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1. Introduction
Hydrological extremes like floods and droughts are causing severe socio-
economic damages. Hydrological models allow to forecast state variables
and fluxes of the hydrological cycle, providing a tool for decision makers
to mitigate damages. This study aims to gain a better understanding of
how land surface initial conditions and temporal disaggregation of mete-
orological forcings are impacting hydrological forecasts.

2.1 Stochastic Weather Generator (WG)
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Fig. 1: multiplicative cascade model structure
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Fig. 2: distribution functions of weights w at two
locations (a) Berlin and (b) Feldberg for different

precipitation intensities (colored lines)

A multiplicative cascade approach [2]
(Fig. 1) is employed to stochastically disag-
gregate monthly to daily precipitation via
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ε(t) ∼ N(0, Ĉ),

where P (k) denotes precipitation at scale k,
F the distribution function of the weights
w (Fig. 2), N the standard normal distribu-
tion function, and Ĉ a cross covariance ma-
trix calculated from the observations. This
approach generates the weights as random
number.

A sequential Gaussian sampling algorithm is used for assuring numerical
stability in the calculation of ε on spatial grids of any size.

2.2 Historic Rescaling (ESP)
A historic rescaling approach [3] to generate an
ensemble of forcings is used. The detailed steps
are as follows:

1. Determine historic weights wy
h via

P y
d (t) = wy

h(t) · P y
m, (1)

for a given monthly value P y
m and the corre-

sponding daily values P y
d in a given year y.

2. Substitute P y
m with a monthly observation of

another year in eq. 1 to generate a new daily
time series P y

d
∗
, keeping the weights wy

h fixed.

Fig. 3: Exemplary rescaling for 10 day
precipitation. The weights (red line) are

derived as ratios between given daily
precipitation (black line) and its sum (black

dashed line). Then the weights are
multiplied with a new 10 day precipitation

value (blue dashed line) to derive new daily
precipitation (blue line).

3. Experimental Design
The hydrological model mHM [1] was used
to evaluate monthly discharge forecasts during
January and July of the years 1960 to 2010.
These months have been selected since they
show an opposing behavior with respect to long-
term hydrological fluxes (Fig. 5). Two set ups
for monthly forecasts were evaluated:

1. different initial conditions xk (Fig. 4); same
observed precipitation forcing

2. same initial condition; 51 different forc-
ings obtained by each disaggregation method
(e.g., WG and ESP)
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Fig. 4: mesoscale hydrologic
model - mHM, State variables (xk) and

fluxes (qk, Ek) at cell i

Fig. 5: Longterm monthly water balances over Germany; dot - precipitation,
blue - discharge, orange - actual evapotranspiration, green - dS

dt

Fig. 6: Long-term annual precipitation over
Germany (obtained by DWD measurements)

during the period from 1960 to 2010

4. Impact of Initialization

Fig. 7: Long-term median(standard deviations) are
7.7%(34.7%)

Fig. 8: Long-term median(standard deviations) are
9.5%(25.9%)

The variability of the monthly discharge forecasts are higher during Jan-
uary (Fig. 7) compared to during July (Fig. 8) in the Neckar basin.

5. Impact of Disaggregation

Fig. 9: Long-term median(standard deviation) for
WG (blue lines) -9.9%(10.6%) and
ESP (red lines) -10.0%(11.8%)

Fig. 10: Long-term median(standard deviation) for
WG (blue lines) -6.0%(10.2%) and

ESP (red lines) -2.2%(13.8%)

Fig. 11: Long-term median(standard deviation) for
WG (blue lines) -2.6%(6.5%) and

ESP (red lines) -3.8%(7.3%)

Fig. 12: Long-term median(standard deviation) for
WG (blue lines) -1.6%(4.2%) and

ESP (red lines) -0.4%(5.7%)

The variability of monthly discharge forecasts are dependent on location,
month, and disaggregation method (i.e., WG and ESP).

6. Sources of Uncertainty

Fig. 13: Scatter plot of standard deviations of monthly discharge
induced by varying initial conditions (x-axis) and ESP method (y-axis)

The impact of initialization on
monthly discharge variability is
two to five times higher as that
of temporal disaggregation in
the Neckar basin. There is no
statistical correlation between
initial condition and disaggre-
gation uncertainty.

7. Conclusions
1. Both, initial conditions and temporal disaggregation have an substantial

impact on monthly discharge forecasts and are location dependent.

2. Initial conditions have an higher impact on monthly discharge as com-
pared to temporal disaggregation.

3. WG disaggregation induces less variability as compared to ESP.


