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Summary

By studying the case of Bombay, the biggest urban agglomeration in India, we show that

providing adequate ‘pollution-reducing’ infrastructure, e.g. the sewage system or waste

collection and disposal, can be a very effective instrument of urban environmental pol-

icy. The questions are, how can pollution-reducing infrastructure be supplied efficiently

and how has it to be combined with economic instruments of environmental policy (like

Pigouvian taxes) in order to reach an efficient outcome?

Our theoretical analysis is based on a general spatial equilibrium model of a mono-

centric city and its hinterland. The model comprises two private goods (consumption of

goods and living space), two public goods (infrastructure and environmental quality), and

a continuum of households, who choose their place of residence. Environmental pollution

is a by-product of the households’ consumption of goods. Infrastructure reduces the pol-

luting emissions per unit of consumption: a part of the pollution is disposed of ‘properly’

and causes no environmental damage. Infrastructure is a public good, since it serves to

reduce the polluting emissions of all households residing in the close neighbourhood. The

analysis has two parts.

First, the Pareto optimal allocation is determined. We show that the efficient alloca-

tion of pollution-reducing infrastructure geographically differentiated, i.e. infrastructure

density declines from the centre to the periphery. An adequate provision of pollution-

reducing infrastructure is particularly important in the rapidly growing cities of develop-

ing countries. We show population growth necessitates improved infrastructure provision

throughout the city, not just in newly inhabited areas.

Second, we consider two settings how the Pareto optimal allocation can be imple-

mented in a decentralised economy: in the first setting the urban government provides

infrastructure and imposes a Pigouvian tax on consumption. This setting is relevant, if

the government can estimate the polluting emissions, but the households cannot. In the

second setting pollution-reducing infrastructure is provided privately and subsidised by

the urban government, which also imposes a Pigouvian tax on emissions. This setting is

applicable, if private households can monitor their polluting emissions.

In the case of public infrastructural provision, the Pigouvian tax on consumption is

shown to depend on the location, where the respective unit is consumed. As a result,
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the tax burden differs among the locations and income transfers are necessary in order

to implement the optimum as a residential equilibrium. In the case of private supply

of infrastructure, private households undersupply this public good, unless a subsidy on

infrastructure is paid. This subsidy is shown to be geographically differentiated, and a

redistribution of incomes is necessary to implement the optimum as a residential equilib-

rium, too.

Hence, even if pollution is homogenous, geographically differentiated (i) infrastructural

provision, (ii) fiscal instruments of environmental policy and (iii) transfer payments are

needed to implement the Pareto optimum as a residential market equilibrium. These

sophisticated policies result from considering pollution-reducing infrastructure as an in-

strument of urban environmental policy and jointly determining infrastructure supply and

fiscal policy instruments. Given the high relevance of pollution-reducing infrastructure

for urban environmental quality, this approach may lead to considerable welfare gains.

3



1 Introduction

Infrastructure, which generally comprises the stock of physical and social capital owned

by the public sector, includes (i) utilities, i.e. water supply, sewage system, electricity,

waste collection and disposal etc, (ii) communication infrastructure, (iii) transport infra-

structure, i.e. roads, railways, etc, and (iv) land development measures, i.e. drainage

improvement, flood control, reforestation projects, etc (Conrad 1994, 2001).1 In an ur-

ban context, a major part of infrastructure has an immediate impact on environmental

quality, since it helps either to mitigate pollution or to dispose of waste so that it does less

damage to urban environmental quality (Section 2). We call this part “pollution-reducing

infrastructure”.

In this paper we argue that it is necessary to consider an adequate provision of

pollution-reducing infrastructure as a tool of urban environmental policy. We show

that the efficient supply of pollution-reducing infrastructure and environmental policy

by means of Pigouvian taxes are mutually dependent. Hence, if either infrastructure is

taken for granted when determining the Pigouvian tax rates, or if fiscal instruments of

environmental policy are treated as fixed when determining the supply of infrastructure,

an efficient outcome is missed. In particular, if pollution-reducing infrastructure is sup-

plied publicly, the optimal Pigouvian tax rates are geographically differentiated, even if

pollution is spatially homogenous.

An adequate provision of pollution-reducing infrastructure is particularly important

in the rapidly growing cities of developing countries. Here, we analyze how the efficient

supply of infrastructure has to be adapted to a growing urban population.

