectral bands with 1, 2, 3 m recorded ground resolution, date
of recording October 20, 2009 with a Cessna 207
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differences in the geometric ground resolutions are har-
monized using methods that integrate scale correction
factors or transfer functions between different spatial
scales.

The information that is retrieved from the corrected
spatial biophysical and biochemical vegetation param-
eters is validated against the measurements from the
ground truth data of the plot-scale experiment and the
direct measurements from ground truth data in the
field. The verified spatial information from the hyper-
spectral remote sensing data is used as a base dataset
for different ecosystem process models.

The transfer of statements from the regional scale to
the global scale requires the implementation and use
of spaceborne hyperspectral sensors with a wider
swath. The hyperspectral sensor Environmental Map-
ping and Analysis Program (EnMAP)—that will be
launched in 2015—fulfills these requirements. To
transfer hyperspectral information from the regional
to the global scale based on the ground reflectance
data (3 m) of the AISA-EAGLE/HAWK hyperspectral

sensors, a simulation is carried out of the geometric
(30 m) and spatial (400–2,500 nm) sensor character-
istics of the EnMAP Hyperspectral Sensor with a
scene simulator for optical earth observation data
(Guanter et al. 2009; Segl et al. 2010a, b). The imple-
mentation of this method enables a comparison and a
coupling of different geometrical spectral character-
istics that can be integrated into local, regional, and
global ecosystem models.

Implementation of the OSADIS experimental setup

Study area and data

Study area The study area for the experiments is part
of the Terrestial Environmental Observatories (TER-
ENO) long-term monitoring region (www.tereno.net,
Zacharias et al. 2011), situated in the Harz region in
Central Germany (Fig. 6). Imaging was carried out
using the hyperspectral sensors along a 25 km land
use gradient at four different points in time within a

Fig. 5 Flowchart of the OSADIS approach for a long-term multiscaling analysis on different scales (plot, local, regional, and global)

Environ Monit Assess (2013) 185:1215–1235 1223
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vegetation period with a ground resolution of 1, 2, and
3 m. To maximize any differences in illumination,
BRDF as well as phenological and biophysical differ-
ences in the vegetation, the imagery was taken within
a short time frame of 60 min on the same day. This
ensures the greatest comparability of hyperspectral
information with different ground resolutions of 1, 2,
and 3 m.

The specifications for recording hyperspectral data
for the controlled laboratory experiment as well as the
hyperspectral data recorded on the aircraft platform
are described in Table 3

For our investigation, the following land surface var-
iables are important The NDVI is an expression of
reflectance between red and near-infrared regions of a
surface spectrum (Rouse et al. 1973). The NDVI is
directly related to general greenness (Sellers 1985),
biomass, vegetation abundance, and structures of the
vegetation and is expressed as:

NDVI ¼ R800� R670ð Þ= R800þ R670ð Þ ð1Þ

The NDVI is a renowned and very frequently used
vegetation index. There are several variations in the

way in which the NDVI is used, but for this study we
used the reflectance values at a wavelength of 680 nm
as red and 800 nm as NIR.

The green NDVI (GNDVI) developed by Gitelson
et al. (1996) is an index for chlorophyll estimation.
The index should be invariant with respect to other
pigments other than chlorophyll and should not be
influenced by other external factors such as the back-
ground or the atmosphere (Bannari et al. 2007). It is
expressed as:

GNDVI ¼ R800� R550ð Þ ð2Þ

The LAI is an important structural and biophysical
parameter of vegetation canopies that is specifically
coupled with other canopy variables (e.g., crop yield,
above-ground biomass, and ground coverage). The
LAI is therefore an appropriate indicator of crop
growth over the entire phenological growing season.
The LAI assessment is important as an input variable
for many ecological, hydrological, or climatological
modeling approaches. The LAI is used as an input
variable in numerous ecological models. For this reason,
modeling LAI from remote sensing data is an important
prerequisite as an input variable in ecological process

Fig. 6 Study area for re-
cording imaging hyperspec-
tral data from the AISA-
EAGLE/HAWK (DUAL)
sensor, land cover gradient
of 25 km situated in the
Harz mountains in central
Germany
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models. The LAI was derived by regression analysis
between the LAI sensor (LAI2000) and the vegetation
indexGNDVI for the plot scale. This regression analysis
was used for modeling the LAI on the local and land-
scape scales (Figs. 9 and 10).

