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7. Conclusions

Useful estimators were found in this study:

Ordering relationship for the degree of dominance
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withM being the permutation ac-
cording to ascending η(Θs).

Stochastic dependence c(u, v):
probability density function be-
tween marginals u = F (Ts) and
v = F (Θ).

Copula between simulated Θ and Ts
for permeable cover during 2001

6. Searching for Patterns in η(Z)

Is there a mapping M such that the ordering of

M
(
η(d Θ)

)
∼M

(
η(Ts)

)
?
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Space-time plot for η(Z), with

Z = d θs
Ts

= inverse of LST

(normalized with θs) for permeable cover during 2001
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Space-time plot for η(Z), with
Z = d θ = modeled soil water content

for permeable cover during 2001
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Spatio-temporal variability of
modeled soil water content during year 2001
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Permeable cover
(e.g. cropland, grassland)
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Impervious cover
(e.g. settlements, roads)
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5.Variability of Modelled Soil Water Content vs. LST

Let D =
{
(i, j) 1 ≤ i, j ≤ n

}
denote a n × n integer lattice (domain).

For simplicity, let k denote an identifier of the coordinates (i, j). Let Zt ={
zi,j

}
, (i, j) ∈ D denote a variable of interest (e.g. Ts, dΘ) at time t.

Space-time plots of these variables can be seen below

On these fields, local relationship operators of a variable Z may be of
practical interest.
Example:
Let η(Z) denote the degree of dominance of the cell k at time t with
respect to its immediate eight neighbors (i.e. c = 2) N (c), thus,

ηk = ηi,j =
∣∣∣∣{zi,i − zk,l < 0, (i, j) ∈ Ni,j

}∣∣∣∣
where

Ni,j =
{
(k, l) ∈ D 0 < (k − i)2 + (l − j)2 ≤ c

}
c denotes the neighborhood configuration, and | • | is the cardinality of the
set. If c = 2, then the index ηk can vary between ηk ∈ {1, . . . , 8}.

4. mHM Model [2, 3]

State variable at cell i, time t

State equations: cell i, time t:

ẋi(t) = f(xi,ui,βββi) + ηηηi(t) ∀i ∈ Ω

Output: runoff:

ql(t) = g(x,u,βββ) + εεεl(t)

Multiscale parametrization[3]:

βki(t) = Ok

〈
uuuj(t), γγγ ∀j ∈ i

〉
i

Model efficiency[3]:

NSE [0.7-0.9], RMSE [0.45-0.95] mm/d
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3. Study Areas
•Neckar: 12 700 km2

•Bode: 3 300 km2

•Mulde: 2 700 km2

Variables of interest

•Porosity [-] =Θs, of the top soil layer, d = 20 mm.

•Maximum water storage [mm] = dΘs, in d = 20 mm soil depth.

•Water content [mm] = d Θ = x3, in 20 mm soil depth

•Land surface temperature [◦C] =Ts

2. Research Questions
1. Can remotely sensed products be assimilated in a mesoscale hydrologic model

as proxies for the soil water content?

2. How can these products be assimilated to improve model performance?

1. Abstract
Multiscale monitoring and data assimilation techniques are fundamental to
improve the predictability of mesoscale distributed hydrologic models.

In-situ measurements along with remote sensed information can be used to
condition the parametrization of distributed model aiming at reducing predic-
tion uncertainty of both energy and mass balances. One of the key state vari-
ables responsible for the feedback mechanisms in the land-surface-atmosphere
system is soil moisture. This variable, on the contrary to other water fluxes,
has a long memory and depends greatly on local conditions.

The spatial distribution of soil moisture is therefore crucial to determine the
spatial patterns of both surface runoff and actual evaporation. There are a
number of proxies that can be used to describe the evolution of this state
variable. They can be obtained at different resolutions, for example, the land
surface temperature (LST) of the MODIS (NASA) sensor (1 x 1) km or the
surface soil moisture (SSM) data based on ERS and METOP scatterometers
(12.5 x 12.5) km.

Luis Samaniego(1), A. Bárdossy(2), and R. Kumar(1)

(1) UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany (luis.samaniego@ufz.de) (2) University of Stuttgart, Stuttgart, Germany

H41F-0959. Conditioning of a mesoscale hydrologic model with proxy soil moisture fields


