
ABMland - 
A generic framework for collaborative 

agent-based model development

Status of documentation: August 2011

Page 1



This document describes the ABMland framework as of August 2011 (version 1.0.2). 
It can be downloaded under http://www.ufz.de/abmland. 

Technical questions?  abmland[at]ufz.de→

Authors: Daniel Kahlenberg, daniel.kahlenberg[at]ufz.de; 
Nina Schwarz, nina.schwarz[at]ufz.de

Helmholtz Centre for Environmental Research – UFZ
Department Computational Landscape Ecology
Permoserstrasse 15, 04318 Leipzig, Germany

This  work  was  partly  funded  by  the  PLUREL  Integrated  Project  (Peri-urban  Land  Use 
Relationships) of the European Commission, Directorate-General for Research, under the 
6th Framework Programme (project reference: 36921). 

Page 2



Contents
1. Introduction..............................................................................................4

2. Conceptual approach..................................................................................5
2.1 Interactions..................................................................................................5
2.2 Agents & models...........................................................................................8
2.3 Time & space................................................................................................8

3. The Java framework...................................................................................9
3.1 ABMland core...............................................................................................9

3.1.1 Relationship of agents and models..........................................................10
3.1.2 Dummy models....................................................................................11
3.1.3 Detailed package description..................................................................11
3.1.4 Scheduling...........................................................................................14
3.1.5 ABMland-specific data types...................................................................14

3.2 ABMland wrapper........................................................................................16
3.3 Implementing a single model and respective agents........................................16

3.3.1 Building the model................................................................................17
3.3.2 Building agents....................................................................................17

4. Installation..............................................................................................18
4.1 Installation of Eclipse, Repast S and other resources.......................................18

4.1.1 Installation .........................................................................................18
4.1.2 Adaptations.........................................................................................19

4.2 Installation of the ABMland framework...........................................................19
4.2.1 Creating a plugins folder ......................................................................19
4.2.2 Include common-repasts as plugin .........................................................19
4.2.3 Include wrapper as plugin and as a project .............................................20
4.2.4 Download maven helper file...................................................................20

4.3 Adapt system paths.....................................................................................21
4.3.1 Include common-repasts into configuration..............................................21
4.3.2 Inform Repast S about location of plugin folder........................................21

4.4 Optional: Update plugins..............................................................................22
4.4.1 Export wrapper as plugin.......................................................................22
4.4.2 Export an agent as plugin .....................................................................22

5. Running a simulation................................................................................23
5.1 Repast S launchers......................................................................................24
5.2 Repast model.score ....................................................................................25
5.3 Repast S scenario settings............................................................................26
5.4 Displays.....................................................................................................27
5.5 Using Repast S for exporting time series........................................................28
5.6 Logging......................................................................................................30

6. Data for initialisation................................................................................31

7. Adapting the framework............................................................................32

Page 3



1. Introduction
This documentation presents a framework for collaboratively developing agent-based 
models within a spatially explicit and joint environment. The proposed design concept 
covers three main issues: common scheduling, explicit data exchange, and full functionality 
even if agents are only partially implemented. 

The ABMland framework is conceptualised for urban land use change. However, it can be 
adapted to a variety of modelling topics. Compared to existing tools, ABMland allows for 
collaborative implementation of agent-based models and parallel model development while 
simplifying the coding process. This concept and the implementation of the framework thus 
support the structured development of complex agent-based model in a collaborative 
environment. 

The ABMland framework is implemented in Java building upon Repast Simphony (Repast S 
in the remainder of the document) and other libraries in form of regular jar files. It builds 
upon JPF (Java Plugin Framework) plugins and can easily be used with prepared Maven 
launch files for code handling in the developer environment Eclipse. 

Page 4



2. Conceptual approach
In the current version, six ABMs are included to represent the most important interactions 
regarding  urban  land  use  change:  residents,  businesses,  planners,  developers, 
infrastructure providers, and lobbyists. 

2.1 Interactions

The following figure depicts the interactions between agents as implemented in the current 
ABMland framework.

These interactions are summarised in the following Table. "Exporter" refers to the exporting 
model, "Importer" to the importing one. "Interface" is the name of the data exchange 
between the models. "Internal type" lists the set-up of ABMland-specific data types as well 
as Java or Repast S data types and structures. "Public type" provides the name of the data 
type which is used to summarise the internal type. See section on data types for details.

Page 5

Figure 1: Interactions of agents' sub-models in ABMland



Table 1: Implemented interactions of agents in ABMland. Note: AbstractAllCells<XXX> = Repast S value layer with XXX as value.

Exporter Importer Interface Internal type Public type 
COST Business getLandPriceIndex AbstractAllCells<IPriceIndex> ILandPriceIndexAllCells 
LANDUSE Business getCommercialSpaceAvailability AbstractAllCells<ISpace> IFloorSpaceAllCells 
LANDUSE Business getLandUse AbstractAllCells<CLCover> ICLCoverAllCells 
Planner Business getPermissionForProposals Map<Map<GridPoint, CLCover>, Boolean> IPermissionForProposalTable 
Resident Business getTotalHouseholdNumber Map<GridPoint, Map<Householdtypes, IhouseholdNumber>> IHouseholdNumberPerTypeAllCells 
LANDUSE COST getCommercialSpaceAvailability AbstractAllCells<ISpace> IFloorSpaceAllCells 
LANDUSE COST getVacantAccomodation AbstractAllCells <IHouseholdNumber> IHouseholdNumberAllCells 
Business Developer getCommercialSpaceDemand AbstractAllCells<ISpace> IFloorSpaceAllCells 
COST Developer getLandPriceIndex AbstractAllCells<IPriceIndex> ILandPriceIndexAllCells 
LANDUSE Developer getLandUse AbstractAllCells<CLCover> ICLCoverAllCells 
Planner Developer getGlobalPressure Map<T, Ipressure>, data T = Issuetypes | CLCover IPressureForXTable 
Planner Developer getPermissionForProposals Map<Map<GridPoint, CLCover>, Boolean> IPermissionForProposalTable 
Planner Developer getPermittedLandUse Map<GridPoint, CLCover[]> ICLCoversAllCells (PLURAL)!!! 
Planner Developer getSpatialPressure Map<GridPoint, Map<T, Ipressure>>, data T = CLCover IPressureForCLCoverAllCells 
Resident Developer getSatisfaction Map<GridPoint, Map<E, Map<Issuetypes, Isatisfaction>>>, data E = 

