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Analysis of Vegetation and Soil 
Patterns using Hyperspectral 
Remote Sensing, EMI, and Gamma-
Ray Measurements
The identification of spatial and temporal patterns of soil properties and moisture structures 
is an important challenge in environmental and soil monitoring as well as for soil landscape 
model approaches. This work examines the use of hyperspectral remote sensing techniques 
for quantifying geophysical parameters from the hyperspectral reflectance of the vegeta-
tion canopy. These can be used as proxies of the underlying soil and soil water conditions. 
Different spectral index derivatives, single band reflectance, and spectral indices from the 
airborne hyperspectral sensor AISA were quantified and tested in univariate and multivariate 
regression models for their correlation with geophysical measurements with electromagnetic 
induction (EMI) and gamma-ray spectrometry. The best univariate models for predicting 
electrical conductivity based on spectral information were based on the vertical dipole of an 
EM38DD with an R2 = 0.54 with the spectral index Normalized Pigments Reflectance Index 
(NPCI) as well as for the horizontal dipole of an EM38DD with an R2 = 0.65 with the spectral 
index NPCI. For predicting soil characteristics measured with gamma-ray spectrometry we 
received the best model results for gTh with an R2 = 0.55 with the spectral index NPCI and 
gK with an R2 = 0.44 with the spectral index Triangular Vegetation Index (TVI) and NPCI. The 
combination of variables including the geographical elevation was tested as the input for 
a multivariate regression analysis. For EMI and gamma-ray measurements, the “elevation” 
was found to be the most predictive variable and an integration of spectral indices into the 
elevation-based model led to only a slight improvement in the predictive power for EMI. An 
improvement could be made to explain the variance of gamma-ray measurement signals by 
combining elevation and spectral information.

Abbreviations: CAI, cellulose absorption index; NPCI, normalized pigments reflectance index; PLS, partial 
least-squares; PSRI, plant senescence reflectance index; QP, quadrature phase; SWIR, short wave infrared; 
TVI, triangular vegetation index.

Soil heterogeneity is a key challenge when modeling the flow, transport, and turnover 
processes in the soil-landscape context. Reliable forecasts require profound knowledge 
about the variability of soil parameters and the functional heterogeneity in terrestrial 
systems. Therefore, methods are required to measure and assess the distribution and pat-
tern of soil properties.

Quantifying and qualifying the spatial and temporal patterns of soil properties and mois-
ture characteristics is still one of the central challenges in environmental monitoring. An 
adequate description of soil variability is an essential piece of information to put into 
ecological modeling, agriculture, and soil management (Bouma et al., 1999; Grayson and 
Blöschl, 2001; Lin et al., 2005, 2006; Schulz et al., 2006). Soil maps are the key to pro-
viding information about soil distribution, soil structures, underlying processes on scales 
appropriate for the modeling or management of soils and for linking, monitoring data, and 
understanding landscape characteristics (Bouma, 2009; Heuvelink and Webster, 2001; Lin 
et al., 2005; McBratney et al., 2003; Scull et al., 2003; van Egmond et al., 2009).

Soil characteristics and soil moisture patterns are important site conditions affecting bio-
chemical–physical properties of plants and vegetation as a result of adaptation or plant 
stress (Feilhauer and Schmidtlein, 2011; King et al., 2012; Schmidtlein and Sassin, 2004). 
The functional reactions of plants and vegetation are controlled and influenced by a com-
bination of soil properties including characteristics such as texture, salinity, pH-level, 
chemical composition, soil moisture patterns, and temperature (Tromp-van Meerveld 
and McDonnell, 2009; Li et al., 2011; Schmidtlein et al., 2012). The presence of functional 
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relationships between soil properties and vegetation patterns can 
clearly be observed from simple aerial photography and satellite 
images (Fig. 1).

Geophysical measurement techniques, such as ground-penetrating 
radars, soil-moisture sensor networks, electromagnetic induction, 
and remote sensing technologies, present an opportunity for col-
lecting information about the spatial and temporal variation of 
soil properties covering a wide range of scales (Vereecken et al., 
2008). In spite of the technological progress that has been made 
over recent decades, several obstacles still have to be overcome to 
meet the need for low-cost, high-resolution soil maps (van Egmond 
et al., 2009).

A main problem arises from the fact that the exact relationship 
between the sensed characteristics and the environmental quantity 
of interest is often only poorly known or difficult to extract from 
the sensed signal. The analysis of empirical relationships between 
those indirect parameters and the parameter of interest can be 
seen as a preliminary step toward a better understanding of the 
underlying processes. Data fusion approaches and the combination 
and incorporation of different kinds of data may present a promis-
ing solution for improving data interpretation and the prediction 
of soil properties (Kowalsky et al., 2004; Vereecken et al., 2008).

Remote sensing techniques are frequently used to map and assess 
the spatial variability of bare ground soil properties or states such 
as the content of soil organic matter, soil salinity, or soil moisture. 
In this way Ben-Dor et al. (2002) used airborne image spectrome-
ter data such as DAIS-7915 to study soil properties and their spatial 
distribution, while Jarmer et al. (2005) used simple optical remote 
sensing sensors such as Landsat-TM to assess soil inorganic carbon 

in the Judean Desert. To obtain and assess spatial and multi-tem-
poral surface soil moisture data over large areas both microwave 
remote sensing techniques (Jackson et al., 1976; Chang and Islam, 
2000; Wigneron et al., 2003; Pause et al., 2012) as well as various 
optical sensors such as hyperspectral data (Haubrock et al., 2008) 
can be used.

To assess the soil heterogeneity of sites with vegetation from remote 
sensing, the use of indirect indicators is required (Wehrhan et al., 
2001; Schmidtlein, 2005; Lausch et al., 2012, 2013a). The most 
frequently used indicators in this respect are (i) the “Ellenberg indi-
cator values” of plants and (ii) a characterization of the “vitality” 
of plants and vegetation.

