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8. Conclusions
The results of the study indicate a:

• significant improvement in model performance:

– at least 5% increase of the overall objective function Φ.

– at least 50% reduction of the variance of Φ.

• at least 25% reduction in computational burden.

7. Results
Parameter and output uncertainties
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6. Data
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•Location: Upper Neckar
Catchment, Germany

•Area: 4000 km2.

•Elevation: ranges from 240 m
to 1014 m a.s.l. with a mean
of 546 m.

•Slopes: mild; 90% 0◦ to 15◦.

•Precip.: ≈ 900 mm/yr.

•Grids:

1. Climatic: (1000× 1000) m

2. Hydrologic: (500× 500) m

3. Land cover: (50× 50) m

5. Adaptive searching modes

Mode Parameter Type Processes

1 1-16 distributed interception, snow melt, soil moisture
2 17-24 subbasin 1 linear and nonlinear reservoirs
3 25-32 subbasin 2 ”
4 33-40 subbasin 3 ”
5 41-42 link 1 flow routing
6 43-44 link 2 ”
7 1-44 all all

4. Characteristics of the optimization algorithm

• It is an adaptive constrained optimization algorithm based on a parallel
implementation of simulated annealing (SA)

•Parameter search routine uses adaptive heuristic rules to improve its effi-
ciency.

•The efficiency of the model is evaluated with four objective functions:

– Φ1: Nash-Sutcliffe efficiency coefficient at node 1 with discharge Q

– Φ2: Nash-Sutcliffe efficiency coefficient at node 1 with lnQ

– Φ3: Nash-Sutcliffe efficiency coefficient at node 3 with discharge Q

– Φ4: Nash-Sutcliffe efficiency coefficient at node 3 with lnQ

•The overall objective function is given by

Φ =
(∑

wp
iΦ

p
i

)1/p ∑
wi = 1 p ≥ 6

•The adaptive search algorithm is activated when any of the objective func-
tions is less than a given threshold value τ ≤ 1.3. Mesoscale Hydrological Model

In the present study, a grid-based conceptual hydrological model (denoted
as HBV-UFZ) based on some of the original HBV concepts was employed.
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Grid based HBV-UFZ

State equations: cell (i), t:

ẋ1 = P − F − E1

ẋ2 = F −M
ẋ3 = F + M − E2 − I − L
ẋ4 = I − q1 − q2 − C
ẋ5 = C −K − q3

ẋ6 = F + M − E2 − q4

ẋ7r = Q̂0r − Q̂1r

Output: Runoff Q(t):

Q̂(t) = 〈Q̂r(t)〉 = g(x,v,βββ) + ε(t)

Transfer functions:

 β1
...
βn


(i,t)

= f


 γ1

...
γm

 ,

 v1
...
vk


(i,t)

 n×N × T � m

where
ẋi ≡ ∂xi

∂t ∀i
i, t Indexes for cell and time respectively
N Number of cells
T Number time intervals
n Number model parameters
m Number transfer function parameters

v1 [1] Land cover
v2 [mm] Soil properties: field capacity, porosity...
v3 [m] Elevation
v4 [1] Slope
v5 [◦] Aspect
v6 [ms−1] Permeability of the geological formation
v7 [1] Mean slope river reaches
v8 [1] Fraction of impervious areas in floodplains

2. Research questions

1. How to avoid overparameterization and still have a adequate model per-
formance? How to assess the model complexity?

2. How to find a “good solution” with a relatively low computational burden?

1. Introduction
Any spatially explicit hydrological model at the mesoscale is a conceptual

approximation of the hydrological cycle and its dominant process occur-
ring at this scale. Manual-expert calibration of this type of models may
become quite tedious —if not impossible— taking into account the enor-
mous amount of data required by these kind of models and the intrinsic
uncertainty of both the data (input-output) and the model structure.

⇒ Some degree of automatic calibration is required to find ’‘good” ‘solu-
tions, each one constituting a trade-off among all calibration criteria.
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