Businesstypes | Householdtypes ISatisfactionPerIssueOfAgentAllCells 
Resident Developer getTotalHouseholdNumber Map<GridPoint, Map<Householdtypes, IhouseholdNumber>> IHouseholdNumberPerTypeAllCells 
LANDUSE Infra-structure getLandUse AbstractAllCells<CLCover> ICLCoverAllCells 
Planner Infra-structure getPermissionForProposals Map<Map<GridPoint, CLCover>, Boolean> IPermissionForProposalTable 
Planner Infra-structure getSpatialPressure Map<GridPoint, Map<T, Ipressure>>, data T = CLCover IPressureForCLCoverAllCells 
Resident Infra-structure getTotalHouseholdNumber Map<GridPoint, Map<Householdtypes, IhouseholdNumber>> IHouseholdNumberPerTypeAllCells 
Business LANDUSE getCommercialSpaceOccupation AbstractAllCells<ISpace> IFloorSpaceAllCells 
Business LANDUSE getLandUseChanges Map<GridPoint, CLCover> ICLCoverSomeCells 
Developer LANDUSE getLandUseChanges Map<GridPoint, CLCover> ICLCoverSomeCells 
Infra-structure LANDUSE getAvailabilityOfMainRoads AbstractAllCells<Boolean> IBooleanAllCells 
Infra-structure LANDUSE getAvailabilityOfPublicTransport AbstractAllCells<Boolean> IBooleanAllCells 
Infra-structure LANDUSE getLandUseChanges Map<GridPoint, CLCover> ICLCoverSomeCells 
Infra-structure LANDUSE getSchoolSupply AbstractAllCells<Boolean> IBooleanAllCells 
Resident LANDUSE getTotalHouseholdNumber Map<GridPoint, Map<Householdtypes, IhouseholdNumber>> IHouseholdNumberPerTypeAllCells 
LANDUSE Lobbyist getLandUse AbstractAllCells<CLCover> ICLCoverAllCells 
Planner Lobbyist getGlobalPressure Map<T, Ipressure>, data T = Issuetypes | CLCover IPressureForXTable 
Planner Lobbyist getPendingProposals Set<Map<GridPoint, CLCover>> IProposalsSet 
Planner Lobbyist getSpatialPressure Map<GridPoint, Map<T, Ipressure>>, data T = CLCover IPressureForCLCoverAllCells 
Resident Lobbyist getSatisfaction Map<GridPoint, Map<E, Map<Issuetypes, Isatisfaction>>>, data E = 

Businesstypes | Householdtypes ISatisfactionPerIssueOfAgentAllCells 
Resident Lobbyist getTotalHouseholdNumber Map<GridPoint, Map<Householdtypes, IhouseholdNumber>> IHouseholdNumberPerTypeAllCells 
Business Planner getCommercialSpaceDemand AbstractAllCells<ISpace> IFloorSpaceAllCells 
Business Planner getProposalsNeedingPermission Set<Map<GridPoint, CLCover>> IProposalsSet 



Exporter Importer Interface Internal type Public type 
Business Planner getSatisfaction Map<GridPoint, Map<E, Map<Issuetypes, Isatisfaction>>>, data E = 

Businesstypes | Householdtypes ISatisfactionPerIssueOfAgentAllCells 
Developer Planner getProposalsNeedingPermission Set<Map<GridPoint, CLCover>> IProposalsSet 
Infra-structure Planner getProposalsNeedingPermission Set<Map<GridPoint, CLCover>> IProposalsSet 
LANDUSE Planner getLandUse AbstractAllCells<CLCover> ICLCoverAllCells 
Lobbyist Planner getGlobalPressure Map<T, Ipressure>, data T = Issuetypes | CLCover IPressureForXTable 
Lobbyist Planner getSpatialPressure Map<GridPoint, Map<T, Ipressure>>, data T = CLCover IPressureForCLCoverAllCells 
Lobbyist Planner getSupportForPlan Map<T, Ipressure>, data T = Map<GridPoint, CLCover> IPressureForXTable 
Resident Planner getSatisfaction Map<GridPoint, Map<E, Map<Issuetypes, Isatisfaction>>>, data E = 

Businesstypes | Householdtypes ISatisfactionPerIssueOfAgentAllCells 
Resident Planner getTotalHouseholdNumber Map<GridPoint, Map<Householdtypes, IhouseholdNumber>> IHouseholdNumberPerTypeAllCells 
Business Resident getBusinessPresence Map<GridPoint, Businesstypes[]> IBusinesstypesAllCells 
COST Resident getLandPriceIndex AbstractAllCells<IPriceIndex> ILandPriceIndexAllCells 
LANDUSE Resident getAvailabilityOfMainRoads AbstractAllCells<Boolean> IBooleanAllCells 
LANDUSE Resident getAvailabilityOfPublicTransport AbstractAllCells<Boolean> IBooleanAllCells 
LANDUSE Resident getLandUse AbstractAllCells<CLCover> ICLCoverAllCells 
LANDUSE Resident getSchoolSupply AbstractAllCells<Boolean> IBooleanAllCells 
LANDUSE Resident getVacantAccomodation AbstractAllCells <IHouseholdNumber> IHouseholdNumberAllCells 



The framework forces the respective sub-models of ABMland to implement the methods. 
E.g. the Lobbyist sub-model has to provide the two methods 
getPressurePerCellForPlannersByLobbyists and getPressureGlobalForPlannersByLobbyists, 
otherwise the framework will produce error messages and will not be compiled. At the 
beginning of the implementation process, programmers working on a single sub-model can 
insert these methods automatically into their models [by using the Eclipse command “add 
unimplemented methods” in their respective model class]. This procedure (1) helps 
programmers with their work as the expected results are clearly stated and (2) is necessary 
for the interaction. 

2.2 Agents & models

The ABMland framework distinguishes between agents and models. For each agent, Java 
classes for the respective agent and the model are needed (e.g. InfrastructureAgent.java 
and InfrastructureModel.java).

The main purpose of the model is to aggregate values of individual agents to export them to 
other models in ABMland, e.g. the infrastructure model aggregates values of different 
infrastructure agents. Therefore, other agents do not need exact information on how many 
infrastructure agents actually are implemented, but they simply rely on the infrastructure 
model to provide the information needed. Of course it is possible to ask the model to 
provide information for single agents, so no information is lost using the model – agent 
concept.

The main purpose of the agent is to represent persons, groups, or institutions and their 
decision processes. It is possible to implement different agent classes representing different 
types (therefore having different decision algorithms) or to simply implement one agent 
class with several agents that only differ in their attributes. 

2.3 Time & space

The actual framework of ABMland is independent of a concrete definition of space and time. 
However, programmers will have to specify a certain configuration for each different 
simulation run. Furthermore, a definition of space is necessary to make sure that 
interactions between agents as well as land uses have proper units and that agents are 
located correctly in space. The definition of space is realised using data for initialisation of 
ABMland.

With the current version, ABMland works on extended CORINE land cover classes provided 
by the European Environment Agency (http://www.eea.europa.eu/publications/COR0-
landcover) as land uses. However, other land use classes can easily be included. The spatial 
and temporal resolution needs to be defined during initialisation. Discrete time steps (called 
“tick” in Repast S) are used. 

Page 8



3. The Java framework
The ABMland framework consists of three main parts: (1) ABMland core functions, (2)
ABMland wrapper and (3) ABMland models. ABMland core and ABMland wrapper build the 
actual framework of ABMland.

(1) ABMland core encompasses all programming code which is necessary to couple several 
Repast S models in general. The core functions are provided by four different projects: 

• common-abmland
Commonly used framework classes which are specific for ABMland and the current 
simulation, but do not depend on Repast S. 

• abmlandcore
Commonly used framework classes which are very generic and can probably be used 
for another spatially explicit and coupled ABM. 

• common-repasts
Commonly used framework classes which (1) should not be changed and (2) directly 
depend on Repast S. 

• "repasts-legacy”
External Repast S libraries. 

The code of the packages common-abmland and abmlandcore is packed into .jar-files and it 
is bundled with common-repasts. Common-repasts is assembled as a plugin for the 
framework that Repast S uses.

(2) ABMland wrapper mainly fires up the Repast S GUI scenario view with some 
configuration data files, where runtime parameters such as the number of integrated 
models, which models are integrated, can be changed. Accordingly, individual programmers 
need to adapt the code.