The “Ellenberg indicator values” rank plant species according to 
their occurrence along soil property gradients such as the water 
supply, pH characteristics, soil fertility, salinity, etc. (Ellenberg 
et al., 1991; Hill et al., 2000; Schmidtlein, 2005). In this way 
Schmidtlein (2005) was able to use a partial least-squares (PLS) 
regression to substantiate the spatial distribution of the soil attri-
butes: water supply, soil pH, and soil fertility—as indicated by the 
Ellenberg values based on image spectroscopy with an R2 of 0.68.

The “vitality” of plants and vegetation represents a combination of 
different factors. When plant species and plant communities are 
not optimally adapted to the existing phenological environment 
and its hydrological and chemical features, then they might show 
various indications of stress. Typical stress factors are changes in soil 
properties (nutrient and salinity stress) and changes in moisture con-
ditions (water stress). Such stress factors can induce a change in the 
biochemical–physiological characteristics of plants and vegetation, 
which can be detected by remote sensing observation.

The most important functional reactions to stress 
which can be documented using remote sensing 
techniques are (i) changes in the composition and 
proportion of photosynthetically active pigments 
such as chlorophyll a, b, and xanthophylle (Hák et 
al., 1990; Miller et al., 2002; Zhang et al., 2008; 
Lausch et al., 2013b), (ii) changes in photosynthetic 
activity through the fluorescence effects in plants 
(Naumann et al., 2008; Zarco-Tejada et al., 2009), 
(iii) changes to the water status of the plant as well 
as the percentage of water in leaf cells (Eitel et al., 
2006; Suárez et al., 2008; Zarco-Tejada et al., 2012), 
(iv) changes in cellulose and lignin content in the 
vegetation (Bannari et al., 2006; Swatantran et al., 
2011), and (v) changes in plant transpiration, result-
ing in changes in leaf arrangement and geometry, 
stomata distribution as well as special protective 
mechanisms such as leaf hairs and cuticula (Claudio 
et al., 2006; Hernández-Clemente et al., 2011).

Fig. 1. Agricultural landscapes situated in Saxony-Anhalt, Germany; crops show 
considerable structural changes due to the specific soil conditions of the underlying 
substrate; image taken by A. Lausch (2010).
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More recently, researchers have started to investigate the poten-
tial of using remote sensing to analyze structural and functional 
relationships between soil heterogeneity and state variables (e.g., 
soil moisture) by using remotely sensed information about vegeta-
tion patterns and physiological reactions of plants (Li et al., 2011). 
Shrestha (2006) used the Landsat Enhanced Thematic Mapper 
Plus (ETM+) to predict soil electrical conductivity (бa). He 
used linear regression modeling and achieved a relatively modest 
correlation between бa and the spectral band 7 of 0.48. Li et al. 
(2011) used a handheld field spectrometer ASD FieldSpec Pro to 
examine the relationship between ground-based assessments of 
the hyperspectral reflectance of wetland plants and the apparent 
electrical conductivity of the underlying soils in alkaline wetland 
habitats. They achieved the best model for predicting the бa with 
uni- and multivariate regression models with an R2 of 0.59. Bajwa 
et al. (2004) used airborne hyperspectral image data to predict the 
electrical conductivity of soils. They found a correlation between 
бa and the hyperspectral reflectance signal of the vegetation with 
an R2 = 0.49.

On the other hand, non-invasive geophysical methods such as 
frequency-domain electromagnetic-induction instruments (EMI) 
and gamma-ray spectrometry are rapid methods for assessing soil 
moisture patterns and physicochemical properties of the under-
lying substrate of plants (Corwin and Lesch, 2005; Tromp-van 
Meerveld and McDonnell, 2009; Robinson et al., 2012). EMI 
sensors measure the bulk electrical conductivity (ECa) of soils, 
which is affected by water content, mineralogy, texture, porosity, 
salinity, temperature, organic matter, and bulk density (Corwin 
and Lesch, 2005). Thus ECa measurements can provide spatially 
distributed information about soil properties. However, parameter 
relationships are non-unique and site-specific. Moreover, Werban 
et al. (2009) recommend the establishment of site-specific relation-
ships between ECa and soil properties of the top soil with respect 
to seasonal effects. Robinson (2009) and Franz et al. (2011) suc-
cessfully applied time lapse EMI measurements for isolating the 
water content signal from ECa.

With gamma-ray spectrometry, the natural gamma radiation 
of the topsoil is recorded. The texture as well as the mineralogy 
and the geological origin of source rocks are the main influenc-
ing factors affecting the nuclide concentration in sediments and 
soils. Consequently, gamma-ray measurements of single nuclides 
or their ratios were used in several studies to determine soil tex-
ture (Kiss et al., 1988; Martz and de Jong, 1990; Hyvönen et al., 
2005). However, gamma-ray concentrations are influenced by other 
soil properties as well, for example, organic carbon content or pH 
(Dierke and Werban, 2013).

The application of multi-sensor approaches might be one way of 
overcoming ambiguous parameter relationships. Castrignano et 
al. (2012) tested the integration of EMI and gamma-ray spectrom-
etry data, which proved to be very effective for interpreting soil 

variation by overcoming the weakness of every individual sensor. 
In any case, the establishment of parameter relationships between 
geophysical and soil parameters remains a critical issue.

However, geophysical parameter sets of soils provide soil-related 
information, for example, the recognition of patterns, even with-
out transforming physical parameters into soil parameters. This 
information could be the key toward a better understanding of 
functional relationships on the landscape scale.

The main hypothesis for this work is that biochemical–biophysical 
plant characteristics in combination with geophysical observations 
can be used to identify soil heterogeneity and provide additional 
information for identifying functional heterogeneity. Plant-related 
variations in the study at hand investigate the feasibility of using 
the hyperspectral reflectance of the vegetation canopy to charac-
terize, describe, and predict the physical–chemical components 
and the characteristics of the underlying soil. Therefore, different 
imaging hyperspectral index types, single band reflectance, and 
spectral indices are related to the geophysical soil parameters using 
regression models.

66Data and Methods
Study Area
The area “Roßlauer Oberluch” used for the study approach is situ-
ated in Saxony-Anhalt, a region of Central Germany (Fig. 2 and 
3). The area is part of the Terrestrial Environmental Observatories 
(TERENO) long-term monitoring region (Zacharias et al., 2011, 
51.52° N lat, 12.16° E long).