Analysis of heterogeneity

One index for characterizing the spatial heterogeneity
(patchiness) of abiotic and biotic patches or vegetation
indices (NDVI) and therefore the direction and extent
of spatial processes is defined by the correlation length
(Isaak and Srivastava 1989; Ettema and Wardle 2002).
The correlation length is based on the variogram γ (h),
which is usually estimated from the experimental var-
iogram.

gðhÞ ¼ 1=2nðhÞsum z xiþ hð Þ � z xið Þ½ �^2� ð3Þ

In Eq. (3) the z(xi + h) are the data or measurement
points at locations x and x + h, where h is the distance
or lag between two data or measurement points, and z
(xi) are the number of pairs of measurement points
with distance h.

The semivariance tests whether the similarity be-
tween densely spaced points is greater than points that
are more distant from one another (Webster and Oliver
2001). With range, autocorrelation length, or the gra-
dient (Fig. 7), the distance is indicated from which two
measurement values show no correlation with each
other. It is taken from the variogram at the point where
the variogram value of the best-fit curve reaches the
total variance of all test values (σ2) or the threshold
value, often when it reaches the 95 % threshold of the
statistical total variance (Hornschuch and Riek 2009).
The threshold value is the difference between the total
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Fig. 7 A spherical semivariogram showing range, still, nugget,
and the total variance for a specific lag distance (h)
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variance and the nugget effect (C0σ2−C0). The nug-
get effect (C0, interface value of the extended best-fit
curve with the ordinates) can be understood as non-
recorded microvariability or as a measurement error.
The nugget effect comprises of the measurement error
variance and the small-scale variance within the fields
that are less than the smallest observation distance.
The threshold value is the maximum value of the
semivariogram, which is reached when the measuring
values become spatially independent of one another.
The range is defined as the distance h, at which the
threshold value is reached, i.e., the distance over
which measuring values become spatially independent
of one another.

Results

The plot scale—long-term monitoring experiments
in the laboratory

Analysis of temporal resolution Over a 3-month peri-
od from 27 April to 20 July 2009 (DOY 117–210,
84 days), all spectral data (imaging hyperspectal data—
AISA-EAGLE and non-imaging from the ASD Spec-
trometer) as well as vegetation parameter measurements
(LAI, Chlorophyll SPAD-502, canopy height, vegeta-
tion water content, and C/N content of vegetation) were
taken twice a week. The experiment is described in
detail above in “Experimental design” section. For
spring barley, various vegetation indices were investi-
gated for the AISA-EAGLE imaging spectral data as
well as for the ASD non-imaging hyperspectral data
with regard to their suitability for the model for various
biochemical and biophysical vegetation parameters over
the entire vegetation period of 84 days. Figure 8a shows
the relationship between the vegetation index NDVI and
LAI obtained from laboratory measurements using the
imaging spectrometer AISA-EAGLE for spring barley.
The color information shows the coincident chlorophyll
SPAD-502 content over the entire growing season
(DOY 117–201) with NDVI data corresponding to the
development and different stages of photosynthetic ac-
tivity and chlorophyll content (stage I) and the senes-
cence (stage II) of the vegetation.

Very good model results were obtained by imple-
menting the vegetation index GNDVI (R800-R550)
from the imaging sensor AISA-EAGLE (Fig. 8b).
Here, the LAI could be modeled with an R2 of 0.83

with a root-mean-square error of 0.70 (Fig. 9). The
measurements carried out at the same time under iden-
tical conditions (scale 1) with the non-imaging spec-
trometer ASD (Fig. 8c) over the entire vegetation
period of 84 days did not generate any utilizable LAI
model result for the vegetation index GNDVI (R800-
R550).

