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Abstract

Characterization of the earth’s subsurface involves the construction of 3D models from sparse data and so leads to
simulation results that involve some degree of uncertainty. This uncertainty is often neglected in the subsequent
visualization, due to the fact that no established methods or available software exist. We describe a visualization
method to render scalar fields with a probability density function at each data point. We render these data as isosurfaces
and make use of a colour scheme, which intuitively gives the viewer an idea of which parts of the surface are more
reliable than others. We further show how to extract an envelope that indicates within which volume the isosurface will
lie with a certain confidence, and augment the isosurfaces with additional geometry in order to show this information.
The resulting visualization is easy and intuitive to understand and is suitable for rendering multiple distinguishable
isosurfaces at a time. It can moreover be easily used together with other visualized objects, such as the geological
context. Finally we show how we have integrated this into a visualization pipeline that is based on the Visualization
Toolkit (VTK) and the open source scenegraph OpenSG, allowing us to render the results on a desktop and in different
kinds of virtual environments.
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1. Introduction

The major problem with the characterization of the
subsurface of the earth and with the construction of cor-
responding models is the uncertainty of the data. Direct
borehole measurements are very limited due to techni-
cal issues and costs. Normally, data are available along
boreholes from core samples and geophysical well log-
ging. On a larger scale the data have to be estimated, us-
ing geophysical measurements like seismics and the in-
terpreted structural model as support. Thus the subsur-
face models are derived from limited information and
include uncertainties. Using these subsurface models as
a basis for the prognosis of hydrogeological, geother-
mal, reservoir or geotechnical processes generates re-
sults with uncertainties as well. One common method
to quantify parameter uncertainty and the corresponding
system evolution is Monte-Carlo analysis (e.g. Deutsch,
2002). Using geostatistical techniques, for example se-
quential Gaussian simulation and indicator simulation,
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multiple stochastically equivalent realizations of the in-
put model are generated, which are independently sim-
ulated (Rouhani et al, 1996). Simulation results of a
scalar type can then be summarized to a probability den-
sity function with mean and standard deviation at each
vertex. As parallel computing becomes increasingly
available, the assessment of uncertainty using Monte-
Carlo simulation becomes a more and more attractive
method, in particular for scarce data situations such as
deep geological systems. The dataset we use as an ex-
ample is a geothermal reservoir analysis for the Urach
Spa site (Germany, Swabian Alb) and has been de-
scribed in more detail in Watanabe et al (2010).

An important problem with these gridded scalar fields
that involve uncertainty is that the data values at all
points of a certain grid-cell do not uniquely define
where the isosurface will lie, because this location de-
pends on the data values and their standard deviation of
all the points in the near field (see Figure 1 for an ex-
ample). In order to properly assess in detail the data and
the uncertainty, a good visualization needs to outline the
regions where the uncertainty is high and also indicate
within which envelope an isosurface will lie with a cer-
tain confidence.
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Figure 1: Possible area in which an isoline can lie due to standard
deviation in neighbouring cells (68 % confidence interval). Top left:
mean values for each grid-point. Top right: standard deviations. Mid-
dle: lower end of confidence interval (left) and higher end (right).
Dotted lines in figure show corresponding isoline for the value 5, gen-
erated from these values. Bottom: summary. Grey area represents
envelope within which the isosurface will lie with a 68% confidence
(bottom).

Our initial idea was to render the scalar data (pres-
sure, temperature) as isosurfaces and map the standard
deviation to the colour as has been described, for exam-
ple, by Rhodes et al (2003). This approach works well
for a single isosurface, as is shown in the medical ap-
plications that Rhodes et al (2003) describe. However,
as we want to show the spatial contiguity of the scalar
field, we have to render multiple isosurfaces. Using this
colour scheme with our data revealed that the viewers
need the colour on the isosurfaces to understand which
isosurfaces they are looking at. For two-dimensional
maps, Hengl (2003) suggests the use of the HSI (Hue,
Saturation, Intensity) colour model. Hue is used to vi-
sualize the scalar data values and the saturation is used
to visualize the uncertainty as paleness. This results in
maps, which become whiter or paler in regions where
the data is more uncertain, and for which the data is
clearly shown with stronger colours where it is certain.