The region “Roßlauer Oberluch” used to be an ancient floodplain 
and is made up of various flood channels, floodplain forests, and 
wet meadows (Scholz et al., 2009). From a geological perspective 
the study site can be assigned to the Holocene floodplain with the 
moraines of the Saale glacier to the North and bordered by the river 
Elbe to the South. Soils found in the “Roßlauer Oberluch” are pre-
dominantly very granulitic and silty (Krüger and Rupp, 2009). An 
overview of dominant soil texture classes, soil types, and biotope 
types is presented in Fig. 4a-4c. The groundwater level and soil 
water conditions in the “Roßlauer Oberluch” are determined by 
both precipitation and the flow regimes of the river Elbe and the 
river Rossel. The “Roßlauer Oberluch” is characterized by a high 
degree of variation in groundwater levels and soil water conditions, 
ranging from permanently flooded to areas with a groundwater 
level that is 275 cm below the surface (Krüger and Rupp, 2009).

Airborne Imaging Spectrometer Data
Imaging hyperspectral data sets of the test site “Roßlauer Oberluch” 
were performed using the hyperspectral sensors AISA-EAGLE/
HAWK, (Fig. 5b, www.specim.fi) with a ground resolution of 2 m 
(recording date 23 September 2010) using a Cessna 207 (Fig. 5a). 
To record navigation data, we used the GPS/INS unit RT3102 
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(Oxford Technical Solutions Ltd, UK). Raw hyperspectral images 
were recorded and operated during the flight campaign using the 
specialized software RSCube (Spectral Imaging Ltd, Mäkisara, 
1998). The specific parameters of the AISA-DUAL hyperspectral 
data recorded are shown in Table 1.

Data and Preprocessing
After the airborne AISA-EAGLE/HAWK (DUAL) raw data 
had been recorded, they were radiometric-corrected according to 
the CaliGeo procedure (Spectral Imaging Ltd, Mäkisara, 1998) 
run under ENVI (ITT Visual Information Solution, CO, USA). 
Following radiometric correction, an image-driven, radiometric 
recalibration and rescaling method was implemented to reduce 
ocular linear and nonlinear miscalibrations in the hyperspectral 
data, reduction of miscalibration effects (ROME) (Rogaß et al., 
2011). Atmospheric correction was performed using the software 
ATCOR4 (Richter and Schläpfer, 2002) that had been modified to 
account for the specific band characteristics of the AISA sensors. A 
digital elevation model (DEM) was used together with the geocod-
ing procedure CaliGeo for the orthorectification of the airborne 
hyperspectral image. After pre-processing, the hyperspectral data 

could then be referred to with a geo-code as ground reflectance 
data with a spatial ground resolution of 2 m.

Calculation of Spectral Vegetation Indices and 
Spectral Derivatives
Several indices and index types based on the imaging hyperspec-
tral sensor AISA-DUAL were calculated and tested in terms of 
their suitability for predicting vegetation patterns as a function of 
soil and soil water conditions. The spectral vegetation indices (VI) 
used can be divided into two categories: (i) Reflectance vegetation 
indices—for these indices the reflectance value [R(X)] at the central 
wavelength (x nm) of each band of the imaging AISA-EAGLE/
HAWK spectrometer (400–2500 nm, 491 spectral bands) was 
used; and (ii) published vegetation indices—65 vegetation indices 
published in the relevant literature were tested. Spectral vegetation 
indices reflect the specific biochemical–physical characteristics of 
the vegetation and are categorized into different groups. In the 
current study those spectral indices in particular were applied that 
can act as indicators for mapping the “vitality” of plants.

Fig. 2. Study area “Roßlauer Oberluch” situated in Saxony-Anhalt, Germany.

Fig. 3. (a) Color InfraRed (CIR)—image—region Rosslau—taken from the hyperspectral sensor AISA-EAGLE/HAWK, spectral range 400–2500 
nm, 2 m ground resolution, 491 spectral bands, date of recording 23 Sep. 2010 with a Cessna 207, (b) Data cube—with 461 spectral bands.
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We investigated the possibility of mapping (i) changes to the com-
position and the percentage of photosynthetically active pigments 
such as chlorophyll a, b, and xanthophylle; (ii) changes in measure-
ments of photosynthesis activity through the fluorescence effects in 
plants; (iii) changes to the plant water status as well as the percent-
age of water in leaf cells; (iv) changes to cellulose and lignin content 
in the vegetation; and changes to plant transpiration, resulting in 
changes to leaf arrangement and geometry, stomata distribution 
as well as special protective mechanisms such as leaf hairs and 
cuticula structure.

Measurements of Soil Proxies
Mobile geophysical platforms were equipped with frequency-
domain electromagnetic-induction instruments and a portable 
gamma-ray spectrometer. The devices were attached to sledges 
with a GPS and dragged along by a tractor (Fig. 6).

Electromagnetic Induction for Soil Mapping
The EMI method is a non-invasive technique to measure ECa. 
Measurements were performed in August 2009 after a period 
of 10 hot days with no rainfall using an EM38DD and an EM31 
(both instruments from Geonics, Canada). These instruments 
transmit an alternating magnetic field (primary field) through a 
coil that induces a current (or secondary field) in the subsurface. 

Fig. 4. Distribution of (a) dominant soil texture classes, (b) soil types, (c) biotoptypes in the study area “Roßlauer Oberluch” situated in Saxony-Anhalt, 
Germany (changed after Krüger and Rupp, 2009; Scholz et al., 2009).

Fig. 5. (a) Recording hyperspectral data using a Cessna 207, (b) Hyper-
spectral sensors AISA-EAGLE/ASIA-HAWK (combined referred to 
as AISA-DUAL) are mounted onto a special mount station, (c) AISA-
DUAL sensor in a Cessna 207, (d) Recording and operation of raw 
hyperspectral images using the specialized software RSCube (Spectral 
Imaging Ltd, Mäkisara, 1998).