(3) ABMland models (individual sub-models) are stored in respective folders and jar-
archives. The package abmland.mainctrl in common-repasts encompasses the Controllers 
for storing and updating information on land use and costs.

3.1 ABMland core

The core of ABMland consists of various packages which include all Java classes necessary 
to provide the framework for including all agent-based models in ABMland. These classes 
are independent of the concrete implementations and could be used for any other coupled 
agent-based model as well. 

Page 9



3.1.1 Relationship of agents and models

The general principle of ABMland is to enforce a certain, efficient chain of communication 
between agents: An agent of a certain implementation (e.g. infrastructure provider) asks its 
model for certain information, e.g. provided by residents. The model contacts a server 
which in turn asks the residents model, which asks its resident agents. This chain of 
communication has two major advantages: (1) The agent needing the information does not 
need to know the specific “name” or implementation of the other agents, and it does not 
even need to know if these agents are in fact part of the simulation or not. This feature is 
necessary if one wants to test a single model and not all models of ABMland. Therefore, one 
does not have to have Java code when testing a single model versus all models of ABMland. 
(2) If an agent needs aggregated information for several agents (e.g. several household 
types) it does not need to ask all resident agents and sum up the aggregated value on its 
own, but this agent lets the respective partner aggregate the values.

Page 10

Figure 2: Overview of ABMland core



3.1.2 Dummy models

This feature of ABMland is realized using so-called default implementations. At the moment, 
they are active if no specific model is implemented. Each implemented model extends a 
default implementation providing dummy values in case no concrete implementation for a 
specific model is available for a coupled simulation. This default implementation extends an 
interface that lists all the methods the model uses to export data. Servers forward the data 
to a coupled model. The server gets the information via the interface and either receives the 
data from the concrete model implementation or from the default implementation, if there is 
no concrete implementation available. 

3.1.3 Detailed package description

The files are sorted into these main packages: 

• abmland.common

• abmland.data

• abmland.mainctrl

• abmland.mainctrl.config

• abmland.models (interfaces)

• abmland.models.abstract_impl

• abmland.models.bindings

• abmland.models.config

• abmland.models.default_impl

• abmland.models.$AGENTNAME

• abmland.models.serve

• abmland.types (interfaces)

• abmland.types.impl

Page 11

Figure  3:  Concept  of  interacting  servers  with  residents  and  infrastructure  as  
example



3.1.3.a abmland.common

Contains classes mainly for handling data (generating, pre- and post-processing), bridging 
different interfaces (i. e. Repast S class usage) or data descriptions that do not fit directly. 

3.1.3.b abmland.data

Every quantifiable, enumeratable data fits here, when no furthermore requirements are 
given. Examples: “We have the following LU types...”  CLCover; “We distinguish 14 types→  
of households...”  Householdtypes; “Agents' method-executions (processes) can be→  
scheduled by these discrete priorities...”  Priorities.→

3.1.3.c abmland.mainctrl

Basically contains the same as abmland.models... packages, but more global controllers in 
their respect, as those special models access data from all the local agent controllers 
(models in our terms).

3.1.3.d abmland.mainctrl.config
Mainly configuration data handler classes for the global controllers and agents (LanduseConf 
etc.).

3.1.3.e abmland.types

Contains the data typically shared between the models, but is not captured by the Java-
builtin type Map or similar. In this folder you will find the specifications of that data only, 
interfaces in computer science terms. 

3.1.3.f abmland.types.impl

Sometimes it is needed to make instances of the shared data. For this task use the 
implementation classes of the above described interfaces, but always try to assign the 
created objects to the most generic interface having those object's properties completely 
specified. So you will have to track only one point (where the creation occurs), in case the 
implementation changes. The implementation classes are located in that package. 

3.1.3.g abmland.models

This package contains the models to use in your API-client code, which means e.g.: use 
IbusinessModel to return something from a Business implementation.

3.1.3.h abmland.models.abstract_impl

This package contains the abstract classes providing implementations not every 
implementation class of an arbitrary interface provides itself. Usually an abstract class 
leaves out those concretisations a client of the same interface should provide itself, like 
connection properties to a certain database or similar. All method concretisations are 
overwritable, if needed. The abstract implementations by default query a stochastic 
generator class for data.

3.1.3.i abmland.models.default_impl

This package contains default implementation templates for the different model cases. They 
are also used to demonstrate the usage of the server classes below, but query the real 
default implementations of other models (in case that an export is not implemented, 

Page 12



determined by the interface, I. e. IResidentModel). Example: If you create a class 
ResidentModel it should extend the DefaultResidentModel out of this package. This means 
that it implicitly implements IResidentModel, which other model implementations know 
about. 

Also they already show a basic usage pattern of the API: 

private static IDeveloperModel developermodelsrv = new FDeveloperModelServer( 
new DeveloperModelDefaultImpl());

What you see here is that you instantiate a special object the server 
(FDeveloperModelServer) for your implementation (which is DeveloperModelDefaultImpl 
here) and this all is connectable because all objects have the same base type 
(IdeveloperModel), which for your use case, completely describes the properties all these 
ojects have in common. You could i.e. plug a DeveloperMySpecialImpl in here, regarded it 
had the type IdeveloperModel. The FdeveloperModelServer is responsible for wrapping the 
other API clients calls to this object, i. e.: 

public final ISpaceMap getOfficeSpaceSupplyForBusiness() {
 return developermodelsrv.getOfficeSpaceSupplyForBusiness();
}

This calls getOfficeSpaceSupplyForBusiness() on the FdeveloperModelServer which could 
internally call an arbitrary method, i. e. getOfficeSpaceSupplyForBusiness() (the equal 
names are coincidence) on the object having the type IdeveloperModel. 

This way you can use an abstract class for your model, by letting it extend that and then in 
your source code use those abstract classes properties explicitly with the specifier super, 
i. e. (see AbstractBusinessModel): 

super.getOfficeSpaceSupplyForBusiness() 

to delegate the responsibility to request the correct developer model server to the abstract 
class (for implicit usage leave off your implementation and the prefix “super.”).

3.1.3.j abmland.models.config
Configuration handler and reader implementation classes also for individual agents.

3.1.3.k abmland.models.serve

This package contains servers (delegate implementations) for the different model types. Use 
them when instantiating a certain model type. Their constructor argument is your concrete 
implementation of a certain model type. Only be sure to use the server with the same most 
common base type your implementation has. 

3.1.3.l abmland.models.$AGENTNAME

Contain your implementation of the agents canon.

3.1.3.m abmland.models.bindings

Contain the runtime classes for actually running a simulation with Repast S – basically the 
MainContextBuilder.

Page 13



3.1.4 Scheduling

The sub-models of ABMland need to be scheduled in order to ensure a correct flow of data 
during the simulation. The concept for scheduling the models uses the scheduled methods 
annotation of Repast S. This annotation @ScheduledMethod provides Repast S with the 
information on when to trigger a certain method.

For instance, the scheduling for the compute method of one specific model should look like 
this:
    @ScheduledMethod (start = 2, interval = 1.0, priority = 998)
    @Override
    public void compute() {
        // compute   
    }
Accordingly, compute() starts in the second tick (in the first one, only initialisation takes 
place), goes on in all following steps, and has a priority of 998.

1st step priority Model & method 
1 ScheduleParameters.FIRST_PRIORITY controllers: init()
1 Double.MAX_VALUE - 1 sub-agent models: init() 
2 ScheduleParameters.FIRST_PRIORITY controllers: getData() 
2 1000 controllers: compute()
2 999 sub-agent models: getData() 

2 998 schedule controller: 
shallCompute() *

Table 2: Listing of the starting points and priorities of all scheduled methods.