Djurcilov et al (2002) use a similiar colour scheme to-
gether with volume rendering for visualizing 3D ocean
data. They use a 2D transfer function for the colour
mapping to show both data value and its uncertainty.
The data value is mapped to the colour and the cor-
responding uncertainty to the alpha channel. This re-
sults in a volume visualization where the data are solidly
shown when the uncertainty is low and become translu-
cent where it is high. Both aforementioned methods
only provide information on where the uncertainty is
high but do not give an idea of the different shapes iso-
lines or isosurfaces could have, due to the uncertainty.

Osorio and Brodlie (2008) describe a raster-based ap-
proach to generate ‘thick contours’ for two dimensional
maps that show the uncertainty involved and apply it
to an example data set from oceanography. Their ap-
proach could be extended to 3D applications by us-
ing volume rendering and showing ‘thick isosurfaces’.
Johnson and Sanderson (2003) have shown such a si-
miliar approach for 3D data by representing the aver-
age value with an isosurface and then rendering the un-
certainty of the scalar field as a semi-transparent en-
velope around it, using volume rendering. Grigoryan
and Rheingans (2004) use a point based rendering ap-
proach to create fuzzy-looking ‘thick surfaces’, which
are represented by fewer and fewer points at the outer
areas where the probability of the surfaces lying there is
lower. What both these methods have in common is that
they show a ‘thick’ isosurface that looks solid at the lo-
cations where it is likely for the isosurface to be located
and that fades into translucency and haziness where its
positions become more and more unlikely. However, if
the uncertainty is high, the isosurfaces that have been
generated in this way might fill in the space between
them and clutter the display. Further, it will be difficult
for the viewers to estimate how thick the isosurfaces are
and to estimate how far they can look into this semi-
transparent volume. As a consequence it will be hard
for the viewer to recognize if the isosurface intersects a
certain feature, such as a borehole, with a given confi-
dence.

Many authors, e.g. Lodha et al (1996), Pang et al
(1997) or Newman and Lee (2004) describe approaches
where the uncertainty is displayed by glyphs placed
along the surface. Some of these approaches could
be easily implemented using the Visualization Toolkit
(Schroeder et al, 1996), for example by using the vtkG-
lyph3D class to place a sphere at every vertex of an
isosurface, the size of the sphere corresponding to the
local magnitude of the standard deviation. The prob-
lem with most of the glyph-based techniques is that the
user’s perception of the size of the glyphs often depends
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on view direction and that they can easily clutter the
display, which is not the case with colour-based tech-
niques. Further the perception of a glyph’s size can be
influenced by the surrounding scene that might create
some effect of size illusion (for an example see Sterzer
and Rees, 2006).

In our work we combine colour-based and glyph-
based techniques. We use a colour scheme that is simi-
lar to the one from Hengl (2003), making use of a two-
dimensional transfer function. One dimension maps the
average data value to the colour, while the other dimen-
sion maps the uncertainty of the data value to a com-
bination of saturation and brightness. While the over-
all colour stays the same, the surface becomes grey-
ish and dark in regions of high uncertainty and looks
dirty, which is a pattern intuitively understandable. One
problem with such a bivariate colour scheme is, as
Hengl (2003) has already pointed out, that the colours
are harder to distinguish in regions of high uncertainty.
However, this would be no problem for isosurface ren-
dering, if only some regions of a surface showed high
uncertainty, so that the user, with the help of the spatial
coherency, can still identify the different isosurfaces. In
order to show the volume in which the isosurface will lie
with a given confidence, we augment the representation
of the standard deviation’s magnitude by colour map-
ping with glyphs (lines) that indicate the possible loca-
tions of the isosurface. The rest of this article will first
describe the two dimensional colour map, the extraction
and generation of lines indicating the envelope in which
the isosurface will lie with a certain confidence, then ex-
plain the implementation and finally show an example
of the application of our visualization.