Table 1. Specifications of the hyperspectral data AISA-EAGLE/HAWK (DUAL).

Recording date

Recording 
ground 
resolution

Focal length 
(EAGLE/
HAWK)

FOV Swath
Spectral 
range

Spatial 
pixel

Spectral 
resolution

Spectral 
bands Sensor Platform

m cm ° m nm nm

23 Sept. 2010 2 18.5/22.5 36.7 300 400–2400 300 2.12–6.26 491 AISA-EAGLE/
HAWK (DUAL)

Aircraft-
Cessna 206



www.VadoseZoneJournal.org� p. 6 of 15

A second coil receives both alternating magnetic fields and mea-
sures the quadrature phase (QP) from which the apparent electrical 
conductivity (ECa) can be calculated directly and the in-phase 
(Telford et al., 1990). During our investigation only QP measure-
ments were taken. The instruments are widely used instruments for 
near-surface applications that measure both the vertical and hori-
zontal dipole orientation, resulting in different effective depths of 
exploration (Callegary et al., 2007). The EM38DD consists of two 
separate EM38 instruments that are positioned perpendicularly to 
each other, enabling both horizontal and vertical dipole axes. The 
EM38DD has different sensitivities that depend on different soil 
depths. The vertical axis (EM38DD V) orientation is sensitive to 
deeper soil layers (maximum response from 0.3–0.6 m), while the 
horizontal axis (EM38DD H) orientation is mainly influenced by 
the near-surface soil layers (50% response from 0–0.5 m) (McNeill, 
1980; Callegary et al., 2007). Measurements with a horizontal axis 
orientation are therefore more sensitive to the very near surface. 
Measurements with the EM31 were performed in vertical dipole 
orientation. EMI data were collected with a sampling rate of five 
records per second. The distance between the transects was approx. 
12 m. After conducting a geostatistical variogram analysis, the data 
were interpolated using an ordinary kriging procedure.

The ECa measurements indicate the presence of fine structured 
patterns (Fig. 7a–7c) and a broad range of values from around 0 to 
above 100 mS m-1 (see Table 2). High ECa values (>40 mS m-1) 
are related to flood plain channels and a flood plain depression in 
the far western area.

Gamma-ray Spectrometry for Soil Mapping
The concentration of gamma-ray emissions of soils depends on dif-
ferent soil properties, which are a function of the source rock and 

the processes during soil genesis under different climatic condi-
tions as well as the effects of management (e.g., pH) and exogenous 
influences (e.g., soil moisture).

Measured concentrations of the gamma-ray emitter Potassium 40K 
and the decay series of Uranium 238U and Thorium 232Th can be 
used to differentiate between different types of hard rocks and 
to carry out sediment characterization. During radioactive decay, 
every nuclide emits gamma radiation depending on its specific typ-
ical discriminative energy. Radioactive decay is a statistical process. 
All radioactive decay occurs independently of other decay events 
and the time interval between decay events is not constant, which 
leads to a statistical noise within the measured data. Gamma-ray 
spectrometers count the decay rate (intensity) of the specific energy 
being released during each decay. To calculate the concentration 

Fig. 6. Measurement arrangement of (a) gamma-ray spectrometer and 
(b) EM38DD.

Fig. 7. Interpolated data of (a) EM38DD V, vertical dipole, (b) EM38DD H, horizontal dipole, (c) EM31 V, vertical dipole, (d) gamma-ray spectrometer, 
K concentration, (e) gamma-ray spectrometer, U concentration, and (f ) gamma-ray spectrometer, Thorium concentration.
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of Th and U, the progeny of their decay series is taken. To perform 
inverse calculations from progeny concentrations back to Th and 
U concentrations, it is assumed that the measured decay series is in 
equilibrium (IAEA, 2003). The measured concentration is influ-
enced by soil moisture. An increase in soil moisture will decrease 
the measured gamma-ray concentration due to attenuation of the 
radiation by water. In a soil with a bulk density of 1.6 g/cm3 most 
of the measured gamma rays (90%) originate from the top 30 cm 
of soil and 50% from the top 10 cm (Cook et al., 1996).

The field measurements were performed using a portable gamma-
ray spectrometer with a 4-L thallium-activated NaI (Sodium 
iodide) crystal from GF Instruments with an automatic peak 
stabilization. The detector records the energy spectrum between 
100 keV and 3 MeV divided into 512 channels. It was calibrated 
to calculate the concentration of 40K [%], 238U [ppm], and 232Th 
[ppm]. The detector was mounted onto a sledge at a height of 30 cm 
with GPS positioning so that it could be towed by four-wheel drive 
vehicles across the field sites. A counting period of 5 s was applied. 
This resulted in a point distance of approx. 7 m within the driven 
transects. The distance between the transects was approx. 12 m.

A spatial filtering process was applied to the data to reduce statisti-
cal noise, to improve statistical certainty of the variogram analysis 
and of the ordinary kriging interpolation.

Gamma-ray concentrations of the study site show less detailed 
structures than the ECa values. Nevertheless the mapped areas 
show distinct patterns of varying nuclide concentrations (see 
Fig. 7). The very northeastern area stands out with a high concen-
tration of K and a low concentration of Th resulting in a differing 
Th/K relationship compared to all other mapped areas. From a 
pedogenetical perspective, the northeastern part is characterized 
by glacio-fluviatile deposits, while all other areas are covered by 
recent alluvial deposits.

Statistical Model Approach
The predictive power of spectral and spatial vegetation pat-
terns with regard to underlying soil and soil water conditions 
(as described by the geophysically measured proxies EMI and 

gamma-ray spectrometry) was assessed by means of a statistical 
analysis. Univariate and multivariate linear regression models were 
used to develop the respective transfer functions. We used a resam-
pling framework to account for the large sample size (n = 82,150, 
grain size 2 ´ 2 m). We randomly resampled 1000 responses and 
their respective predictor variables 1000 times from the original 
data for each hyperspectral band, spectral indicators, and spectral 
derivatives separately. These were used in a robust regression frame-
work to down-weigh the influence of potential outliers. For each 
of these 1000 models per predictor, the calculated coefficients and 
their respective standard errors, t values, and error probabilities 
were recorded. Finally mean values were calculated.