(*)  The  abmland.mainctrl.ScheduleController  also  has  a  @ScheduledMethod-annotated 
method  shallCompute(),  triggered  according  to  Table  5.  The  sub-agent  models  have 
@Watch-annoted methods computeXYZ() where XYZ stands for the level of their ability to 
decide  on  things.  Those  @Watch-annotations  are  configured  such  that each  of  the 
annotated methods is triggered when each of both shallCompute triggers a state variable 
change in the schedule controller and the agent class with the @Watch-annotation has the 
correct level of competence to make a decision, checking of which also is configured directly 
within the annotation data.

So one could say this state variable is watched for togglement. If a toggle occurs and one of 
the methods watching for  that  togglement belongs to the agent with sufficient  decision 
competence, computation inside the model may begin/is triggered.

3.1.5 ABMland-specific data types

A main feature of ABMland is the usage of specific data types. In order to minimise errors in 
communication between different agents, data types are specified for each communication 
interface. Thus, the models are able to show errors, if a corrupt value is being exported, 
e.g. a negative number of households per cell. Consequently, agents do not exchange pure 
Float, Integer or String values, but specific data types. Definitions of all data types are listed 
in the following table.

Page 14



Data type Type unit min max 
ISupplyPerDemand float supply/demand 0 1,000,000 

CLCover 

enumeration of 
extended CORINE 
land cover 
classes 

land cover type not applicable not applicable 

ISpace integer square meter 0 10,000 
IPressure float - -1 1 
ISatisfaction float - 0 1 
ILabourDemand integer no of jobs 0 10,000,000 
IHouseholdNumber integer no of households 0 100,000 
IMoney integer Euro 0 10,000,000 

IPlan 

enumeration of 
extended CORINE 
land cover 
classes 

land cover type not applicable not applicable 

Table 3: Definitions of all data types.

All these types have an optional constructor parameter (which is set to false by default), 
signalling if the type is instantiated outside the case study area, requiring the flag to be set 
to true in that case otherwise to false. By this technique we are able to distinct between 
different  meanings  of  Not-a-Number  values,  handling  them as  failure  for  in-case-study 
locations, for all  other locations handling them in similar  manner as outside locations in 
ESRI Raster files are encoded.

The following table depicts the extended land cover classes based upon CORINE land cover.

Code Name Relationship to CORINE 
1901 Town centre CLC 111 /112  / 141  / 142 
1902 19th century tenement CLC 111 /112  / 141  / 142 
1903 Prefab multi-storey CLC 111 /112  / 141  / 142 
1904 Multi-storey housing CLC 111 /112  / 141  / 142 
1905 Single house, villa CLC 111 /112  / 141  / 142 
1906 Park CLC 111 /112  / 141  / 142 
1907 Urban forest CLC 111 /112  / 141  / 142 
1908 Sports field CLC 111 /112  / 141  / 142 
1909 Allotment CLC 111 /112  / 141  / 142 
1910 Hospital CLC 111 /112  / 141  / 142 
1911 School CLC 111 /112  / 141  / 142 
1912 Other municipal buildings CLC 111 /112  / 141  / 142 
121 Industrial or commercial units CORINE 
122 Road and rail networks and associated land CORINE 
123 Port areas CORINE 
124 Airports CORINE 

Page 15



131 Mineral extraction sites CORINE 
132 Dump sites CORINE 
133 Construction sites CORINE 

Table 4: Depiction of the extended land cover classes  which are used in ABMland. For all  
non-artificial  surfaces  of  CORINE  land  cover,  the  CLC  codes  are  used.  Note:  CLC  111  
Continuous  urban fabric  /  CLC 112 Discontinuous  urban fabric  /  CLC 141 Green urban  
areas / CLC 142 Sports and leisure facilities.

3.2 ABMland wrapper

ABMland wrapper consists of the class MainContextBuilder. It provides the master context 
participation role (see repast.simphony.essentials.RETest.setUp() (TM)). It may also directly 
instantiate the sub-contexts (e. g. model contexts) for a simulation if no model.score is 
used.

There is also TestMain_2 (in the test class path scope package abmland.frontends.cli) - for 
start an overall Repast S simulation run without the GUI.

Furthermore, different versions of the following configuration data files tuple are necessary:

• .rs folder

• .launch folder

The files in these are necessary to start models using the ABMland framework in differently 
configured modes,  which  we call  Repast  S -scenario.  Thus,  it  depends on the concrete 
implementation of the ABMland framework and is not provided with the framework itself. 
However, the toy model implementation also encompasses a wrapper to build and run the 
simulation. See the toy model documentation for more information.

3.2.0.a .rs folder
This consists of the files model.score, extended_params.xml, scenario.xml and further xml-
files to configure the GUI and model output in Repast S. 

3.2.0.b .launch folder
This is the file directly configuring the Java invocation from inside Eclipse to fire up the 
Repast S GUI with our model classes. 

3.3 Implementing a single model and respective agents

In Repast S, two basic ways to implement agents are possible, namely using Java classes or 
using Groovy modelling. Groovy agents can be generated using a graphical agent editor 
provided by Repast S. But Groovy agents are hard to integrate into a more complex GIS 
model, so Repast S developers recommend using Java classes to build GIS agents. 
Therefore, the ABMland framework relies on Java classes as well. In the ABMland framework 
empty templates of all necessary classes are provided.

For a single agent, four classes are provided:   

1. [Agent-name]Agent.java
If you would like to create a new empty agent, create a new Java class and add 

Page 16



“implements I[Agent-name]” after the class name. Afterwards, hit the key “Ctrl” in 
parallel with the key “1” (applies for the recommended development tool Eclipse), 
click on “add unimplemented methods” to create all necessary method stubs. 

2. [Agent-name]AgentContext.java
In this class, the context needed for Repast S is created. In this class, paths to and 
names of shapefiles for initialising the agents are specified. At least for resident 
currently there is a default implementation of the context already in common-repasts 
which you may use. For your own agents implementations you needed to configure 
your agents' class name in the file config/params/ResidentConf.xml.

3. [Agent-name]Model.java
The model is responsible for communicating with other sub-models. Therefore, all 
export data need to be filled (see empty method stubs). No methods for importing 
data are provided, because they are already implemented in the respective abstract 
model class provided by the framework. That means that you do not have to write 
your own importing methods and therefore, you do not need to know where the 
import values actually come from. But you can use the import values nevertheless. 
Example: The Business model needs to know if it has a building permission. The 
method “getBuildingPermissionForBusiness()”, the Planning model provides against 
the other models, can be used by the Business model inside one of its methods, to 
ask the Planning model, therefore providing the Business agents with the resulting 
data.
If you would like to create a new empty model, create a new Java class and add 
“extends Abstract[Agent-name]ModelImpl”, afterwards add unimplemented 
methods. 

4. [Agent-name]ModelContext.java
In this class, the context needed for Repast S is created. In this class, the model 
belonging to the agent type, is added to the context. For resident there is a default 
implementation of the context already in common-repasts as an example. 

3.3.1 Building the model

The model class is responsible for summarizing the information provided by all agents of 
this model to export the information to other agents in ABMland. Therefore, it is forced to 
implement the methods which are needed by other agents’ models in ABMland to get 
information. In Eclipse, right-click on the name of the class (with the marked errors), and 
choose “add unimplemented methods” to include them into your code. These methods need 
to return the values you want to share with other agents in ABMland, so they are the most 
important feature of the model.