2. Methodology

We developed two methods for the visualization of
uncertainty, which are complementary and show differ-
ent features of the data set. One uses colour mapping
and is suitable to indicate to the viewer in which re-
gions of the isosurface the standard deviation is high
but does not show the possible displacement of the iso-
surface that is due to this uncertainty. The other one
is glyph based and renders within which volume each
isosurface will lie with a certain confidence even if it is
not possible to infer the actual standard deviation from
this point of the visualization. Both together provide a
good assessment of both the data and its uncertainty in
3D space and allow the simultaneous visualization of
multiple isosurfaces without confusing the viewer.

2.1. Showing uncertainty via colour mapping

The colour model most commonly used in computer
graphics is the hardware-oriented RGB model, which is
used, for example, in CRT monitors. It can be repre-
sented by a cube with red, green and blue values on the
axis (see top of Figure 2). The resulting colour is gen-
erated by adding the individual contributions of the pri-
mary colours red, green and blue. If all primaries have
the same value, different grey shades are produced with
(1,1,1) representing white and (0,0,0) black.

Red
Green

Blue

Yellow

Magenta Cyan

Black

White

Black

White
Green

CyanBlue

Magenta

Red
Yellow

Color ( ue)Sa rationut
H

Figure 2: The RGB (top) and HSV (bottom) colour models.

For our task, which involves using the colour of the
isosurface to represent the data value while simultane-
ously giving the viewer an idea of the data’s uncertainty,
it is advantageous to use the HSV (Hue - Saturation -
Value) 1 model, proposed by Smith (1978). This model
can be represented as an upside down hexcone and is
shown at the bottom of Figure 2. The top of the cone
corresponds to a Value of 1 (maximum brightness). The
fully saturated colours lie on the fringe and Hue is mea-
sured as the angle around the vertical axis, starting with
red. In the centre of the top Saturation is zero and
Value (brightness) is one (white). Along the vertical

1For easier distinction the words Hue–Saturation–Value will be
used in upper case throughout this article when they refer to the HSV
model.
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Figure 3: Four different two dimensional colour maps and corresponding isosurface visualizations. Vertical axis: variation of standard deviation,
ranging from lowest value in the whole data set (bottom) to highest value (top). Horizontal axis: colour mapped data value (mean), again from its
lowest value (left) to highest (right). A: Standard deviation is not shown and all isosurfaces are rendered with full colour saturation. B: Standard
deviation is mapped to a combination of Value and Saturation. While the isosurface in dark blue is still rendered with full colour intensity, indicating
low standard deviation, the light blue isosurface behind it becomes greyish, indicating its higher uncertainty. However, due to the smooth transition
in colour saturation and value, regions of different uncertainty on isosurfaces are still hard too see. C: Using a steeper gradient for Saturation and
Value for a window in the middle of standard deviation’s range emphasises regions of high uncertainty. D: Nearly the same as in C, but using a
high value for Value. In regions of very high uncertainty isosurfaces’ colour fade into white. Our impression is that a colourmap with a low value
for Value representing high uncertainty, such as in C, supports recognition of the uncertain regions better.

axis Value is changed. The figure also shows the cor-
respondence between the two models. The top plane of
the HSV model shows the projected view from the top
along the diagonal axis of the RGB model’s cube.

In our application the data value is mapped to a colour
with Saturation and Value of one. In order to show the
corresponding standard deviation, both Saturation and
Value are varied depending on it. This is done using a
linear ramp for which the start and end values in terms
of standard deviation can be adjusted, so that the regions
representing data with some (but low) standard devia-
tion are still rendered with full colour saturation and the
regions representing data with high standard deviation
become more evident. The values for Saturation and
Value that are used for regions with high standard devi-
ation can be chosen interactively, so that the user can ad-
just the visualization to fit the environment and the sur-
faces can not become completely colourless and black.
The resulting visualisation shows the isosurfaces in their
normal colour where the standard deviation is low, ap-

pearing greyish and dark or dirty in regions where it is
high. Figure 3 provides four different examples showing
different colour maps and the corresponding visualiza-
tion of some isosurfaces.