The goodness of fit of the models with the primary variables (ECa, 
gK, gTh, gU) were analyzed using the R2 and the RMSE of the 
model averages.

The calculation for all spectral indices, spectral published indices 
and index derivatives of imaged hyperspectral data were performed 
using IDL/ENVI, v.4.8. The statistical analyses were performed 
using R 2.15.2 with the packages MASS (function rlm) and qpcR 
(function RMSE).

66Results
Relationship between Geophysically Measured 
Soil Proxies and Plant Reflectance Spectra
To investigate the ability to predict spatial patterns of geophysi-
cal proxies from plant reflectance, the correlation between the 
spectral and the geophysical data was calculated. The resulting 
correlograms are provided in Fig. 8a-8d.

The highest correlation between electrical conductivity and 
the spectral information can be found in the wavelength range 
from 695–700 nm with an R2 of approximately 0.3 (RMSE = 
11.33 mS m-1) for EM 38DD H (Fig. 8a and 8b). EM38DD H is 
characterized by the shallowest penetration depth and the high-
est sensitivity to the very near surface soil properties compared to 
EM38DD V and EM31. Clearly lower linear correlations exist for 

Table 2. Descriptive statistics geophysical data: EMI, gamma-ray spectrometry.

Variable Penetration depth Min Max Mean Median SD

m

EM38DD H, mS m-1 Integral up to 0.70 (Callegary et al., 2007) 0 82.9 17.7 15.7 13.7

EM38DD V, mS m-1 Integral up to 1.5 (Callegary et al., 2007) 2.4 99.5 25.1 20.2 15.8

EM31 V, mS m-1 Integral up to 4–6 (Callegary et al., 2007) 1.5 125.2 20.8 16.2 16.0

gK, % Integral up to 0.3 (Cook et al., 1996) 0.0 1.1 0.7 0.8 0.1

gU, ppm Integral up to 0.3 (Cook et al., 1996) 1 4.2 2.7 2.5 0.8

gTh, ppm Integral up to 0.3 (Cook et al., 1996) 1.5 10.2 6.8 7.9 2.5
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the electrical conductivity measured by EM38DD V and EM31 V 
(R2 of max. 0.26).

For the analysis of every single spectral wavelength in terms of 
nuclide concentration of K in the “Roßlauer Oberluch” the best 
model fit obtained an R2 of 0.35 and an RMSE of 0.12% with a 
spectral wavelength of 750 nm (Fig. 8b and 8c). Th and U are much 
less correlated to the measured spectra.

Relationship between the Geophysically 
Measured Soil Proxies and Spectral Vegetation 
Indices
To analyze the relationship between geophysically measured soil 
characteristics against hyperspectral reflectance information, we 
tested 65 well known published spectral vegetation indices. In the 
current study those spectral indices were selected that are indica-
tors for quantifying and imaging the “vitality” of plants. Changes 
to the biochemical–physical characteristics of plants in this respect 
refer to changes in the plants’ photosynthetic pigments, photosyn-
thesis activity, water status and water content, lignin, and cellulose 
content and the transpiration of plants and vegetation.

For the electrical conductivity, the Plant Senescence Reflectance 
Index (PSRI) (Merzlyak et al., 1999) was found to have the highest 
correlation of all tested indices. For EM38DD H and EM38DD V 
a R2 of 0.39 was achieved (Table 3). PSRI was also the most predic-
tive index for EM31DD V, but the correlation was significantly 
lower than for the EMI measurements (R2 = 0.28). The relation-
ship between PSRI and the EMI measurements also becomes 
clearly visible by comparing their spatial distributions (Fig. 9). 
The Cellulose Absorption Index (CAI) (Daughtry et al., 1996) 
also provided a reasonable fit for EM38DD H with an R2 of 0.39. 
Furthermore, the CAI predicts EM38DD V with an R2 of 0.40 
(RMSE 12.17 m Sm-1).

To assess soil properties measured by gamma-ray spectrometry, the 
best model fit was displayed by the Triangular Vegetation Index 
(TVI) (Broge and Leblanc, 2001) for gK with an R2 of 0.37 and 
an RMSE of 0.18%. For gTh and gU none of the tested indices was 
able to provide a reasonable prediction.

The Normalized Difference Vegetation Index (NDVI) is one of the 
oldest and most frequently used vegetation indices for quantify-
ing the greenness of vegetation. Our results demonstrate that the 

Fig. 8. (a) Best model fits for each spectral wavelength with EM38DD H, horizontal dipole, EM38DD V, vertical dipole and EM31 V, vertical dipole, 
(b) RMSE for EMI measurements, (c) best model fits for each spectral wavelength with gamma-ray spectrometry, K concentration, gamma-ray 
spectrometry, U concentration, and gamma-ray spectrometry, Thorium concentration, (d) RMSE for gamma-ray spectrometry measurements.
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NDVI has a mean predictive power for EM 38DD V with an R2 
of 0.38 and for EM38DD H with an R2 of 0.34.

Figure 10 displays the wavelengths of the most predictive spectral 
bands. The majority of these spectral wavelengths can be assigned 
to leaf pigments. EMI results measured using EM38DD also shows 
some dependencies with plant water content, while gU and gK 
are additionally related to wavelengths that represent plant cell 
structure properties.

Relationship between the Geophysically 
Measured Soil Characteristics and Terrain 
Characteristics
Modeling of Proxies for Soil Properties
Geomorphological characteristics such as profile curvatures are 
known to have a strong influence on soil distribution and prop-
erties and have been used in numerous studies to explain the 
variability of soil variables (e.g., Florinsky et al., 2002; Gessler et 
al., 2000; Grunwald, 2009; McBratney et al., 2003; Schmidt et 

Table 3. Best model fits for univariate regression between EMI and gamma-ray spectrometry measurements and spectral vegetation indices derived from the imaging 
hyperspectral sensor AISA-EAGLE/HAWK in “Roßlauer Oberluch.”