Furthermore, the model needs to implement the scheduling. 

3.3.2 Building agents

In the agent class, the decision process of the individuals / groups / organisations is 
represented. To avoid having a very large agent class including all aspects of the decision 
making process, you can create new Java classes to outsource code.  

Page 17



4. Installation
The aim of this section is to describe all necessary steps before using the ABMland 
framework. NOTES:

1. All paths, files and so on relate to a tested example configuration with Windows 
XP(TM) and need to be adapted to the local installation by the user. This also relates 
to version numbers, vendors, …

2. The ABMland framework itself cannot be run independently. Instead, one uses it to 
implement specific agent-based models. See the toy model provided on 
www.ufz.de/abmland for an example!

4.1 Installation of Eclipse, Repast S and other resources
4.1.1 Installation 

Assuming you installed Eclipse –  http://wiki.eclipse.org/Older_Versions_Of_Eclipse, choose 
the “Eclipse Classic 3.5.2” link for the download – with the following set of plugins (you will 
have to choose things matching your OS architecture though):

Name Version Id

Eclipse SDK 3.5.2.M20100211-1343 org.eclipse.sdk.ide

GroovyFeature 1.5.7.20081120_2330 org.codehaus.groovy.eclipse.
feature.feature.group

Maven Integration for Eclipse 
(Required)

0.10.2.20100623-1649 org.maven.ide.eclipse.feature
.feature.group

repast.simphony_feature 01.02.00 repast.simphony_feature.feat
ure.group

Table 5: Installation packages.

For the selection of used update sites we used the following bookmarks file (import in 
Eclipse: “Help >> Install New Software... >> Clicking on 'Available Software Sites' link >> 
Import...”):

<?xml version="1.0" encoding="UTF-8"?>

<bookmarks>

   <site url="http://download.eclipse.org/releases/galileo" selected="true" 
name="Galileo"/>

   <site url="http://m2eclipse.sonatype.org/sites/m2e" selected="true" 
name="m2eclipse"/>

   <site url="http://mirror.anl.gov/pub/repastsimphony/site.xml" selected="true" 
name="Repast Simphony"/>

   <site url="http://download.eclipse.org/eclipse/updates/3.5" selected="true" name="The 
Eclipse Project Updates"/>

Page 18

http://wiki.eclipse.org/Older_Versions_Of_Eclipse
http://www.ufz.de/abmland
http://www.eclipse.org/downloads/packages/eclipse-classic-352/galileosr2


</bookmarks>

For further update site information see 
“http://repast.sourceforge.net/docs/development.html” (Simphony, remove the check mark 
from “Group items by category” when installing), 
“http://www.polarion.com/products/svn/subversive/download.php” (Subversion client) and 
“http://m2eclipse.sonatype.org/installing-m2eclipse.html” (Maven integration). Some 
features not mentioned in the above list should be installed automatically by Eclipse 
package management mechanism. You need a recent version of Java 
(http://java.sun.com/javase/downloads/widget/jdk6.jsp) - best match is version 1.6, we 
have 1.6.0_21.

4.1.2 Adaptations
In preparation of the further steps needed, open the sample.eclipse.ini file in the project-
setup working copy to see what your eclipse.ini, located where you installed Eclipse – i. e. 
“/java/eclipse”  or  “c:\program  files\eclipse  galileo\eclipse”  should  contain.  The  needed 
entries in the eclipse.ini are somewhat similar to:

-vm
h:/jdk1.6.0/bin/javaw.exe

…

-vmargs
-Denv.M2_RUNTIME=C:\Program Files\apache-maven-2.2.1

Important here is that the javaw executable from the JDK is used, not the one from the JRE 
(JDK is the development environment, JRE the runtime environment bundle). Make sure 
that you use and do not duplicate a potentially existing “-vmargs” entry here. Important - 
at least we recognized issues when running Mirosoft Windows Vista - are the upper case 
variants of the installation paths (used here: the JDK one and the Maven one) as they 
usually appear in a cmd.exe application window, when using “cd C:\Program Files\apache-
maven-2.2.1” therein.

4.2 Installation of the ABMland framework
ABMland creates plugins to be run within Repast S. For running a simulation, common-
repast s, wrapper and all sub-models to be included have to be plugins. In the following, the 
sequence of setting up a simulation is described.

4.2.1 Creating a plugins folder 
A folder is needed to contain all plugins created from ABMland. Thus, create a folder for 
your private plugins, such as E:/test/myplugins/plugins.

4.2.2 Include common-repasts as plugin 
1. Move the folder common-repasts-1.0.2 into your private plugins folder.

2. Download  the  following  missing  libraries  as  jar-files  into  the  lib-folder  of  the 
common-repasts plugin:

Library Location

org.functionaljava:fj:jar:2.12 http://functionaljava.googlecode.com/svn/maven/org/funct
ionaljava/fj/2.12/fj-2.12.jar

Page 19



com.google.collections:google
-collections:jar:1.0 

http://ftp.cica.es/mirrors/maven2/com/google/collections/
google-collections/1.0/google-collections-1.0.jar

java-esri-
ascii:javaRasters:jar:0.0.1.2 

http://java-esri-ascii.googlecode.com/svn/maven2/java-
esri-ascii/javaRasters/0.0.1.2/javaRasters-0.0.1.2.jar

junit:junit:jar:4.7 http://repo1.maven.org/maven2/junit/junit/4.7/junit-
4.7.jar

net.sourceforge.jexcelapi:jxl:j
ar:2.6 

http://repo1.maven.org/maven2/net/sourceforge/jexcelapi
/jxl/2.6/jxl-2.6.jar

piccolo:piccolo:jar:1.0.3 http://repo1.maven.org/maven2/piccolo/piccolo/1.0.3/picc
olo-1.0.3.jar

org.simpleframework:simple-
xml:jar:2.3.1 

http://repo1.maven.org/maven2/org/simpleframework/sim
ple-xml/2.3.1/simple-xml-2.3.1.jar

3. Rename  the  jar-files  to  match  the  names  given  here  (thus:  without  version 
numbering):

1. fj.jar

2. google-collections.jar

3. javaRasters.jar

4. junit.jar

5. jxl.jar

6. piccolo.jar

7. simple-xml.jar

4.2.3 Include wrapper as plugin and as a project 

If you want to use the framework for implemented agent-based models, you need to bundle 
all models to run them within Repast S. In the toy model, we provide such an example for 
bundling called “wrapper”.  See the documentation of the toy model for installation.

4.2.4 Download maven helper file

To ease up your work in Eclipse, we prepared one launch configuration file. They are usually 
stored on your machine in a folder pointing to “$
{workspace_loc}/.metadata/.plugins/org.eclipse.debug.core/.launches”, where “$
{workspace_loc}” points to the location, where your workspace used by Eclipse is created. 

The launch file is located in the framework-install.zip and needs to be copied to your 
.launches folder. The new launcher configuration should automatically appear below the 
“External tools” knob. In case you changed something directly in the launch file with the 
editor, you might have to restart Eclipse first to have Eclipse seen your changes.