The suggested colour scheme interferes slightly with
the lighting and shading common in 3D visualization as
these also vary the brightness of the objects, dependent
on light direction and surface normal. As we also vary
the Saturation to a large extent and because the user can
interactively change viewing direction (lighting in our
scene is usually done by a headlight) and the applied
colour map, the regions of high uncertainty still remain
visible.

2.2. Showing uncertainty using geometry

The colour mapping shown in Figure 3 indicates in
which parts of the isosurfaces the data used have a high
standard deviation and so are more unreliable compared
to other parts. However, due to the mean and the un-
certainty of the data in the whole neigborhood, the iso-
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Figure 4: Same isosurface three times, using different options to indicate envelope within which it will lie with a certain confidence. A: As
suggested in this article, envelope thickness (confidence interval) is indicated by needles. Reddish needles point towards lower end of confidence
interval, bluish ones towards higher end. If needles point towards viewer they appear shorter than they are, due to projection onto monitor, but this
problem is solved by motion parallax and/or stereoscopic visualization in an interactive application. B: As we in any case calculate the surfaces that
bound the envelope, we could also show it using transparent surfaces. However, both motion parallax and stereoscopy depend on contours that are
not available here, so that it becomes hard for the user to recognize depth and estimate envelope thickness. C: Additional lines could be introduced
on the transparent surface to provide contours for recognizing depth. However, the lines from A are still better at indicating envelope thickness.

surface can have many different shapes and can be dis-
located within a certain range. In order to obtain the
envelope that will contain the isosurface with a certain
confidence and to indicate this envelope, we have cho-
sen the following approach. For each of the data points
we calculate the upper and lower boundary of the confi-
dence interval. This can be done using the scaled vari-
able (Z) of the normal distribution of the scalar field
function (i.e. pressure, temperature). According to, for
example, Swan and Sandilands (1995):

Z =
(value − Mean(Data))

S tandardDeviation(Data)
.

Z is then used to look up the probability that some
data is below this value in tables. Based on the inverse
process we look up Z for a given probability and then
calculate:

LowerValue = Mean − Z ∗ S tandardDeviation

U pperValue = Mean + Z ∗ S tandardDeviation

Doing this for every grid point, we can extract three
isosurfaces: one from the mean of the data, and one
from the lower and the upper end of the confidence in-
terval. Subsequently a ray is ‘shot’ from the mean iso-
surface along the surface normal until it intersects the
upper and lower confidence isosurfaces. These rays are

then visualized as lines, emanating from the mean sur-
face and indicating the envelope corresponding to the
confidence interval. It is important to be aware that the
thickness of the envelope does not only depend on the
standard deviation but on the overall setting. If, for ex-
ample, neighbouring isosurfaces diverge, the envelopes
will become thicker (the lines become longer), even if
the standard deviation is the same all over the isosur-
face. When visualizing additional structures, such as
boreholes, it becomes easily visible if these are, for ex-
ample, intersected by one of the shown surfaces or lines,
and so might be intersected by the isosurface with a
given confidence. Figure 4 shows an example of how
this visualization for a single isosurface looks and com-
pares it to other rendering options.

3. Implementation

Our implementation is mainly based on two open
source libraries and the Qt toolkit for the implemen-
tation of the user interface. We use the Visualiza-
tion Toolkit2 (VTK, Schroeder et al, 1996) for data
exchange and extraction of isosurfaces and the scene-
graph OpenSG3 (Reiners et al, 2002) for rendering. We

2www.vtk.org
3http://opensg.vrsource.org/trac
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needed to implement a two-dimensional transfer func-
tion for the colour lookup and the generation of geom-
etry that is needed to show the possible displacements
of the mean surface given a certain confidence. By
writing our own CVtkOsgActor class that we derived
from vtkOpenGLActor, we transfer the geometry cre-
ated by the VTK pipeline into OpenSG geometry. The
approach is similar to the one by Rajlich (2009). In this
way we could incorporate our visualization method into
the commercial software VRED from PI-VR GmbH4,
so that we can use both the desktop environment and
our projection-based stereoscopic visualisation centre.