The local and regional scale

The statistical LAI model (Fig. 9), obtained from the
AISA hyperspectral data from the laboratory observa-
tions for the vegetation period of spring barley, then
formed the basis of the LAI model derivation for the
AISA hyperspectral data with a ground resolution of 1
and 3 m. The results from the LAI modeling can be
found in Fig. 10a (LAI-1 m ground resolution) as well
as 10b (LAI-3 m ground resolution). The heterogene-
ity of LAI can on the one hand be clearly seen within
the stand of vegetation (Fig. 10a) as well as between
the LAI datasets (Fig. 10a, b) with different ground
resolutions. The differential image again shows the
spatial distribution of differences in LAI with a max-
imum of ±1.6 between the LAI values derived from
the 1 and 3 m hyperspectral data (Fig. 10c).

The investigations on semivariance between LAI-
1 m and LAI-3 m (Fig. 10d) show a highly increased
variance of the LAI-1 m compared to the LAI-3 m
over a lag distance of 50 m. The increased range as
well as the total variance σ2 of LAI for both 1 and 3 m
ground resolution can already be recognized from a
lag distance of 5 m.

How the spatial characteristics of the NDVI of
grassland change with the spatial resolution become
apparent in Fig. 11, whereas the areas displaying dif-
ferences (Fig. 11d–f) between the ground resolutions
investigated become more apparent in Fig. 11a–f.

The NDVI for different heterogeneous and struc-
tured land uses, grassland, rural vegetation, deciduous
forest, and mixed hardwood forest were calculated

Fig. 8 a Relationship between the vegetation index NDVI and
the LAI obtained from laboratory measurements with the imag-
ing spectrometer AISA-EAGLE for spring barley; b Relation-
ship between the vegetation index GNDVI and the LAI obtained
from laboratory measurements with the spectrometer ADS for
spring barley c Relationship between the vegetation index
GNDVI and the LAI obtained from laboratory measurements
with the imaging spectrometer AISA-EAGLE for spring barley,
The color information shows Chlorophyll SPAD-502 content
[no dimension] over the entire growing season (DOY 117–201)

b
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using the hyperspectral data recorded at the different
spatial resolutions. To compare the spatial heterogene-
ities, the statistical variables: median, minimum, and
maximum values as well as the semivariance with a
lag distance of 50 m were also calculated (Fig. 12a–f).

The median of the NDVI values of the individual
land use categories (Fig. 12a–f) only slightly differs
between the individual land use categories. For grass-
land, deciduous forest as well as mixed hardwood
forest the median of the NDVI is ~0.8. The differences
in calculated NDVI for the different spatial resolutions
are marginal (Fig. 12a, c, e, g). Furthermore, for the
NDVI of grassland, ruderal vegetation, as well as
mixed hardwood forest a high range (minimum, max-
imum) was calculated, respectively. Only the NDVI
for the relatively homogeneous deciduous forest
showed a low range for the minimum and maximum
values (Fig. 12e).

Due to the semivariance analysis, the spatial char-
acteristics of NDVI for the different spatial resolutions
can be compared. As expected the sill for grassland
vegetation calculated for the ground resolution of 1 m
is higher than for the ground resolution of 2 and 3 m.
The semivariance increases considerably up to a lag
distance of 10 m, becoming flatter and more constant
up to a lag distance of 30 m (Fig. 12b). In spite of the
only very slight differences in the average value of the
NDVI from 1 to 3 m (Fig. 12a) there are considerable
differences in the spatial distribution and the hetero-
geneity of the NDVI between the three levels of spatial
scales investigated (Fig. 12b). The spatial differences
in the NDVI distribution increase dramatically up to a
lag of 10 m and only slightly from lag 10 to 50 without
reaching a stable level.

For land uses, deciduous forest and mixed hard-
wood forest the semivariance analyses of the NDVI

Fig. 9 A comparison be-
tween ground LAI measure-
ments and LAI estimates
from AISA-EAGLE images
using GNDVI (D800-550)
for spring barley over an
entire growing season (DOY
117–201)