The working copy is made easily. If your workspace is still unused, you first have to create 
the .launch-folder. For this, once click the Run  “External Tools Configurations...” button→  
and in the appearing dialog, double-click on the “Program” tree entry. Now your .launches 
folder should be there. Open workspace folder and therein navigate to 
“.metadata/.plugins/org.eclipse.debug.core/.launches”. Copy the .launch configuration files 
vice versa from the working copy into the latter opened “.metadata/.../.launches” folder. 
Restart Eclipse.

Page 20



4.2.4.a [m2eclipse] clean compile + has Simphony(TM) deps
If you changed something in your project, which has dependencies somehow on Repast S – 
e. g. you're using “repast.*” imports in your sources... or you import something which has 
Repast S dependencies itself - and now wanted to check it, use that launch file to compile 
with the dependencies set up for Maven. Assumes you once set up the “$repast” variable in 
the launch dialog (“Main” tab, “Parameter Name, Value” table), but its current setting 
should suffice in most cases. 

4.3 Adapt system paths
4.3.1 Include common-repasts into configuration
4.3.1.a Adapt manifest.mf

Modify the  META-INF/MANIFEST.MF file in the repast.simphony.gui plugins folder (e. g. on 
our system in: E:\Programme\Eclipse Galileo\eclipse\plugins\repast.simphony.gui_1.2.0).

Add the following text before the line “Bundle-Vendor: %providerName”:

Require-Bundle: 
repast.simphony.core,repast.simphony.score,repast.simphony.score.runtime,saf.core.ui,rep
ast.simphony.runtime,libs.piccolo;visibility:=reexport,common-repasts;visibility:=reexport

4.3.1.b Adapt plugin_jpf.xml
Modify the plugin_jpf.xml file in the folder repast.simphony.gui plugins (e. g. on our system 
in: E:\Programme\Eclipse Galileo\eclipse\plugins \repast.simphony.gui_1.2.0).

After </attributes>, include the following:

  <requires>

    <import plugin-id="saf.core.runtime"/>

    <import plugin-id="saf.core.ui"/>

    <import plugin-id="repast.simphony.essentials"/>

    <import plugin-id="repast.simphony.groovy"/>

    <import plugin-id="repast.simphony.score"/>

    <import plugin-id="repast.simphony.score.runtime"/>

    <import plugin-id="libs.piccolo"/>

    <import plugin-id="common-repasts"/>

  </requires>

4.3.2 Inform Repast S about location of plugin folder
“repast.simphony.gui_1.2.0”  (in  our  example  case  at  E:\Programme\Eclipse 
Galileo\eclipse\plugins) is the folder for the repast.simphony.gui plugin. Only the plugins 
known there are seen by the Repast S class loader when the Repast S GUI is started. We 
use a folder separate from the Eclipse installation, so it is required to edit several files.

Page 21



4.3.2.a Adapt boots.properties
The  boot.properties file in the folder repast.simphony.runtime_1.2.0 (you'll find it inside 
your Eclipse installations plugins folder) needs to be changed to include the plugin folder. 
For our example folder E:/test/myplugins the entry looks like this:

pluginFolders = ../,E:/test/myplugins/plugins

4.3.2.b Adapt Repast S launch files
The launch file in the wrapper needs to be adapted. See the documentation of the toy model 
for the configuration.

4.3.2.c Adapt Repast S xml files
In some Repast S-related xml files, absolute paths are given. This refers to all output that is 
stored to the disk (thus: NOT the displays and graphs, but the loggers). This is configured in 
the wrapper part of the simulation. Check the toy model documentation on this.

4.4 Optional: Update plugins
If you have made changes to either wrapper (e.g. changing the scenario settings) or to one 
of the agents, you have to update the plugins in your private plugins folder. Maven is used 
to handle creating plugins and putting them into the necessary folders. 

4.4.1 Export wrapper as plugin
1. Use the  Run   Configurations  menu to  generate  the  classes  by  invoking the 

`[m2eclipse] clean compile + has Simphony(TM) deps` goal once to generate 
the classes in the appropriate workspace folder prepared for copying. 

2. In the folder META-INF of the project,  open the manifest.mf with the Eclipse 
manifest editor. 

3. On the “Overview” page, press the „export“-button.

4. On the options page, un-select „package plug-ins“.

5. On the destinations page, give the directory as one folder above your private 
plugins folder.

Now, an updated plugin sould be built in your private plugins folder. Check that resources 
are also copied into the plugin (e. g. the .rs folder was copied to wrapper/target/classes).

4.4.2 Export an agent as plugin 
Mark the agent project and choose the [m2eclipse] clean compile + has Simphony(TM) 
deps configuration to run as explained for wrapper. 

After exporting it you should see the new plugin (a new folder e. g. 
“abmlandplanner_0.0.1”) in the private plugins folder. 

Page 22

file:///E:/test/myplugins


5. Running a simulation
The Repast S GUI provides you with obvious transport buttons to initialise, completely run 
or successively step through, pause and reset a simulation round. Repast S uses xml files 
for the configuration of a simulation. 

Each time code was changed (e.g. for an agent), the respective classes have to be created 
and included in a new plugin. Thus, the steps described above need to be done before a 
simulation can be run. 

In the toy model,  launch files and scenario configurations are already provided and are 
documented in the toy model documentation. In the following, a general description of files 
to be used for configuring Repast S is given.

Page 23

Figure 5: Exporting sub-models as plugins

Figure 4: Plugins folder with common repasts, abmlandwrapper and sub-
models



5.1 Repast S launchers

In the folder launchers of the wrapper project, xml files with launch configurations for 
Repast S are stored. Brief comprehension, check that:

• "Main" tab: Project name is [project name]; Main class = 
repast.simphony.runtime.RepastMain

• "Arguments" tab: Program arguments are set to i. e.: 
    "${workspace_loc:[project name]}/[model.score's folder]"

• "JRE" tab: Leave on defaults

• "Classpath": Leave on defaults

• "Source" tab: Leave on defaults

• "Environment" tab: -

• "Common" tab:  Leave on defaults

Page 24

Figure 6: Run configurations in Eclipse.



5.2 Repast model.score 
If you want to include / exclude agent sub-models in a simulation, the model.score file 
needs to be changed. If a sub-model is not included in the model.score, all export data to 
be provided by this sub-model comes from its default implementation.

Every sub-model to be included has to have basically two entries below the ABMlandModels 
node.  We  will  now  show  the  settings  for  one  of  those  by  the  example  of  a  default  
implementation  of  the  Resident  agent,  but  only  the  ModelContext  side,  because  the 
AgentContext side is fully analogue to it. The entries are cascaded as follows, assuming the 
names of the implementing Java files (as is the same for the generated class files) are the 
same (if you use different class names instead, that is no problem, simply use the Show 
Advanced button described above and customise the “Class Name” field).

Sample view of file *.rs/model.score in the Repast S Model Editor, expanded:

    ABMlandModels
        ResidentModelContext
            ResidentModel

Now  the  look-like  description  for  the  remaining  levels,  shown  only  for  the 
ResidentModelContext, because this you will have to edit manually. Things you may want to 
change are “Package” and “Class Name”, depending on your agent profile's setup, though 
you can leave the proposed defaults  here for  compatibility  reasons (the  things  said  on 
naming consistency applies too, especially for ResidentModelContext. Base Path is empty as 
it is derived from the root contexts one):

Sample  Properties  view  of  file  *.rs/model.score,  the  ResidentModelContext  element 
expanded:

    IDs
        ...
        Label:: ResidentModelContext
        ...
    Implementation
        Base Path::
        Bin Directory:: common-repasts_0.0.1\target\classes
        Class Name:: ResidentModelContext
        ...
        Mode:: LOAD
        Package:: abmland.models.default_impl
        ...