The close relation between infrastructure and urban environmental quality has been

widely overlooked in both the literature of environmental economics and the economic lit-

erature dealing with infrastructure. The comparatively meagre (cf. Verhoef and Nijkamp

2002:159) literature analyzing environmental problems from the perspective of urban

economics mainly focuses either on the geographical distribution of polluting firms and

households, and considers the trade-off between commuting costs and high damage from

pollution in the neighbourhood of the firms (e.g. Henderson 1977; Lucas 2001; Dijkstra

and Lange 2003), or analyzes the trade-off between positive Marshallian externalities

1In the paper, we focus on physical infrastructure.
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promoting growth and the opposing negative externalities of environmental pollution

(Verhoef and Nijkamp 2002). None of these papers, however, refers to the role of urban

infrastructure.

There are some contributions in urban economics which deal with the spatial distri-

bution of public services within cities (for an overview see Revelle 1998) or the efficient

private financing of public infrastructure (e.g. Brueckner 1997; Knaap et al. 2001).2 The

major part of research in related fields, however, considers infrastructure as an exoge-

nously given quantity (Haughwout 2002:406).

Since we are interested in the spatial distribution of pollution-reducing infrastructure,

the paper also aims at contributing to the literature on spatial environmental economics.

Kolstad (1987) has shown that the spatial differentiation of environmental policies leads

to higher welfare than homogenous policies, if marginal costs and marginal damage of

pollution differ between the locations of polluting firms.3 In contrast to Kolstad’s setting,

we consider homogenous pollution and identical preferences of all households. We show

that the optimal environmental policy is nevertheless spatially differentiated, which is

the endogenous outcome of jointly determining the public supply of pollution-reducing

infrastructure and the Pigouvian tax on polluting consumption.

The paper is organised as follows: The following Section 2 demonstrates the importance

of infrastructure for urban environmental quality by referring to the case of the Indian

megacity Bombay. Section 3 presents the model of general spatial equilibrium. The

optimal allocation is analyzed in the first part of the analysis in Section 4.4 Here, we are

mainly interested in the optimum geographical distribution of infrastructure and in the

optimal changes to infrastructure in a city with a growing population.

The second part of the analysis (Section 5) is concerned with the mutual interdepen-

dence between a ’classical’ environmental economic instrument, i.e. a Pigouvian tax on

pollution, and an optimum provision of pollution-reducing infrastructure. Two different

2Explicit reference to the environmental impacts of infrastructure is only made in the case of trans-

portation infrastructure (e.g. Lundqvist et al. 1998). The questions posed in that context (e.g. concerning

the efficient modal split between public and private transportation) are quite different from ours.

3More precisely, the public benefit achieved from spatially differentiated taxation is particularly high,

if marginal cost and marginal damage functions are steep.

4The relevant literature on the economics of welfare in cities is reviewed briefly in Section 4.
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settings are considered: (i) public and (ii) private supply of pollution-reducing infra-

structure. Both settings may be adequate to a given problem. (i) A public infrastructual

provision (Section 5.2) is required, if households cannot observe their polluting emissions

and only the government is able to do so.5 If, on the other hand, households can monitor

their actual emissions, it may be better, if private households provide infrastructure.6

This setting is analyzed in Section 5.3. Section 6 concludes.

2 Case study: pollution-reducing infrastructure in

Bombay

In this section we argue that urban infrastructure contributes to a cleaner urban envi-

ronment in many respects. We therefore consider the case of Bombay, the largest urban

agglomeration in India.7 In 2001, Bombay officially had a population of 16 million people

(Government of India 2001), and population continues to grow rapidly. Bombay’s popu-

lation suffers from a variety of environmental problems, many of which could be reduced

by the provision of an adequate infrastructure (Quaas 2004:198):

An inadequate sewage system exposes the population to sewage water contaminated

with bacteria and to the pollution of rivers and coastal waters. In Bombay, more than

40% of total population has to rely on public sanitation services, which are often of poor

quality (Palnitkar 1998, Government of India 2001).

A better drainage and flood control could also contribute to urban environmental

quality. Some areas of Bombay, which are built below sea level, flood repeatedly. This

causes severe health problems to the affected population due to the heavily polluted

coastal waters (Quaas 2004:189).