EM38DD H 
R2  

RMSE

EM38DD V  
R2  

RMSE

EM31 V  
R2  

RMSE

gTh  
R2  

RMSE

gK  
R2  

RMSE

gU  
R2  

RMSE

———————— mS m-1 ———————— ppt % ppt

Published spectral indices

PSRI—Plant senescence Reflectance index
[(R680 − R500)/R750]
Group: Pigment activity/Light use efficiency
Merzlyak et al. (1999), Sims and Gamon (2003)

0.39
[10.65]

0.39
[12.22]

0.28
[13.46]

0.09
[2.41]

0.27
[0.13]

0.006
[0.80]

CAI—Cellulose absorption Index
[0.5 (R2000+R2200)-R2100]
Group: Leaf content
Daughtry et al. (1996)

0.39
[10.63]

0.40
[12.17]

0.27
[13.64]

0.101
[2.42]

0.33
[0.12]

0.02
[0.79]

TVI—Triangular vegetation Index
0.5[120(R750 − R550) − 200(R670 − R550)]
Group: Pigment activity/light use efficiency:
Broge and Leblanc (2001)

0.22
[12.04]

0.32
[12.93]

0.13
[14.87]

0.04
[2.37]

0.37
[0.18]

0.12
[0.75]

NPCI
(R680–R430)/(R680+R430)
Group: Pigment activity/light use efficiency:
Penuelas et al. (1994)

0.02
[13.53]

0.12
[14.78]

0.003
[15.90]

0.25
[2.09]

0.248
[0.13]

0.25
[0.69]

Frequently used indices

NDVI
(R800–R670)/(R800+R670)
Group: Greenness
Rouse et al. (1974)

0.34
[11.03]

0.38
[12.42]

0.23
[13.95]

0.001
[2.43]

0.29
[0.125]

0.02
[0.79]

Fig. 9. Test site “Roßlauer Oberluch”, (a) Color Infrared image (CIR)—taken from the hyperspectral sensor AISA-EAGLE/HAWK, 400–2500 nm, 
2 m ground resolution, 461 spectral bands, date of recording 23 Sep. 2010 with a Cessna 207, (b) Plant Senescence Reflectance Index (PRSI) derived 
from AISA-EAGLE/HAWK spectral information, best model fit for EM38DD H against PSRI with R2 = 0.39 (RMSE = 10.65 mS/M-1), (c) 
Measured and interpolated electrical conductivity—EM38DD H.
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al., 2010; Scull et al., 2003). To develop a predictive model for geo-
physical properties using hyperspectral measurements, it has been 
tested to which extent the prediction can be improved by includ-
ing elevation information as an additional variable. Therefore, two 
statistical classification analysis procedures were conducted using 
the commercial statistics software SPSS (SPSS Inc., 2010). The 
first step was to calculate the coefficient of determination values 
between the geographical elevation, the different geophysical prop-
erties, and the selected spectral wavelengths and spectral indices. 
From the respective correlation matrix (Table 4) it can be postu-
lated that significant negative correlations exist between the mean 
geographical elevation and the measured electrical conductivity 
and that elevation seems to be more predictive than the hyperspec-
tral information. A weaker, but still significant (0.001 probability 
level) correlation exists between the elevation and the gamma-ray 
spectrometry values. Furthermore, the correlation matrix also indi-
cates a stronger correlation between geographical elevation and the 
spectral indices PSRI, CAI, and the wavelengths 520 and 680 nm.

To reduce information redundancies and take into account inter-
correlation between the variables, a stepwise multiple regression 
procedure was performed. In this procedure, multiple regression is 
performed a number of times, whereby each time the weakest cor-
related variable is removed. At the same time the variance inflation 
factor (VIF) according to the stepwise introduction of predictor 
variables was calculated, which enables the detection of multicol-
linearities (or collinearities) between the predictor variables. VIF 
provides a measure of the degree to which a regression coefficient 
is affected by information redundancies between the predictor 
variables. Variables with VIF values greater than 5 were removed 
from the model. The results from the stepwise multiple regression 
analysis are displayed in Table 3 and Fig. 11.

The results (Table 5) show that integrating spectral indices or spec-
tral wavelengths into elevation-based models leads to only small 
improvements in the predictive power for the EMI values. As 
already indicated by the correlation matrix, most of the explained 
variance for predicting EMI values is based on elevation. The 
regression approach that was applied indicates that in combination 
with elevation information, NPCI is the most effective spectral 
index for the prediction of EMI values. This is interesting because 
the correlation between NPCI and the EMI-measurements is 
much weaker than for other tested spectral indices (see Table 4). 
However, unlike the other spectral indices, there is hardly any cor-
relation between NPCI and the geographical elevation and the 

Fig. 10. Positions of the best spectral predictors (spectral indices, 
spectral derivatives, spectral wavelengths) showing their individual 
wavelengths between 450 and 2480 nm for the best model fits when 
predicting EM38DD H, EM38DD V, EM31 V, gTh, gU, and gK.

Table 4. Matrix of correlation between the best model variables from hyperspectral data, EM and gamma-ray and morphology in the “Roßlauer Oberluch.”

Elevation 520 nm 680 nm 780 nm 1000 nm PSRI CAI NPCI TVI EM38DD H EM38DD V EM31 V gTh gU gK