Fig. 10 Thematic map of spatially distributed LAI retrieved
from a regression model using AISA hyperspectral images with
a 1 m ground resolution, b 3 m ground resolution, c a

differential image of LAI 1 m and LAI 3 m, d the semivariance
for LAI 1 m and LAI 3 m for barley
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follow a similar pattern to that of grassland (Fig. 12b)
for 1, 2, and 3 m (Fig. 10f, h). After an initially sharp
increase in the range of variances (1, 2, 3 m) up to a
lag distance of 5 m the threshold values become stable
up to a lag distance of 50 m. Thus, the variance in the
NDVI at 1 m reaches the highest threshold value
followed by 2 m. The lowest threshold value is found
for the NDVI with a ground resolution of 3 m (Fig. 12f,
h). The semivariance analyses of ruderal vegetation
(Fig. 12d) show a completely different pattern compared
to the results from grassland (Fig. 12b), deciduous forest
(Fig. 12f), and mixed hardwood forest (Fig. 12h). Here,
the range increases consistently up to a lag distance of
50 m and no stable threshold value is reached. If one
compares the curve of the NDVI semivariances of the
values from 1, 2, and 3 m resolutions, the NDVI 1 m
semivariance increases more greatly compared to the
semivariance values of the NDVI from 2 and 3 m
(Fig. 12f, h).

Discussion

The plot scale

To examine the causal relationships between hyperspec-
tral imaging signals and the vegetation canopy parame-
ter LAI, controlled laboratory experiments are a very
important method for the semi-empirical modeling of
the LAI over an entire growing season. Figure 8a shows
a hysteresis phenomenon that is typical for vegetation. It
can be observed that there is a tendency for the NDVI to
level off once it has reached a high level of LAI (LAI>3,
DOY 130). The trend indicates a temporary saturation
of reflectance, which then disappears with the subse-
quent senescence of the foliage. This asymptotic behav-
ior has been reported by several authors (Baret et al.
1995; Wiegand et al. 1999). The relationship between
LAI and NDVI is a good indicator for the entire pheno-
logical evolution of vegetation. For the senescence

Fig. 11 Calculation of the NDVI from the AISA-EAGLE/
HAWK hyperspectral data with different ground resolutions—
a 1 m, b 2 m, c 3 m for grassland; Differential images of the

NDVI for grassland between d 1–2 m, e 2–3 m, as well as f 2–
3 m, date of recording imaging hyperspectral data September 11,
2010
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period (stage II) of vegetation, dry biomass continued to
increase and remained practically constant although the
NDVI decreased. If however only the characterization
of the development (stage I) of the crop until it reaches a
climax is of interest, then the LAI is a good indicator as
it shows a significant correlation with the LAI.

The main problem with the use of vegetation indica-
tors is that the vegetation under study can experience
changes in biochemical or biophysical characteristics
from external disturbance factors such as drought, nu-
trient stress, or infection. Hence, during the growing
season the vegetation will show signs of growing stress.
This would mean for example that in phase I a lower
NDVI (due to a reduction in chlorophyll) would lead to
a misinterpretation of the intermittent process. Due to
ancillary and mutually exclusive factors and processes,
knowledge is required about the spectral response and
its causes over the entire vegetation period. Focused
monitoring (scale 1) can help to document additive
and counteractive factors and processes of the vegeta-
tion and to correctly interpret their spectral response.

As both measurements with the imaging and non-
imaging hyperspectral sensors were conducted under
the same basic conditions and within a short time inter-
val, it can be assumed that the differences in the model
results for the vegetation index GNDVI (R800-R550) are
not caused by a change in biochemical or biophysical
parameters of the vegetation, soil, or atmosphere, and that
thus other factors are influencing the spectral behavior of
both sensors. There are several various causes for the
different spectral responses of both sensors: (1) differ-
ences in sensor-specific mapping characteristics and spe-
cific sensor characteristics of the AISA-EAGLE
(Whiskbroom–Scanner); (2) the calibration of the non-
imaging spectrometer (ASD) with the imaging spectrom-
eter that is sometimes inadequate or not carried out at all.
Financial and temporal aspects are often the limiting
factors. This leads to uncertainty in the measurements
and consequently a reproduction of errors in sensor mod-
els and for validation purposes with hyperspectral data (at
scales 3 and 4). (3) The inner geometry, structure, and
pattern of the vegetation are strongly reflected by the
hyperspectral response. This signal is much stronger
compared to the spectral response of biochemical and
biophysical vegetation parameters (chlorophyll content,
vegetation–water content, and protein content). (4) In
spite of a comparable FOV from the lenses, both sensors
take a different “footprint” of the object to be recorded.
(5) If one compares the vegetation index GNDVI over

the entire vegetation period of 84 days (DOY 117–201),
it becomes obvious that the spectral response for imaging
(AISA-EAGLE, Fig. 8c) and non-imaging (ASD,
Fig. 8b) hyperspectral sensors takes a very different
course from DOY 145. Thus, in addition to the afore-
mentioned influential factors, another factor to be con-
sidered is the varying degree of dependency of the
spectral signal on a change in phenology.