As a consequence of insufficient waste collection, much refuse remains at the road-

side (Prabhavalkar 2002). This has an immediate impact on the population living there.

5For example, individual households may have difficulties to observe their contribution to urban water

pollution, but possibly an urban authority may be able to assess this.

6This seems quite reasonable in the case of solid waste.

7In 1994, Bombay has been renamed Mumbai. However, internationally the name Bombay is still

common and therefore used here, too.
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Waste is frequently burned without any form of protection, which further increases air

pollution (Shah and Nagpal 1997, Tondwalkar and Phatak 1997). Similar problems are

caused by inadequate disposal sites (Sharma et al. 1997, Tondwalkar and Phatak 1997).

Bad roads contribute to noise pollution, but they also affect air pollution: in Bombay,

about a third of the SPM (suspended particulate matter) load of the air, which is one

of the most serious health threats, comes from roads dust (Shah and Nagpal 1997, table

2.7).

To summarise, in many cases the adequate provision of infrastructure can be a very

effective instrument in urban environmental policy. The question is, how can pollution-

reducing infrastructure be supplied efficiently and how has it to be combined with other

economic instruments of environmental policy (such as Pigouvian taxes) in order to reach

an efficient outcome?

3 The model

The analysis is based on a general spatial equilibrium model of a monocentric city and

its hinterland. The model comprises four goods, an aggregate consumption commodity,

living space, infrastructure, and environmental quality (which is a public good); and a

continuum of identical individuals. It is of the von Thünen-type (see, e.g., Fujita and

Thisse 2002, chapter 3), i.e. commuting costs are an important determinant of the city’s

spatial structure (Anas et al. 1998, Nijkamp 1999:533).

Space has one dimension in the model, represented by z ∈ IR, and is symmetric to

z = 0.8 The border of the city Z between the city and the hinterland is endogenously

determined. Production in the city does not need space and is located in the Central

Industrial District (CID) at z = 0. By symmetry, it is sufficient to consider the half

space z ≥ 0.

Commuting from the place of residence at z ∈ [0, Z] to the CID takes tc = tc(z) units

of time, where tc(z) increases monotonically in the distance commuted, i.e. t′c(z) > 0;

and an individual living in the immediate neighbourhood of the CID has no commuting

costs. i.e. tc(0) = 0. No further commuting costs arise.

8It is straightforward to extend the model to form a symmetric two-dimensional plane and describe

space in polar coordinates.
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There are N > 0 identical individuals living in the city. They have identical preferences

on private consumption of goods (amount x), living space (size s), and environmental

pollution E. The preferences are represented by the utility function

u(x, s, E) = xα · s1−α − d(E), (1)

where α ∈ (0, 1), i.e. u(x, s, E) is increasing and concave in the consumption of goods x

and of living space s. Environmental damage d(E) is increasing and convex in the envi-

ronmental pollution E.

Each individual is endowed with one unit of time, i.e. the gross time being in the city

for working and commuting is9

N =

Z∫
0

n(z) dz, (2)

where N is the number of individuals living in the city and n(z) is the population density

at place z ∈ [0, Z], i.e. n(z) people live in the area [z, z + dz].

All urban residents are employed in the CID at a competitive wage rate w. Given the

commuting time tc(z) of a worker living at z, her opportunity costs w ·tc(z) of commuting

are given by the commuting time tc(z) valued at wage rate w.

The consumption good is produced by means of labour l alone. The technology is

described by the production function F (·), which is assumed to be increasing and concave.

The hinterland of the city is big, such that the city may be considered as a small open

economy which trades the consumption good at a competitive price p.

Environmental pollution is caused by the consumption of goods, i.e. the polluting

emissions e(z) of a household residing at location z are generated as a by-product of

consumption.10 To keep notation simple, we have normalised pollution measurement

units so that emissions e(z) equal per capita consumption x(z). Environmental pollution

9Leisure is ignored for reasons of simplicity.