Elevation 1

520 nm 1

680 nm 0693 1

780 nm 0255 -0456 1

1000 nm 0489 -0184 0923 1

PSRI 0656 -0303 -0803 0682 0474 1

CAI -0628 0131 0686 -0789 -0644 -0873 1

NPCI 0002 -0353 0225 -0616 -0619 -0334 0402 1

TVI 0420 0052 -0623 0921 0800 0832 -0862 -0623 1

EM38DD H -0798 0268 0553 -0371 -0202 -0623 0624 0132 -0465 1

EM38DD V -0647 0072 0505 -0500 -0367 -0631 0638 0348 -0573 0915 1

EM31 V -0696 0313 0513 -0261 -0097 -0534 0519 0048 -0362 0919 0852 1

gTh -0530 0461 0164 0265 0386 -0095 0022 -0514 0209 0205 -0073 0179 1

gU -0341 0252 -0066 0372 0430 0075 -0135 -0501 0344 0060 -0100 0112 0833 1

gK 0371 0103 -0387 0586 0506 0526 -0576 -0507 0610 -0558 -0713 -0445 0475 0502 1
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integration of NPCI into the elevation-based model results in the 
largest increase in predictive information. This observation also 
became evident from the results of a principal components analysis, 
which was conducted before each regression analysis. In any case 
the first two principal components (PC) explained about 80% of 
the total variance and elevation and NPCI are among the leading 
components of PC 1 and 2, respectively. NPCI introduces a maxi-
mum of “new” information regarding the variability of the dataset. 
This finding also demonstrates the benefit of combining covariance 
analysis and principal component analysis. Collinearities, informa-
tion redundancies, and predicitive quality are sometimes difficult 
to detect from using covariance analysis alone.

For EM31 V, elevation alone explains about 50% of the total 
variation and no significant improvement could be found by inte-
grating further spectral information.

For the gamma-ray measurements the findings were slightly differ-
ent. Whereas for these data as well the elevation shows a significant 
predictive power, its contribution to explaining the overall vari-
ability of the geophysical proxies is much lower than for the EMI 
measurements. This was already indicated by the correlation coef-
ficient matrix where the gamma-ray measurements showed a lower 
correlation with the geographical elevation than the EMI measure-
ments. In contrast to the EMI prediction equations, for gK and gU 
the spectral index TVI improved the predictive model. In the case 
of gK, TVI was the most predictive variable and explained about 
40% of the total variability.

In Fig. 11a-11h the measurements and predictions of EM38DD H, 
EM38DD V, and gK using the best predictive models are displayed 
graphically. Figures 11a, 11c, 11e, and 11g show the spatial distribu-
tion of the measured geophysical parameters. Figures 11b, 11d, 11f, 
and 11h integrate the best spectral wavelengths, the best spectral 
indicators as well as elevation in the multivariate models.

66Discussion
The general aim of the presented study was to investigate whether 
the spectral and spatial patterns of plants and vegetation can be 
used as proxies for soil properties measured by electromagnetic 
induction and gamma-ray spectrometry.

The best correlations found (EM38DD H—spectral range 680 
nm/2000 nm, R2 = 0.3; gK—wavelength 780 nm, R2 = 0.35) 
correspond with findings of Zipprich et al. (2001) and Li et al. 
(2011) based on a handheld non-imaging hyperspectral sensor. The 
comparison of electrical conductivity measured with EM38DD V 
and EM31 V against the spectral reflectance of the vegetation 
resulted in a correlation of around R2 = 0.25. This weaker correla-
tion can be explained by the larger penetration depth of the last 
two EM techniques (penetration depth of EM38DD H is up to 
0.7 m with a high sensitivity to the very top, while EM38DD V 

is up to 1.5 m and EM31 V is between 4 and 6 m). This indicates 
the stronger relationship between plant properties and properties 
of the upper soil horizons. By testing different spectral indices 
the best model fits could be achieved with the Plant Senescence 
Reflectance Index (PSRI) (Merzlyak et al., 1999) for EM38DD H 
(R2 0.39) and EM38DD V (R2 0.39). The PSRI (R680-R500)/
R750 is designed to maximize the sensitivity of the index to 
the ratio of bulk carotenoids (a and b-carotene) to chlorophyll. 
According to Merzlyak et al. (1999) an increase in PSRI reflects 
an increment of canopy stress. For this reason the PSRI is often 
used to monitor the vitality of vegetation and to detect plant physi-
ological stress (Liew et al., 2008; Stagakis et al., 2010; Clark et 
al., 2011). To predict EM38DD H (R2 0.39) and EM 38DD V 
(R2 0.40) a good model fit was also achieved using the CAI. The 
CAI [0.5(R2000+R2200)-R2100] describes the average depth of 
the cellulose absorption feature at 2.1 mm in the reflectance spec-
tra (Daughtry et al.,1996). Nagler et al. (2000, 2003) were able to 
demonstrate different amounts of cellulose in the vegetation as a 
function of soil water content by using the vegetation index CAI.

The best model fit for predicting the gamma-ray concentration as a soil 
proxy was quantified for gK using the TVI. This relationship might 
be indirectly caused by a high influence of plant available K at this 
study site. Such a relationship between gK and plant available K was 
already shown by Wong and Harper (1999) and Pracilio et al. (2006). 
The TVI after Broge and Leblanc (2001) calculates the relative differ-
ence between red and near-infrared reflectance in conjunction with 
the magnitude of reflectance in the green region, developed by the fact 
that the total area of the triangle (green, red, infrared) will increase 
as a result of chlorophyll absorption. The spectral index TVI is an 
important indicator for characterizing the biochemical chlorophyll 
content of vegetation (Haboudane et al., 2004).

Among the tested spectral indices also the most frequently used 
vegetation index, the NDVI was tested in terms of its predictive 
power of EMI or gamma-ray spectrometry measurements. When 
compared to other spectral indicators, the NDVI also proved to be 
a good predictor for electromagnetic induction EM38DD V with 
an R2 of 0.38 and an RMSE = 12.42.

