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1. Introduction
In recent decades there has been increasing interest in the development
and application of large scale hydrologic models to support the manage-
ment of regional water resources as well as for flood forecasting and
drought monitoring. However, the reliable prediction of streamflow and
other distributed hydrologic states (i.e. soil moisture, evapotranspiration)
for large river basins (i.e. drainage area > 105 km2) requires a robust pa-
rameterization technique that avoids scale dependent issues, reduces the
over-parameterization problem, and allows the transferability of model pa-
rameters to unaguged locations.

2. Objectives
•To assess the performance of the distributed mesoscale hydrologic model

(mHM) parameterized with a multiscale regionalization technique (MPR)
in large scale river basins located in Europe and US.

•To test the feasibility of transferring a priori set of global parameters, es-
timated in a relatively small basin, to large river basins.

•To analyze the model performance for the cross-scale transferability of
global parameters (i.e. to test the ability of mHM-MPR to operate at mul-
tiple spatial resolutions).

3. Mesoscale Hydrologic Model (mHM)[2, 1]
mHM is a grid based distributed hydrologic model which is parameterized
with a multiscale regionalization technique that explicitly accounts for sub-
grid variability of basin physical characteristics by linking them to model
parameters at much finer spatial resolution (e.g. 100 – 500 m) than the
model pixels (> 4 km).

State variable at cell i, time t

State equations: cell i, time t:

ẋi(t) = f(xi,ui,βββi) + ηηηi(t) ∀i ∈ Ω

Output: runoff:

ql(t) = g(x,u,βββ) + εεεl(t)

Multiscale parametrization[2]:

βki(t) = Ok

〈
βkj(t) ∀j ∈ i

〉
i

βkj(t) = wk

(
uuuj(t), γγγ

)
f , g system and output functional relationships
x state variables
q l-dimensional output vector
u fields of physiographical and meteorological variables
ηηη unmeasurable stochastic inputs
εεε system’s uncertainty due to measurements defects
Ω control volume (e.g. river basin)

βββ distributed model parameter field
γγγ global (or calibration) parameters
w transfer or regionalization function
O upscaling operators
i, j cell location indexes at model grid and sub-grid levels
k, t parameter and time indexes

4. Study Areas
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Study basins
1) Ohio       
    (Gauge: Metropolis
     Area: 525 800 km2)
2) Upper Mississippi
    (Gauge: Grafton
      Area: 443 665 km2)
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3) Arkansas
    (Gauge: Little Rock
      Area: 409 300 km2)
4) Red
    (Gauge: Index
      Area: 124 400 km2)
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Study basins

1) Neckar
    Calibration basin
    (Gauge: Rockenau
     Area: 12 700 km2)
2) Rhine
    (Gauge: Lobith
      Area: 160 800 km2)
3) Elbe
    (Gauge: Neu‐Darchau
      Area: 132 000 km2)
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5. Model Performance in US River Basins
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Arkansas river basin
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 Model simulations were performed at 0.125° (≈ 12.5 km)
spatial resolution using a set of parameters estimated in 
the Neckar river basin.

 

8. Computational Load of Model Runs
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6. Model Performance in European River Basins
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 Model simulations were performed at 8 km spatial 
resolution using a set of parameters estimated in 
the Neckar river basin.

Rel. BIAS = 1.5%
NSE         = 0.95
r2             = 0.97 

Rel. BIAS = -13.0%
NSE         = 0.85
r2             = 0.95 

 

7. Model Performance at Multiple Spatial Resolutions
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0.125°           0.95       0.85
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9. Conclusions and Outlooks
•The mHM model parameterized with MPR is able to simulate the dis-

charge dynamics of large river basins very well.

•The transferability of global parameters of mHM-MPR to scales and lo-
cations other than those used during their calibration is possible.

•Our ongoing work focus on analyzing the mHM simulations for other hy-
drological states and fluxes, as well as their comparisons with other well
established models.
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