10One may think of solid waste, wastewater, or air pollutants, e.g., from cooking or heating.
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E is a ‘public bad’ in the city and equals aggregate polluting emissions, i.e.11

E =

Z∫
0

n(z) · e(z)dz for 0 ≤ z ≤ Z. (3)

Pollution-reducing infrastructure is considered as a public means of abating pollution

in the following sense. Emissions e(z) generated by a household residing at location z are

assumed to decrease with the density of infrastructure i(z) provided there,

e(z) = γ(i(z)) · x(z), (4)

where γ(i) has the properties

0 < γ(i) ≤ 1 with γ(0) = 1,
dγ(i)

di
< 0,

d2γ(i)

di2
> 0 and

d

di

[
γ′(i)

γ(i)

]
≥ 0. (5)

The interpretation of modelling infrastructure in this way is as follows: the polluting by-

products of each unit of consumption are the same with and without infrastructure. If

infrastructure exists with density i(z) > 0 at place z, however, only a fraction γ(i(z)) < 1

of these by-products is actually emitted into the environment, the remainder 1− γ(i(z))

is disposed of ‘properly’ by means of the infrastructure and causes no environmental

damage.

Infrastructure i(z) dz available in the space interval [z, z + dz] is assumed to be a local

public good, that is, it serves to reduce the polluting emissions of all n(z) households

residing in [z, z + dz], so that total emissions there are n(z) e(z) = γ(i(z)) x(z).

The curvature properties of γ(·) imply that an increased provision of infrastructure

lowers the emissions generated by one unit of consumption, but the marginal gain of

additional infrastructure decreases with the amount of infrastructure already available.12

Building infrastructure comes at two kinds of costs: first, the physical infrastructure

has to be bought at a ‘world market’ price pi, and second, installing and maintaining one

unit of infrastructure requires one unit of labour input.

11Since E is a pure public bad it is the same for all urban residents independent of the place of residence.

It is assumed that the adjacent neighbourhood is affected by urban pollution to a considerable extent so

that there is no incentive for an urban dweller to move into the hinterland just to avoid the environmental

damage in the city.

12The last property in (5) requires that the curvature of γ(·) is not too small. For example, the

functions γ(i) = (1 + i)−ε with ε > 0 and the functions γ(i) = exp(−µ i) with µ > 0 fulfil Condition (5).

The condition is needed to assure that there is an interior optimum and to derive Propositions 1 and 2.
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One point of difference should be noted here. In contrast to much of the literature on

infrastructure, it has no direct utility in our model. Rather, it generates a public good

in the city by reducing pollution. Environmental pollution, which is given by

E =

Z∫
0

n(z) e(z) dz =

Z∫
0

n(z) γ(i(z)) x(z) dz for 0 ≤ z ≤ Z, (6)

decreases with the density of infrastructure at any point in the city, i.e. dE/di(z) < 0 for

all z ∈ [0, Z].

All land within the city is owned by an urban government, which buys the land at a

given rural land rent r, and converts it into living space at zero costs in such a way that

one unit of land equals one unit of living space, i.e. the ‘height’ of the buildings is fixed.

Except for exchanging land for consumption goods, nothing is transferred between the

city and its hinterland.

To complete the model, we assume that moving within the city is costless. Hence, a

residential equilibrium is characterised by the ‘spatial equilibrium condition’: the utility

of each individual is the same at all locations in the city. Otherwise, there would be an

incentive to move for at least one individual.

4 Optimal allocation

There has been a lot of discussion in the literature about employing welfare functions to

determine optimal allocations in an urban context. Using a utilitarian welfare function,

Mirrlees (1972) concluded that in the optimum, individuals differing only with respect to

their place of residence will have the same marginal utility of consumption of goods and

living space, but will differ in the level of utility. Only with a Rawlsian welfare function

will all otherwise identical individuals enjoy the same utility in the social optimum (Dixit

1973). Wildasin (1986) has shown that Mirrlees’ result of different utilities of identical

individuals in the optimum under a utilitarian welfare function (’unequal treatment of

equals’) is due to differences in marginal utility of income between the individuals living

at different places in a city.

Mirrlees’ result can also seen from a different point of view: among all Pareto optimal

allocations, only one maximises the utilitarian welfare function. At the same time, there
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is only one Pareto optimal allocation, where all individuals enjoy equal utility, i.e. where

the spatial equilibrium condition holds. These two allocations are different, as Mirrlees

has shown. The only welfare function, which selects the same allocation out of the Pareto

optima as the spatial equilibrium condition, is the Rawlsian welfare function (Dixit 1973).

