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1. Introduction

Knowledge of soil hydraulic properties such as porosity and saturated hy-
draulic conductivity is required to accurately model the dynamics of near-
surface hydrological processes (e.g. evapotranspiration and root-zone soll
moisture dynamics) and provide reliable estimates of regional water and
energy budgets. Soil hydraulic properties are commonly derived from
pedo-transfer functions using soil textural information recorded during sur-
veys, such as the fractions of sand and clay, bulk density, and organic mat-
ter content. Typically large scale land-surface models are parameterized
using a relatively coarse soil map with little or no information on parametric
sub-grid variability.

2. Objective

The goal of this study is to assess the impact of sub-grid solil variability on
simulated hydrological fluxes over the continental scale Mississippi River
Basin (~ 3,240,000 km?) . We conducted the analysis using a modeling
framework based on the mesoscale hydrologic model (mHM) with two soil
datasets available at different scales: (a) the Digital General Soil Map of
the United States or STATSGO2 (1:250 000) and (b) the recently collated
Harmonized World Soil Database (HWSD) based on the FAO-UNESCO
Soil Map of the World (1:5 000 000).

4. Study Area and Datasets
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7. Monthly Water Budget Components
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3. Mesoscale Hydrologic Model (mHM)[2, 1]

mHM is a grid based distributed hydrologic model which is parameterized
with a multiscale regionalization technique that explicitly accounts for the
sub-grid variability of basin physical characteristics, and derives distributed
soil hydraulic properties via a set of pedo-transfer functions and regional
calibration coefficients.

. = State equations: cell i, time ¢:
x;(t) = f(x;,u;, B;) +1mi(t) Vi€ Q
Output: runoff:
q(t) = g(x,u, B) +€t)
Multiscale parametrization[2]:

Built) = On{ Bii(t) Vi € i)
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State variable at cell 7, time ¢
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f m an functional relationshi L .
& syste a. d output functional relationships B distributed model parameter field
x  state variables 0
. . v  global (or calibration) parameters
q [-dimensional output vector . L .
: : : : : w  transfer or regionalization function
u fields of physiographical and meteorological variables .
. (O  upscaling operators
7 unmeasurable stochastic inputs o . . .
, . 1, 7 cell location indexes at model grid and sub-grid levels
e system’s uncertainty due to measurements defects .
. . k,t parameter and time indexes
() control volume (e.g. river basin)

5. Soil Hydraulic Parameter Fields
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Parameter fields were estimated using a set of pedo-transfer functions developed by Zacharias and Wessolek (2007)

8. Soil Moisture Anomaly During Extreme Events
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Root zone soil moisture anomaly standardized using climatological mean and stnd. dev. for the period 1980 to 2012

9. Conclusions

e The two soil datasets although having substantial differences produced
nearly similar annual patterns of modeled runoff and evapotranspiration.

e The partitioning of total runoff into fast and slow flow components, how-
ever, varied substantially depending on the soil dataset used.

e The differences in the SM anomaly during extremes (=~ 20-50%) high-
light an additional source of uncertainty arising from input soil datasets.
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