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H53F-0536: A Generalization of the Local Estimator Technique

1. Introduction

Nearest neighbor techniques are commonly used in cluster analysis
and statistics either to classify objects into a predefined number of
categories or to assess the value of a predictand based on a given
set of characteristics or predictors. These techniques are specially
useful if the relationship between the variables is highly nonlinear. In
most studies, however, the distance measure is adopted a priori and
applied to the whole set of observations. In this study, on the contrary,
a general procedure to find a metric that combines a local variance
reducing technique and a linear embedding of the observation space

into an appropriate Euclidean space is proposed|2].
2. Basic Definitions and Notation
System — y = f(x)+¢
Data set — D ={(x;,y;) i=1,...n}
Transformation — u = B[x]

Lipschitz cond. — |y; — y;| < Ldp(i,j) Vi,j

Question How to find the transformation B, so that it preserves
the local continuity and is invariant with respect to
changes of scale of the inputs?

Notation

U The output of a system (a scalar or a vector).
() A nonlinear implicit function.

X m-dimensional vector of inputs.

3 Error term with mean zero and undefined distribution.

n The sample size of the data set D.

B Transformation (possibly nonlinear).

u k-dimensional vector space (kK < m).

dp(?,j) The Euclidean distance between u; = B|xj] and u; = B|x;).

L A constant.
P, P’ Threshold proportions.
D

g(p) A limiting distance.
|

N =|.| Cardinality of the set |{(¢,7) ; dg(i,7) < Dg(p)}|.
N Number of close neighbors.

Aj Kriging weights.

T Trimmed mean slope.

X9 -raction of impervious cover.

T3 Mean annual precipitation.

Ty Mean maximum temperature in January.

T Spatial variance of the precipitation.

X Depth of the precipitation forecast.

by, ...,b; LANDSAT bands.

3. Method

The simplest type of transformation is linear, e.g. using a matrix:
u = Bx

B can be estimated by

[ Golpydp — min

h
where .

Gplp) = N(Dg(p)) dB<iaj)z<:DB(p)

Gp(p) is a “local variance” function that expresses the increase of

(yi — y5)°

variability of the output with respect to the increase of the distance
of the nearest neighbors in a nonparametric form. A solution of the
objective function Gg(p) (i.e. the elements of the matrix B) can
be found by Simulated Annealing[1]. The “best” dimension k of the
space into which the variables x are embedded can be selected with
the help of the Mallows’ C'p statistic.

4. | ocal Estimators

Yy =Y,

dB(uauio) < dB(u,U.i) 1 = 17'°°7n
1

Z Yi

E N dp(u,u;)<D(N)

Nearest neighbor

Mean of close neighbors y

k |
Local linear regression  y =ay+ 3 au”
i=1

a; — {(u;, ;) ; dp(u, w;) < D(ps)}

1
Z il
N (ps) dB(u,ui) <D(p5)

Local Kriging Y =

5. Study Area
o Area: 4000 km?.

e Elevation: ranges from 240 m to
1014 m a.s.l. with a mean of 546 m.

e Slopes: mild; 90% of its area has
slopes varying from 0° to 15°. In some
places in the Black Forest up to 50°.

o Climate: 'y (Koppen's notation),

| ocation of the moist mid-latitude climates with mild
winters with a mean annual precipita-

tion of 900 mm.

Upper Neckar Catchment

6. Results

a) Prediction of mean annual discharge (y)|2]

Y, = f(x1, @0, x3,24) +6 1=1,...,46

=========== Euclidean distance

nnnnnnnnnnnnnnnnn
llllllll
ooooo
..... oo Mahalanobis distance 0.8 mnmegentotert Bacttol
lllllllllllllllllllllllllllllllllllllll
ooooooooo

........
L
llllllllll
000000
000000000000000

[ 1]

°

og¥ m
8,

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
0000000000

Variance functions  Mean of close Local linear  Local Kriging

neighbors

regression

b) Land cover classification (y;)[3]

{O,...,yl,...,O}i:f(bl,...,b7)
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c) One day flood (AQ(t)) forecasting |[2]
AQ(t) = f(Q(), AQ(t — 2), w5, x6) +€(t) t=1,...,586
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7. Conclusions

e The optimal embedding ensures the highest degree of continuity (i.e.
the “local variance” function) and it is scale invariant.

® Results show that the proposed method leads to better results than
classical function fitting or the usual nearest neighbor method.

e Nonlinear embeddings might further improve this method. Further
research is still needed to confirm this hypothesis.
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