Rather than to start with a welfare function, we adopt a different approach and deter-

mine the Pareto optima. We then concentrate on the Pareto optimal spatial equilibrium,

i.e. the Pareto optimal allocation where all individuals enjoy the same utility.

The procedure is to maximise the utility of one individual given a minimum utility

level of all other individuals and subject to the constraints, which result from the model

specification as described in Section 3.

To derive the conditions for the Pareto optima, we use the Lagrange formalism. With-

out loss of generality, we maximise the utility of an individual living at z = 0 given

that all other individuals enjoy at least a level U(z) of utility, which is allowed to differ

between different places of residence z ∈ [0, Z].13 Formally, this condition reads

u(x(z), s(z), E) = U(z) for all 0 ≤ z ≤ Z. (7)

This equation describes a continuum of constraints, since we require it to hold for each

z ∈ [0, Z]. Hence, there is a continuum of Lagrangian multipliers λ(z) associated with

(7).

We now turn to the economic constraints of the optimisation. Both the size s(z) of

living space and the population density n(z) at each place z ∈ [0, Z] are choice variables.

Recalling that one unit of land equals one unit of living space, we have

z =

z∫
0

n(z̃) · s(z̃) dz̃ for all z ∈ [0, Z]. (8)

This condition holds with equality in the optimum, because there are no gaps between

buildings (otherwise commuting costs would be unnecessarily high).

The spatial distribution of population in the city determines total labour supply L̂,

which equals total endowment with time (Equation 2) less total time spent for commuting,

i.e.

L̂ = N −
Z∫

0

n(z) tc(z) dz. (9)

13A spatial equilibrium, however, requires U(z) = U for all z ∈ [0, Z].
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Labor supply is divided into labour input L in the production sector in the CID and

the amount of labour required to install and maintain the infrastructure.14 Inserting

Conditions (2) and (8) into Equation (9) yields the constraint (Lagrangian multiplier ω)

L +

Z∫
0

i(z) dz =

Z∫
0

n(z)

1− tc

 z∫
0

n(z̃) · s(z̃) dz̃

 dz. (10)

The output F (L) of the production sector is used for aggregate consumption of goods

and net exports, i.e. exports minus imports, ∆ (Lagrangian multiplier π)

F (L) =

Z∫
0

n(z) x(z) dz + ∆. (11)

The consumption of goods generates environmental pollution, as described by equation

(6). The Lagrangian multiplier for this constraint is η.

We finally require the value of net exports to equal the value of goods acquired from

the hinterland, i.e. the value of the land which is rented by the urban government and

the value of physical infrastructure bought from abroad (Lagrangian multiplier µ),

p ·∆ = r

Z∫
0

n(z) s(z) dz + pi

Z∫
0

i(z) dz. (12)

The Pareto optimal allocation consists of the consumption of goods x(z) and flat size s(z)

of all individuals, the supply of infrastructure i(z) and population density n(z) at each

place in the city, as well as labour input L in production, pollution E, and net exports ∆.

It is found by solving the following problem:

max
{x(z),s(z),n(z),i(z)},∆,L,E

u(x(0), s(0), E) subject to (7), (10), (11), (6), and (12). (13)

14Remember that one unit of labour is required to install and maintain one unit of infrastructure.

Obviously it is best to employ people close to the infrastructure in question, because then no commuting

costs arise.
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The Lagrangian for this problem reads:15

L =

Z∫
0

λ(z) n(z)
[
u(x(z), s(z))− d(E)− Ū(z)

]
dz (14)

+ω

−L +

Z∫
0

n(z)

1− tc

 z∫
0

n(z̃) · s(z̃) dz̃

 dz −
Z∫

0

i(z) dz


+π

F (L)−
Z∫

0

n(z)x(z)dz −∆


+η

E −
Z∫

0

γ(i(z)) n(z) x(z) dz


+µ

p ·∆− r

Z∫
0

n(z) s(z) dz − pi

Z∫
0

i(z) dz


The Pareto optimal allocation is calculated by maximising the Lagrangian (14) with

respect to x(z), s(z), n(z), and i(z) for all 0 ≤ z ≤ Z, as well as L, E, and ∆. With little

rearrangement, the corresponding first order conditions lead – in that sequence – to the

following equations.16

λ(z) α x(z)α−1 s(z)1−α = π + γ(i(z)) η (15)

λ(z) (1− α) x(z)α s(z)−α = µ r + ω

Z∫
z

n(z̃) t′c(z̃) dz̃ (16)

ω [1− tc(z)] = [π + γ(i(z)) η] x(z) +

µ r + ω

Z∫
z

n(z̃) t′c(z̃) dz̃

 s(z) (17)

−γ′(i(z)) n(z) x(z) η = µ pi + ω (18)

ω = π F ′(L) (19)

η =

Z∫
0

λ(z) n(z) d′(E) dz (20)

µ p = π (21)

15Here, we use the notation λ(0) := 1.