The local and regional scale

Using the regression model (Fig. 9), the LAI was trans-
formed from the laboratory scale to the local and region-
al scale to AISA hyperspectral data with a resolution of
1 and 3 m (Fig. 10). As expected, the LAI with a ground
resolution of 1 m shows a higher spatially distributed
heterogeneity compared to the ground resolution of 3 m.
The measured differences in LAI heterogeneity between
1 and 3 m ground resolution (Fig. 10c) cannot be put
down to sensor-specific characteristics, due to the fact
that the same spectral sensor configurations and process
parameters were applied to all data recorded. The LAI
heterogeneities for 1 and 3 m hyperspectral data are thus
determined by structural factors like for example hydro-
logical as well as characteristics such as grain size,
coarseness, types of surface, and structural parameters.
Here, the vegetation acts as a “sensor” of patterns and
processes in soil and hydrology. The extent of the spatial
heterogeneity of soil and hydrological structures and
processes is determined by the variability of the spectral
response of a pixel.

For the land use structures of grassland, rural veg-
etation, deciduous forest, as well as mixed hardwood
forest, statistical variables were provided and assigned
to the box plot. The median values of the NDVI are
similar with only slight variation for all land use
structures investigated at a spatial resolution of 1, 2,
and 3 m. This result differs to the outcome that was
achieved with the investigated NDVI range. Here, the
land use classes grassland, ruderal vegetation, as well
as mixed hardwood forest were given a high value

Fig. 12 Box plots for the vegetation index NDVI showing the
median, minimum, and maximum values, and outliers for the
hyperspectral data recorded by the AISA-EAGLE/HAWK at a
1, 2, and 3 m ground resolution for a grassland, c ruderal
vegetation, e deciduous forest, g mixed hardwood forest, semi-
variance of the NDVI for the hyperspectral data recorded by the
AISA-EAGLE/HAWK with a 1, 2, and 3 m ground resolution
for b grassland, d ruderal vegetation, f deciduous forest, hmixed
hardwood forest

b
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range. It was only for the deciduous forest that the
range of minimum and maximum values was very
small. The results show that by using simple statistical
variables such as the median and the range, statements
can already be made about the degree of spatial het-
erogeneity. A more detailed spatial differentiation of
NDVI between the spatial ground resolutions of 1, 2,
and 3 m is only possible using geostatistical analyses.

The results of the semivariance analyses of the NDVI
of the land use structures investigated at 1, 2, and 3 m
ground resolution show a relatively similar trend for the
semivariance curves at 1, 2, and 3 m (Fig. 12b, d, f, h).
For all land use structures, the variance increases with
increasing geometric ground resolution. A decrease in
the geometric ground resolution with the same spectral
bandwidth can blur the spatial structures that occur at
finer spectral resolutions.

Relatively homogeneous land uses such as grass-
land, homogenous deciduous forest, and mixed hard-
wood forest up to a lag distance of ca. 10 m display a
high sill which then reaches a constant threshold.
This semivariance trend of the different land use
structures indicates a small-scale existent trend of
NDVI values (Hornschuch and Riek 2009). By con-
trast, the NDVI semivariance of ruderal vegetation is
exponential, i.e., an obvious range or threshold value
cannot be recognized. This indicates that the patterns
are very large-scale and difficult to separate
(Hornschuch and Riek 2009). Wu et al. (2000) ana-
lyzed the semivariance of a boreal forest region based
on a Landsat TM scene (1984). He was able to prove
a similar spherical trend in the semivariance for a
boreal forest region.

