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1. Abstract

The main goal of this study is to validate a multiscale regionalization tech-
nique (MPR) integrated into a grid-based mesoscale hydrologic model (mHM).
This model should be able to reproduce not only the discharge hydrograph at

any gauged or ungauged location but also the spatio-temporal distribution of
state variables such as soil moisture. mHM is based on accepted hydrologi-
cal conceptualizations and require three levels of spatial information: level-2

for the climatic information, level-1 for the state variables of the model, and
level-0 for physiographic input data such as soil textures, land cover, eleva-
tion, and geological formations. Model parameters at level-1 are location and
time dependent. They are estimated through upscaling operators that link
level-0 information with global transfer-function parameters, which in turn are
found through optimization. mHM results were compared against that ob-
tained with the HBV model whose parameters were regionalized based on the
Homogeneous Response Units (HRU) approach.

4. Multiscale Parameter Regionalization (MPR)

2. Spatial Resolution
e Level-2: (1000-10 000) m

— Meteorologic forcings
e Level-1: (500-5000) m
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e Level-0: (50-100) m
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3. Mesoscale Hydrologic Model (mHM)
B?\ E =l | State equations: cell 7, time 1:

X(t) = £(x;,u;, B;) +ni(t) VieQ

7 Output: Runoff:

q(t) = g(x,u,B) + €(t)

Upscaling Operator|3]:
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State variable at cell 7, time ¢

where

f, g system and output functional relationships
q [-dimensional (measurable) output vector
u fields (grids) representing land cover states,

physiographical and meteorological variables upscaling operator
X  state variables control volume (e.g. river basin)
n unmeasurable stochastic inputs t, k time and parameter indexes
€  system’'s uncertainty due to measurements defects ? cell location index at level-1

location specific parameters
s-dimensional global transfer function parameters
(to be calibrated).
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5. Example

Upscaling van Genuchten saturated volumetric
water content 0.

Variable Function Ref.
Saturated Qsi(t) = H< Hsj(t) >z — Zv]'e?;esj(t) 5]
volumetric water

content, cell ¢

Y1+ Yourj + 30i(t)  ug < T f

Saturated 0si(t) = |
volumetric water Y4+ Ysurj + Y60;(t)  otherwise
content cell s
Soil bulk density, 0(t) = 7= 2]
cell y Y

rw uyi(t) = Forest
Fraction organic 0j(t) = 475 uy;(t) = Impervios cover 3]
matter, cell j Yo uy;(t) = Permeable cover

wnere

7 cell index at level-0 Y,--.,% pedo-transfer parameters (calibration)

n  number of cells j contained in cell 7 Uy Mean fraction of clay at level-0.

o  Fraction of organic matter Uo Mean fraction of sand at level-0.

0, Average organic matter bulk density (= 0.224 g/cm? ) U3 Mineral bulk density based on clay and sand contents [2].
7, Sand fraction threshold according to [4] (= 66.5%). Uy Land cover.
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6. Effect on Soil Moisture Patterns
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8. Conclusions

e MPR approach produced a significant improvement in model performance:

NSE (mHM) = 0.85 to 0.90 whereas NSE (HBV) =~ 0.79 to 0.84.

e MPR led to more plausible spatio-temporal patterns of soil moisture than

that obtained with the HRU approach. Validation with MODIS[1] LST.

e MPR induced a substantial reduction of model complexity without compro-

mising its efficiency:

—mHM: 64 transfer function parameters (DOF)
—HBV: 28 HRUs x 15 parameters per HRU = 420 DOF.
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