The user interface for steering the visualization is
shown in Figure 5. After loading the data set using one
of VTK’s file formats, the users are shown which dif-
ferent scalar attributes are present in the VTK file for
the vertices of the grid. They first have to choose which
of these attributes represents the mean and which one
represents the corresponding standard deviation. Then
the confidence interval needs to be chosen for which the
envelope is calculated that contains the isosurface (with
this confidence). Two additional data arrays are then
added to the data object (vtkDataSet), which contain for
each vertex the value of the low end of the confidence
interval and the value of the high end. Further two his-
tograms are computed and shown in the user interface,
one showing the distribution of the data value and the
other the distribution of the standard deviation. Users
can add, move, and remove vertical lines in the his-
togram for the data values and so indicate for which val-
ues isosurfaces should be generated. Two vertical lines
in the histogram for the standard deviation indicate the
start and endpoint for the linear ramp of the Saturation
and Value mapping.

The overall pipeline for the generation of the visual-
ization can be seen in Figure 6. After starting the com-
putation, the two arrays that contain the upper and lower
end of the confidence interval and the one that contains
the mean of the data are employed for the generation of
isosurfaces, using a vtkContourFilter. For the mean iso-
surface the vtkPolyDataNormals filter is subsequently
applied to generate for each vertex a vector that is nor-
mal to the isosurface. From each vertex a ray is traced
along the normal towards the triangles of each of the
other two surfaces. This is implemented following the
description in Lengyel (2004). If there are multiple in-
tersections, the nearest intersection is chosen. The ver-
tex of the isosurface and the intersection point are then
connected by a line.

4www.pi-vr.de

Distribution of the 
standard deviation. 
Green lines represent 
ramp for mapping 
Saturation and Value

Loading data in VTK 
�le format and choo-
sing the data sets used 
for mean and standard 
deviation.

Distribution of the 
data values (mean). 
Green lines represent 
di�erent isosurfaces 

Value,
Saturation

0      1 <-min  data  max->
              Hue

Figure 5: User interface. Upper histogram: standard deviation at all
vertices. Green lines can be moved and define the ramp for mapping
uncertainty to Value and Saturation. Lower histogram: mean at all
vertices. Green lines can be moved and represent the different isosur-
faces. Lines can be added and removed.

To generate the colour mapping, we have imple-
mented a two-dimensional transfer function, the vtk-
LookupTable2D class, that is derived from vtkLookupT-
able and maps from the data value and its standard de-
viation to a colour. The normal mechanism within VTK
is that the vtkPolyDataMapper calls the function vtk-
LookupTable::MapScalarsThroughTable2(), which is
declared virtual, so that we can override it in our class
and our function is called instead. The function in our
class first uses VTK’s standard function and maps the
data values to the colours using a HSV based table with
Value and Saturation being one. Subsequently we re-
trieve the standard deviation of the data, change Satura-
tion and Value accordingly, transfer the colour to RGB
space and return it. Example code for the conversion
between the HSV and RGB colour model can be found
in Foley et al (1996).
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Mean, UpperConf, LowerConf

Mean Mean - Z * Standard deviationMean + Z * Standard deviation

vtkContourFilter

vtkPolyDataNormals
Determines the normals for
each vertex on the isosur-
face

vtkPolyDataMapper

Ray trace from each
vertex of the “mean”
isosurface along the
normal to the isosur-
face generated from
the upper end of the
confidence interval. 

Ray trace from each
vertex of the “mean”
isosurface along the
normal to the isosur-
face generated from
the lower end of the
confidence interval. 