Conclusions and outlook

Why does a controlled long-term laboratory experi-
ment need to be conducted on the plot scale? The
spectral response of the sensor depends on the physi-
ological conditions of the vegetation. In the literature,
there are a number of spectral vegetation indices,
which are used to describe the variables of physiolog-
ical processes such as LAI, chlorophyll, photosynthet-
ic activity, or the water content of vegetation. The
development of these indices came about on the one
hand from the implementation of physical-based mod-
els and from long-term monitoring investigations by
means of a non-imaging spectrometer (ASD). Both

approaches are criticized in the following way: (1) in
using a physical model (i.e., SAIL or PROSPECT), a
very precise characterization and parameterization of
the geometrical and biochemical characteristics of
plants is required. The validation of landscape models
using an imaging spectrometer (i.e., HyMap, airborne
hyperspectral sensor, 126 spectral bands, wavelength
interval of 0.45–2.5 μm) or a non-imaging spectrom-
eter (i.e., ASD) is considered to be very complex due
to overlaying processes in the landscape (i.e., stress
from drought and nutrient stress). (2) Long-term ASD
measurements in the field are only possible under
certain conditions due to limited radiation days in the
year as well as the environmental variables of the
vegetation such as soil moisture, temperature, and
radiation that can only be measured in situ. It can be
assumed that the collection of ASD spectra over a
long-term vegetation period is very difficult to
achieve. (3) Therefore, it is important to measure land
surface vegetation variables with one imaging optical
sensor over the whole vegetation period. These meas-
urements are necessary for understanding the interac-
tion between spectral response and vegetation change
for the calibration of airborne hyperspectral image
data and field validation.

Why are flights important to record different spatial
resolutions?

The results from the hyperpsectral imagery that we
recorded at the different geometric resolutions of 1,
2, and 3 m show that the similarity or heterogeneity of
the vegetation indices derived such as the NDVI
changes according to the spatial resolution. These
changes depend on the heterogeneity and the dynam-
ics of the underlying processes and structures such as
the soil structure, the soil moisture, and matter fluxes
etc. It will therefore be the goal of further analyses to
determine these factors and transfer functions between
different scales. Here, it is important not only to look
at the spectral characteristics of the vegetation at a
given point in time, but also to integrate land structure
and dynamics as well as hydrological properties.

Why is the OSADIS approach at hand promising
for investigating scales?

The objective of applying this method is to combine
hyperspectral remote sensing data on different spatial
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and temporal scales to investigate the potential of
using one hyperspectral sensor data as an input for
the local, regional, and landscape scale. The use of
only one hyperspectral sensor on different temporal
and spatial scales offers the unique opportunity to
compare data on different spatial scales as well as
transfer the process information obtained from moni-
toring investigations in the field.

Our first results enabled us to show that it is not
only possible to combine sensors with different char-
acteristics (e.g., AISA EAGLE, HyMap, and ASD) in
a geometrical spectral and temporal manner but also to
use these process investigations over different scales.

With our OSADIS approach, we seem to be “taking
one step back” in an attempt to nevertheless better
understand scales, structures, patterns, and their tem-
poral changes and to be able to describe and quantify
them.

The comparison of measuring instruments with dif-
ferent imaging optics and sensors is extremely chal-
lenging and a true calibration of imaging and non-
imaging hyperspectral sensors before flights and
measurements is often not carried out due to financial
and technical restrictions. Spectral sensors have (1)
different imaging characteristics, (2) spectral and spa-
tiotemporal imaging characteristics as well as FOV. (3)
In an attempt to conform these, BRDF occurs as well
as type-specific spectral responses, resulting from dif-
ferences in sensors as opposed to differences in
processes.

By implementing the OSADIS approach, we are
able: (a) to develop suitable stress-controlled long-
term vegetation indices for selected variables such as
the LAI, chlorophyll, photosynthesis, water content,
nutrient content, etc; (b) to transfer the models
obtained to the landscape level; (c) to record imaging
hyperspectral information on different spatial scales,
achieving a true comparison of the structure and pro-
cess results; (d) to minimize existing errors from geo-
metrical, spectral, and temporal effects due to sensor
and time-specific differences; and (e) to carry out a
true top- and downscaling by determining scale-
dependent correction factors and transfer functions.
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