1. Introduction
One of the main goals of the PUB Science Plan is to reduce uncertainty in hydrological predictions. Prediction in ungauged basins is, however, a complex task mainly because the hydrologic processes occurring within a basin take place over a wide range of spatio-temporal scales for which no agreed upon general hydrological theory is still available.

Due to these reasons, we hypothesize that three phases are required to guarantee the transferability of information from donor basins to ungauged locations:

Phase 1: Selection of a dissimilarity measure λ based on discharge time series of donor basins.

Phase 2: Adaptation of a metric d_{ij} in the space of catchment properties x. Constrain the selection of the metric with various runoff characteristics.

Phase 3: Implementation of a multiscale parameter regionalization (MPR) technique that is able to relate model parameters with basin characteristics. Subsequently, prediction of streamflow by transferring model parameters γ from gauged basins.

2. Dissimilarity measures[1]

<table>
<thead>
<tr>
<th>Dissim. Measure</th>
<th>Estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\lambda_{ij}^1 = (p - L_{ij}) + \frac{U_{ij}^t - L_{ij}^t}{U_{ij}^t + L_{ij}^t}$</td>
</tr>
<tr>
<td>2</td>
<td>$\lambda_{ij}^2 = (1 - n_{ij}) + \xi \Gamma_{ij}$</td>
</tr>
<tr>
<td>3</td>
<td>$\lambda_{ij}^3 = M_{ij} + \xi \Gamma_{ij}$</td>
</tr>
</tbody>
</table>

i, j pair of donor basins
U_{ij}, L_{ij} upper and lower-corner cumulated probabilities of the empirical density copula (EDC) of runoff time series
p given probability (say 20%)
n Spearman’s rank correlation of the EDC
ξ scaling factor
Γ_{ij} degree of asymmetry of the EDC
M_{ij} Kolmogorov-Smirnov statistic of the distribution function of the discharge difference $\Delta q(t) = q(t) - q(t - 1)$

3. mHM Model and Parametrization

State equations: cell i, time t:

$$x_i(t) = f(x_i, u^k, \beta_i) + \eta_i(t) \quad \forall i \in \Omega$$

Output: runoff:

$$q_i(t) = g(x_i, u^k, \beta_i) + \epsilon_i(t)$$

Regionalization[2]:

$$\beta_i(t) = \Omega(\beta_i^j(t)) \quad \forall j \in i$$

Upscaling[2]:

$$\beta_i^j(t) = f_i^j(\beta_i^j, \psi)$$

4. Study Area

Location of the upper Neckar river basin and 38 gauging stations employed in this study.

5. Variability obtained with the best norm based on λ[3]

Boxplot showing the variation of the RMSE [left] and the NSE [right] obtained for each consecutive nearest neighbor of basin Nr. 7

References

6. Streamflow Predictive Uncertainty

Predictions obtained for basin Nr. 5

7. Low-flow Characteristics and Model Efficiency

Predictions obtained for basin Nr. 5. Q_5: cumulative specific deficit, Q_6: total drought duration, and Q_7: maximum drought intensity.

Efficiency measures for each low-flow characteristic

8. Conclusions
This procedure lead to a reduction up to 20% of the streamflow predictive uncertainty if compared with the unconstrained selection.