CVtkOsgActor

OpenSG geometry (surface)
OpenSG geometry (lines)

OpenSG geometry (lines)

VRED (display)

CVtkLookupTable2D

The scaled variable Z of the
normal distribution is set, based
on the user’s choice for the
confidence intervall.

vtkContourFilter
Calculates isosurface using the 
upper end of the confidence interval

vtkContourFilter
Calculates isosurface using the 
lower end of the confidence interval

Calculates isosurface using 
the mean of the data

Figure 6: Pipeline for generation of visualization. The modules of the pipeline we needed to implement are shaded in grey. The class CVtk-
LookupTable2D is derived from vtkLookupTable and implements a 2D transfer function for colour mapping. The class CVtkOsgActor is derived
from vtkOpenGLActor and translates VTK geometry into OpenSG geometry.

4. Application

The example data set we use for the visualization
is an uncertainty analysis of thermo-hydro-mechanical
(THM) coupled processes in a hot-dry-rock geothermal
reservoir that is described in detail in Watanabe et al
(2010). It represents a stimulated geothermal reservoir
in crystalline rock based on data from the Urach Spa
location in southwest Germany. The geometry of the
reservoir is shown in Figure 7. The hydraulically ac-
tive area allows the reservoir to be represented by an
800x300x300m large block that is situated in a depth
between 3850m and 4150m. Two boreholes, one for the
injection and one for the production are placed 400m
away from each other. As the problem is symmetric,
only one half of the reservoir has been simulated. To
analyze the uncertainty of the reservoir evolution that
is due to limited data availability, Monte-Carlo simu-
lations have been conducted with a stochastic reservoir

model. 100 realizations with different permeability dis-
tributions have been used to simulate the THM (thermo-
hydro-mechanical) processes over the reservoir. The
resulting data have been summarized, so that they de-
scribe statistical analysis (mean and standard deviation)
at each vertex of the grid.

300 m

300 m

800 m

400 m

150 m

60 m

Observation point

Profile line

Z = -3850 m

Z = -4150 m

Injection borehole
(U3)

Production borehole
(U4)

Figure 7: Model set-up of the geothermal reservoir.
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Figure 8: Pressure field and flow direction of our example data set. Flow direction is indicated by streamlines (red) and is from injection borehole
(left) to production borehole (right). Pressure ranges from 27.77 MPa (minimum) to 50.71 MPa (maximum). Mapping from pressure to colour can
be taken from Figure 3. High uncertainty is indicated by an intermediate grey. The first isosurfaces around the injection borehole (left) have greyish
regions near to the borehole that indicate higher uncertainty. Towards left and right ends of reservoir, isosurfaces turn and are lying flat, and thus
show the natural pressure gradient. As they diverge towards these ends the confidence envelope becomes thicker and the needles longer.

Figure 8 shows the simulated hydraulic pressure after
15 years of thermal water loop and streamlines, indicat-
ing the water flow, which is directed from the injection
borehole (left) to the production borehole (right). It can
be clearly seen that the standard deviation is high around
the injection borehole (left), because the colours there
become less saturated and are greyish and dark. Around
the production borehole the colours are still bright and
saturated, indicating a low standard deviation.

The general pattern of high standard deviation around
the injection borehole and lower standard deviation
around the production borehole is due to the fact that the
pressure changes mainly at the locations where the tem-
perature changes, which is at the cooling front around
the injection borehole. The cooling front in turn is
mainly affected by the velocity fields in the different re-
alizations. After 15 years the cooling front still has not
reached the production borehole, so that the standard
deviation is still low around it.