Everything you add below this node, will derive the parent node's settings, so you have 
nothing  more  to  customize,  after  simply  adding  the  ResidentModel  and  ResidentAgent 
respectively.

Page 25



5.3 Repast S scenario settings
The configuration of a single simulation run is stored in a xml file. The file scenario.xml is 
stored in a folder *.rs directly under the abmlandwrapper project folder. In terms of the 
Repast S implementation, the initial class of a model is referred to as a “Data Loader”, so 
we can say the data loader of the model and its name (the “context” element in the file) are 
declared in scenario.xml, where the real name of the class realising the data loader, is 
referred  to  over  an  additional  file  i.  e.  “repast.simphony. 
dataLoader.engine.MainContextBuilder.xml”, as you can see in the example below. This file 
only contains an element “string” with the fully qualified class name of the data loader 
realization, e. g.:

Sample  “src/main/resources/common-scenario-files/repast.simphony.dataLoader.  Engine. 
MainContextBuilder.xml” files contents:

<string>abmland.models.bindings.MainContextBuilder</string>

Furthermore, displays to be used for output during runtime can be included into this file 
(see below). A simple, running scenario.xml file would look like (assumed is that the files 
named “repast.simphony.action.Display[agentname]Agent.xml” exist):

Page 26

Figure 7: Model score with ResidentModel.



Sample  *.rs/scenario.xml"  files  contents  (replace  … with  /abmlandwrapper/src/main/ 
resources/common-scenario-files/):

<?xml version="1.0" encoding="UTF-8" ?>
<Scenario>
<repast.simphony.dataLoader.engine.ClassNameDataLoaderAction 
context="ABMlandModels" 
file="...repast.simphony.dataLoader.engine.MainContextBuilder.xml" />
<!-- Display for one agent follows here -->
<repast.simphony.action.display context="ResidentModelContext"

file="...repast.simphony.action.DisplayResidentAgent.xml" />

</Scenario>

The string above in the xml files xpath “Scenario/repast.simphony.dataLoader. 
engine.ClassNameDataLoaderAction” – there the “context” attributes value – should be 
literally the same as the string you gave the label attribute in the root node of the 
model.score file. The same applies for the other “context” attributes values.

These xml files can easily be adapted: Hit “Run >> Run Configurations...” of Eclipse. The 
following list gives an overview where the corresponding ABMland-configuration files can be 
found that correspond to the Repast S files.

5.3.0.a repast.simphony.action.Display*
Declared  in  xml  configuration  files  included  in  *.rs/scenario.xml  (i.  e. 
src/main/resources/common-scenario-files/repast.simphony.action.Display*Agent.xml etc.)

5.3.0.b repast.simphony.chart.engine.*
Declared  in  xml  configuration  files  included  in  *.rs/scenario.xml  (i.  e. 
src/main/resources/common-scenario-files/repast.simphony.chart.engine.*Chart*Agent.xml 
etc.)

5.3.0.c repast.simphony.data.engine.*
Declared  in  xml  configuration  files  included  in  *.rs/scenario.xml  (i.  e. 
src/main/resources/common-scenario-
files/repast.simphony.data.engine.DataSet*Agent.xml etc.)

5.3.0.d repast.simphony.data.logging.outputter.engine.Outputter*
Declared  in  xml  configuration  files  included  in  *.rs/scenario.xml  (i.  e. 
src/main/resources/common-scenario-
files/repast.simphony.data.logging.outputter.engine.Outputter*Agent.xml etc.).

5.3.0.e repast.simphony.dataLoader.engine.*
Declared in xml configuration files included in *.rs/scenario.xml (i. e. 
src/main/resources/common-scenario-files/repast.simphony.dataLoader.engine.*.xml etc.)

5.4 Displays
Graphical outputs during runtime are controlled using the Repast S GUI (see e.g. tutorials 
on http://repast.sourceforge.net/docs/tutorial/SIM/index.html). It is possible to choose 

Page 27

http://repast.sourceforge.net/docs/tutorial/SIM/index.html


attributes in order to show them on a map [Display]. Furthermore, graphs to summarise 
simulation results can be defined [Graph].

In the data structure provided, settings are stored in the "scenario.xml" (located in the 
"models.rs" folder of your "RepastS" project). Displays are defined in the respective xml 
files. These settings can be edited by changing the file or by changing settings in the "GUI" 
and saving them (disk symbol).

5.5 Using Repast S for exporting time series
Repast S provides tools to save tabular text files for analysing time series. These text files 
have as many rows as time steps (ticks). If data are exported for agent types, the number 
of rows equals the number of agents multiplied with the number of ticks. The user can 
specify the columns.  These colums can store one value per time step. This means e.g. 
values for all cells of a grid cannot easily be stored like that. This tool is rather appropriate  
for storing values of a single agent or the whole simulation area. See also the Repast S 
reference. The file scenario.xml controls this procedure.

To use the Repast S tools, one needs:

1. a data set

2. a data outputter

The scenario.xml file contains links to single xml files with the information regarding data 
sets and loggers. In general, the single xml files can be either changed using the xml files 
or using the Scenario tree in the Repast S GUI.

In ABMland,  it  is  strongly recommended to solely use the xml files themselves, 
because otherwise, the Repast S GUI will  rename all  xml files in the models.rs 
folder.

In the data set, the values which should be exported are specified. The exported values 
must be delivered by the respective model / agent class in a public method which provides 
a single value for a given agent/model in a certain time step. Repast S annotation can be 
used in order to facilitate the usage. In the data outputter, the name of the data set to be 
exported as well as the values are stated, together with the name of the output file and the 
value  delimiters.  The  ResidentModel  below  has  a  method  called  mayCompute()  whose 
values are exported in each time step:

public class ResidentModel extends AbstractResidentModelImpl implements
        DataListener {
    ...
    @Parameter(displayName = "May Compute", usageName = "mayCompute")
    public boolean mayCompute() {
        return mayCompute;
    }
    ...
}

The corresponding data set looks like this:

<repast.simphony.data.engine.DefaultDataGathererDescriptor>
  <name>DataSetResidentModel</name>
  <dataSetId class="string">ResidentModel</dataSetId>
  <scheduleParameters>

Page 28



    <start>1.0</start>
    <interval>1.0</interval>
    <priority>-Infinity</priority>
    <duration>-1.0</duration>
    <frequency>REPEAT</frequency>
  </scheduleParameters>
  <dataMappingContainer 
class="repast.simphony.data.logging.gather.DefaultDataMappingContainer">
    <nameMappingTable>
      <entry>
        <string>Tick</string>
        <repast.simphony.data.logging.gather.DefaultTimeDataMapping/>
      </entry>
      <entry>
        <string>mayCompute</string>
        <repast.simphony.data.logging.gather.MethodMapping>
          <method>
            <class>abmland.models.resident.ResidentModel</class>
            <name>mayCompute</name>
            <parameter-types/>
          </method>
        </repast.simphony.data.logging.gather.MethodMapping>
      </entry>
    </nameMappingTable>
    <mappingNameTable>
      <entry>
        <repast.simphony.data.logging.gather.MethodMapping 
reference="../../../nameMappingTable/entry[2]/repast.simphony.data.logging.gather.Metho
dMapping"/>
        <string>mayCompute</string>
      </entry>
      <entry>
        <repast.simphony.data.logging.gather.DefaultTimeDataMapping 
reference="../../../nameMappingTable/entry/repast.simphony.data.logging.gather.DefaultTi
meDataMapping"/>
        <string>Tick</string>
      </entry>
    </mappingNameTable>
  </dataMappingContainer>
  <aggregateContainer 
class="repast.simphony.data.logging.gather.DefaultAggregateDataMappingContainer">
    <nameMappingTable/>
    <mappingNameTable/>
    <alternatedNameTable/>
    <nameAlternatedTable/>
  </aggregateContainer>
  <agentClass>abmland.models.resident.ResidentModel</agentClass>
</repast.simphony.data.engine.DefaultDataGathererDescriptor>