The complete analysis of the specific positions of all spectral predic-
tors for EMI and gamma-ray nuclides showed spectral indicators 
and index derivatives in the range of 420 to 800 nm to be highly 
sensitive to predict soil characteristics. Spectral information from 
the short wave infrared (SWIR) from 2000 to 2200 nm was 
only sensitive for predicting EM38DD H and EM38DD V. This 
shows that in particular the spectral ranges of the maximal chlo-
rophyll absorption (440–500 nm, 650–700 nm) as well as the red 
edge (680–700 nm) contain relevant information to be directly 
related to soil properties. This can be explained as vegetation stress 
indication which is spectrally detectable due to changes in biochemi-
cal–biophysical vegetation properties. According to Naumann et 
al. (2008) and Zarco-Tejada et al. (2009) vegetation stress leads to 
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Fig. 11. The best model fits for mulitvariate regression between EM38DD H, EM38DD V, gTh and gK and information from hyperspectral bands of 
the imaging AISA-EAGLE/HAWK sensor, (a) measured—EM38DD H, (b) Predicted—EMDD38 H, (c) measured—EMDD38 V, (d) Predicted—
EM38DD V, (e) measured—gTh, (f ) Predicted—gTh, (g) measured—gK, (h) Predicted—gK.
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changes in the composition and propor-
tion of photosynthetically active pigments 
such as chlorophyll a, b, and xanthophylle 
as well as changes in photosynthetic activ-
ity. Use of the spectral range between 2000 
and 2200 nm for predicting EM38DD H 
and EM38DD V also delivers informa-
tion about the change in the water status 
of plants. In the past many authors have 
confirmed the sensitivity of the short wave 
infrared spectral region II (SWIR) in the 
spectral range from 2000 to 2500 nm 
for measuring leaf water content, cellu-
lose, and lignin content of plants (Sims 
and Gamon, 2003; Bannari et al., 2007; 
Cheng et al., 2008). Similarly, investiga-
tions on the vegetation water content of 
corn and soybeans conducted by Cheng et 
al. (2008) using MODIS remote sensing 
data resulted in an R2 of 0.74 in the spec-
tral range of 1640 nm and an R2 of 0.72 in 
the range of 2130 nm. Both Champagne 
et al. (2003) and Cheng et al. (2008) used hyperspectral data for 
estimating plant water content with SWIR spectral information.

The most important factor for the predictive models (Table 5) to 
explain the variance of all EMI and gray measurement signals is 
the elevation information. Our measurements suggest that the 
floodplain is characterized by different stages of soil moisture 
even after a hot, dry period. Soil moisture is very closely related 
to the geomorphology and substrate in the investigation area, see 
Fig. 11a-11h. This is reflected by the EMI and gamma-ray mea-
surements. The EM31 V could only be predicted with the variable 
elevation with an R2 of 0.49 (RMSE = 11.54). The hyperspectral 
information does not contribute to predicting EM31 V (Table 5). 
The best prediction was obtained for EM38DD H with an R2 of 
0.65 (RMSE = 8.06) as well as for EM38DD V with an R2 of 
0.54 (RMSE = 10.76). Elevation and the spectral indicator NPCI 
improve the model fit. The application of time-lapse EMI could be 
a possibility to overcome the influence of soil moisture on the ECa 
measurements in the next step of investigations.

Parameters measured by gamma-ray spectrometry are mainly dom-
inated by substrate types and less by soil water content. A good 
predictive model for gTh (R2 = 0.55, RMSE = 1.64) results from 
integrating spectral parameters NPCI and elevation. This effect is 
based on the high dependency of Th on the substrates with differ-
ent pedogenesis at the field site, for example, low gTh concentration 
in the northeastern area dominated by sandy glacio-fluviatil sedi-
ments and higher gTh concentration in clay-rich alluvial deposits. 
According to investigations conducted by different authors (Kiss et 
al., 1988; Martz and de Jong, 1990; van der Klooster et al., 2011) 
gTh shows very good correlations between the soil type “clay” and 

gamma-ray activity. For gK and gU the inclusion of elevation and 
hyperspectral indices TVI and NPCI improve the model fit. To 
predict gK an R2 of 0.44 (RMSE = 0.11) was obtained and for 
gU an R2 of 0.44 (RMSE = 0.60) was obtained. Gamma K is less 
influenced by the type of substrate than by the plant available K 
in the Roßlau area. Gamma U is generally more affected by soil 
moisture (Dierke and Werban, 2013), however flood channels seem 
to have no influence on gU at this particular field site.

Hence, areas with depressions with increased clay content display a 
higher water storage capacity than the more sandy areas, which again 
is reflected in a change in the spectral reflectance of the vegetation.

66Conclusions and Outlook
Soil conditions like bulk density or organic matter content 
and soil water conditions influence the biochemical–physical 
properties in vegetation as a result of adaptation or plant stress 
or the distribution of vegetation structures (Lausch et al., 2012). 
The results show that hyperspectral remote sensing is a suitable 
tool to describe and analyze biochemical vegetation characteristics 
in relation to underlying soil properties. As expected, electrical 
conductivity of soils is determined to a large degree by relief 
properties and therefore relief information should be included 
in the modeling process. It can be assumed that the coherences 
between biochemical vegetation, soil properties, and soil water 
conditions are nonlinear. For this reason, we intend to test 
further classification approaches such as SVM, PLSR, and cluster 
algorithms in the next step. This will also include additional spatial 
information of descriptive soil-related site characteristics such as 
soil water budget information.

Table 5. Best models for univariate and multivariate regression between EM and gamma-ray spec-
trometry measurements and variables in the “Roßlauer Oberluch.”

Predicted variable Best model fits R2 RMSE

EM38DD H Y = 164,994– 1971 ´ Elevation 0.637 8.26

Y = 158,179– 1972 ´ Elevation + 16,393 ´ NPCI 0.655 8.06

EM38DD V Y = 163,241– 1848 x Elevation 0.419 12.10

Y = 142,522– 1850 ´ Elevation + 49,836 ´ NPCI 0.540 10.76

EM31 V Y = 171,351– 2014 ´ Elevation 0.485 11.54

gTh Y = 24,138– 0232 ´ Elevation 0.281 2.06

Y 0.545 1.64

gK Y = 0584 +7729 ´10-7 TVI 0.373 1.64

Y = 0733 + 6100 ´10-7 ´ TVI– 2,75 ´ NPCI 0.399 0.11

Y = 0360 + 4034 ´ 10-7 ´ TVI– 0411 ´NPCI +0,006 ´ Elevation 0.439 0.11

gU Y = 4211– 3635 ´ NPCI 0.251 0.70

Y = 7898– 3631 ´ NPCI -0,490 ´ Elevation 0.363 0.64

Y = 8396– 1815 ´ NPCI– 0074´ Elevation + 2766 ´ 10-6 TVI 0.437 0.60
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