Figure 9 shows several visualizations of our exam-
ple data set’s temperature field using our new visual-
ization method (at the top and at the bottom right) and
the 2D visualizations for the temperature and its stan-
dard deviation that were used in Watanabe et al (2010),
shown at the bottom left of the figure. The 2D visu-
alizations are horizontal sections through the data set in

4000m depth (vertically the center of the reservoir). The
temperature is lowest near to the injection borehole, due
to the reinjection of cold water, and increases with dis-
tance. The standard deviation of the temperature is low
around the injection borehole because these regions are
cooled down after 15 years of water injection, regardless
of the uncertainty of the permeability distribution. Fur-
ther away the cooling front is reached and the standard
deviation is high because the uncertainty of the perme-
ability in turn causes uncertainty of the velocity field
and so leads to differences for the advancement of the
cooling front. Further outwards the cooling front has not
arrived and so the temperature is high and the standard
deviation low. Looking at the emphasized isoline (thick
black line) in the 2D section through the temperature
and overlaying its course onto the 2D section showing
the standard deviation of the temperature, it can be seen
that the isoline cuts through these regions at its lower
end.

As can be seen, the 2D sections show the general
pattern very well for the depth of 4000m. However,
the viewers can not assess if and how fast this pat-
tern changes with depth. For this they would need to
look at additional sections. If the pattern changes fast,
many sections are needed and a 3D visualization be-
comes more practical. The aforementioned features can
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Figure 9: Visualization of the temperature field as suggested in this article and as a 2D visualization as shown in Watanabe et al (2010). Temper-
ature ranges from 322.95°to 433.89°Kelvin. Mapping from temperature to colour is the standard mapping, shown in Figure 3. Colour for high
uncertainties converges to a medium grey. See text for more detail.

be seen in the 3D visualization within their 3D spatial
course and coherency. The isosurface near the injec-
tion borehole has a blue saturated colour and indicates
that both temperature and standard deviation are low.
The green isosurface further out corresponds to the iso-
line emphasized in the 2D figures. The green colour is
less saturated and darker in the centre, already indicat-
ing a higher standard deviation. The isosurface’s left
and right fringes pointing towards the viewer are dark
and grey and so indicate a very high uncertainty. This
can be better seen in the close up at the bottom right of
Figure 9, where we additionally included the 2D sec-
tion to show the correspondence. It is also visible from
this 3D visualization that this pattern, higher uncertainty
at the left and right fringes, stays further upwards and
downwards. Only at the top and bottom of the reser-

voir does the uncertainty seem to be equally high in the
horizontal middle of the isosurface. The next isosurface
(yellow) further outwards shows the same pattern but
much less intensely and its overall uncertainty is already
much lower. Further away from the injection borehole
the cooling front has not yet arrived at this time step.
So red isosurfaces show a high temperature with low
uncertainty and are turning, so that they are lying flat,
showing the geothermal gradient of the undisturbed for-
mation.

5. Conclusions

The visualization method presented in this article is
suitable for rendering multiple isosurfaces at a time be-
cause the applied colour scheme still allows the users
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to recognize which isosurfaces they are looking at, de-
spite the fact that it is also used for rendering the mag-
nitude of the uncertainty. The resulting visualization is
intuitive to understand and does not confuse the viewer.
The augmentation of the isosurface with lines that indi-
cate the volume within which it will lie with a certain
confidence makes the user aware how far the different
isosurfaces shown might move and allows the user to
judge if objects, such as boreholes, might be intersected
by this isosurface with this confidence. The compari-
son of the 3D visualization method with a method cur-
rently often used for display – taking side-by-side views
of sections through the data set, which display the data
value and its standard deviation – shows that all features
can be seen with the new method as well, but within the
3D context, so that the new visualization provides more
information.

One drawback of this visualization method is that the
scheme relies on at least a certain variability within the
standard deviation. If several isosurfaces lie completely
in a region of very high uncertainty, these are all ren-
dered in dark grey, becoming indistinguishable for the
user. So viewers depend on recognizing which isosur-
faces they are looking at by the overall spatial context
and knowledge of the physical problem. One solution
is to apply sufficiently high minimum values for Satura-
tion and Value, so that even with very high uncertainty,
the colour (Hue) indicating the data value becomes dis-
tinguishable. However, this diminishes the visual colour
range that can be used for making the user aware of the
uncertainty.
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