And the outputter like this:

<repast.simphony.data.logging.outputter.engine.DefaultFileOutputterDescriptor>
  <name>OutputterResidentModel</name>
  <outputterFactory 
class="repast.simphony.data.logging.outputter.engine.DefaultFileOutputterDescriptor$1">
    <outer-class reference="../.."/>
  </outputterFactory>

Page 29



  <dataSetHandler>
    <dataSets>
      <string>ResidentModel</string>
    </dataSets>
  </dataSetHandler>
  <streamHandler>
    <columns>
      <string>Tick</string>
      <string>mayCompute</string>
    </columns>
  </streamHandler>
  <isBatchAction>false</isBatchAction>
  <dataSetId class="string">ResidentModel</dataSetId>
  <fileName>output/ResidentModelOutput.txt</fileName>
  <insertTimeToFileName>true</insertTimeToFileName>
  <appendToFile>false</appendToFile>
  <writeHeader>true</writeHeader>
  <formatType class="repast.simphony.data.logging.outputter.LMDelimitedFormatter">
    <streamHandler>
      <columns/>
    </streamHandler>
  </formatType>
  <delimiter>;</delimiter>
</repast.simphony.data.logging.outputter.engine.DefaultFileOutputterDescriptor>

Exports for models and agents can be included easily by:

• copying and adapting the existing xml files for data set and outputter and

• including the names of these xml files into the scenario.xml.

5.6 Logging
The  log4j-framework is  used to  organise  logging  information  of  all  simulation  runs.  In 
abmland-wrapper, two files mainly organise the logging-properties:

• MessageCenter.log4j.properties: organises logging levels and output into log files

• logging.properties: which models' output should be stored to log file on local disc?

Log-files are stored in [plugins-folder]\[wrapper-plugin]\target\classes\logs.

Page 30



6. Data for initialisation
To use ABMland, some initialisation data are necessary. This refers to

• common initialisation as well as

• data for initialising agents. 

ABMland uses the standard ESRI ascii file format for maps, with the header specifying the 
raster and values separated by spaces only. Data to initialise specific agents/models can be 
used in ABMland as well. 

Data  to  initialise  the  overall  framework are  stored  in  the  folder  common-repasts/ 
src/main/resources/config. The minimum requirement for the framework to run is:

• Spatially explicit maps (folder .../maps/...)

◦ A land use map

◦ A map with land prices

◦ A map with an initial distribution of households

• Parameter configurations (folder .../params/...)

◦ land use: location and name of the land use map, attributes of the land cover 
classes specified for ABMland (LanduseConf.xml)

◦ prices: location and name of the land prices map (MarketConf.xml)

◦ maps in general: extent (MiscConf.xml)

◦ households: location and name of the household map (ResidentConf.xml)

To facilitate the organisation of different initialisation files depending on different scenario 
configurations, the following scheme for searching for data was implemented: Both maps 
and parameter xml-files are organised in sub-folders following the pattern [case study]/
[start year]. Data are provided for an example grid with 30 by 30 cells and a start year of 
2010.  Thus,  the  map  for  initial  land  use  is  stored  under  common-
repasts/src/main/resources/config/maps/GRID30BY30/2010/toylanduse30_30.asc.  These 
settings are stored in the file extended_params.xml in the .rs-folder of abmland-wrapper.

Explanations  of  the  data  already  provided  can  be  found  in  the  ABMland  toy  model 
documentation.

Page 31



7. Adapting the framework
The ABMland tool can be adapted to (a) include other models and/or (b) data types and/or 
(c) different case studies. For (a), users have to 

• modify the model.score file of their Repast S simulation project,

• for each new model implement a default implementation, a server and an interface, 

• add two context classes (for model and agent). 

To (b) include new data types, they need to be added with annotated boundaries into the 
respective package. 

To (c) use another case study, users have to 

• include  the  name  of  the  case  study  in  the  file  CaseStudy.java  (common-
abmland),

• add  all  necessary  initialisation  files  using  the  pattern  described  above  into 
common-repasts and the individual agent models,

• include the new case study in extended_params.xml in the .rs-folder of wrapper.

Page 32


	1. Introduction
	2. Conceptual approach
	2.1 Interactions
	2.2 Agents & models
	2.3 Time & space

	3. The Java framework
	3.1 ABMland core
	3.1.1 Relationship of agents and models
	3.1.2 Dummy models
	3.1.3 Detailed package description
	3.1.3.a abmland.common
	3.1.3.b abmland.data
	3.1.3.c abmland.mainctrl
	3.1.3.d abmland.mainctrl.config
	3.1.3.e abmland.types
	3.1.3.f abmland.types.impl
	3.1.3.g abmland.models
	3.1.3.h abmland.models.abstract_impl
	3.1.3.i abmland.models.default_impl
	3.1.3.j abmland.models.config
	3.1.3.k abmland.models.serve
	3.1.3.l abmland.models.$AGENTNAME
	3.1.3.m abmland.models.bindings

	3.1.4 Scheduling
	3.1.5 ABMland-specific data types

	3.2 ABMland wrapper
	3.2.0.a .rs folder
	3.2.0.b .launch folder

	3.3 Implementing a single model and respective agents
	3.3.1 Building the model
	3.3.2 Building agents


	4. Installation
	4.1 Installation of Eclipse, Repast S and other resources
	4.1.1 Installation 
	4.1.2 Adaptations

	4.2 Installation of the ABMland framework
	4.2.1 Creating a plugins folder 
	4.2.2 Include common-repasts as plugin 
	4.2.3 Include wrapper as plugin and as a project 
	4.2.4 Download maven helper file
	4.2.4.a [m2eclipse] clean compile + has Simphony(TM) deps


	4.3 Adapt system paths
	4.3.1 Include common-repasts into configuration
	4.3.1.a Adapt manifest.mf
	4.3.1.b Adapt plugin_jpf.xml

	4.3.2 Inform Repast S about location of plugin folder
	4.3.2.a Adapt boots.properties
	4.3.2.b Adapt Repast S launch files
	4.3.2.c Adapt Repast S xml files


	4.4 Optional: Update plugins
	4.4.1 Export wrapper as plugin
	4.4.2 Export an agent as plugin 


	5. Running a simulation
	5.1 Repast S launchers
	5.2 Repast model.score 
	5.3 Repast S scenario settings
	5.3.0.a repast.simphony.action.Display*
	5.3.0.b repast.simphony.chart.engine.*
	5.3.0.c repast.simphony.data.engine.*
	5.3.0.d repast.simphony.data.logging.outputter.engine.Outputter*
	5.3.0.e repast.simphony.dataLoader.engine.*

	5.4 Displays
	5.5 Using Repast S for exporting time series
	5.6 Logging

	6. Data for initialisation
	7. Adapting the framework