16The curvature properties of the utility function (1) and of the production function F (L) and As-

sumption 5 about the curvature of γ(i) assure that these conditions are also sufficient.

13



Here, we have already cancelled the common factors n(z), and used constraint (7) to

derive Condition (17).17 Condition (17) may be simplified by inserting (15) and (16).

Rearranging and dividing by µ yields:

λ(z)

µ
=

p F ′(L) [1− tc(z)]

x(z)α s(z)1−α
=

p F ′(L) [1− tc(z)]

U(z) + d(E)
, (22)

which is the inverse marginal utility of wealth of the individual residing at z, if his income

is p F ′(L) [1− tc(z)], i.e. the value of productive labour (see Equation (32) below). In

the remainder of the paper, we require that the optimum is a candidate for a spatial

equilibrium, i.e. we set U(z) = U for all z ∈ [0, Z]. In this case, λ(z)/µ differs among

different places in the city according to differences in commuting time at the different

places of residence.18

For analyzing the properties of the Pareto optimal allocation, as determined by equa-

tions (15) – (21) and the constraints (7), (10), (11), (6), and (12) we introduce two

abbreviations. First, consider the damage from pollution. The Lagrangian multiplier η

may be interpreted as the social marginal damage from pollution measured in units of

utility, and the Lagrangian multiplier µ is the marginal utility of an increase in foreign

exchange. The social marginal damage from pollution D′ in units of foreign exchange is

given by the following equation:

D′ := η/µ = 1/µ

Z∫
0

λ(z) n(z) d′(E) dz

=
p F ′(L)

U + d(E)

Z∫
0

(1− tc(z)) n(z) d′(E) dz

=
L̂ p F ′(L)

N [U + d(E)]
N d′(E). (23)

The factor N d′(E) is the aggregate marginal disutility of pollution; the factor

L̂ p F ′(L)/ [N [U + d(E)]] is an average individual’s inverse marginal utility of labour

income, as, on average, each urban resident spends L̂/N hours working. Hence, D′ is

17Observe that condition (17) requires tc(z) < 1. Hence, for the optimal distribution of the population

density it follows in particular that tc(Z) < 1, i.e. even residents at the border of the city have some

working time remaining after commuting to the CID.

18This reproduces Wildasin’s (1986) result about the ‘unequal treatment of equals’ mentioned above

in our more general setting.
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the aggregate marginal disutility from pollution expressed in terms of average marginal

utility of wage income.

The second abbreviation concerns the marginal costs of living space, which are given

as the right hand side of condition (16). This expression is in terms of utility. Dividing

it by µ yields the marginal costs of living space in units of foreign exchange, which we

abbreviate with r(z):

r(z) := r + p F ′(A)

Z∫
z

n(z̃) t′c(z̃) dz̃. (24)

Dividing condition (15) by (16) and inserting the abbreviations (23) and (24) leads to

(1− α) x(z)

(1− α) s(z)
=

r(z)

p + γ(i(z)) D′ . (25)

This condition describes the optimal allocation of consumption of goods x(z) and living

space s(z).

Equation (18) determines the optimal allocation of pollution-reducing infrastructure.

Using Abbreviation (23) and Condition (19), this equation transforms to

−γ′(i(z)) n(z) x(z) D′ = pi + p F ′(L). (26)

Differentiating Equation (26) with respect to z and using the conditions (25) and n(z) =

1/s(z), gives the following result:

Proposition 1 (Spatial distribution of infrastructure)

The optimal supply of infrastructure decreases monotonically with the distance from the

CID:
di(z)

dz
=

[
γ′(i(z)) D′

p + γ(i(z)) D′ −
γ′′(i(z))

γ′(i(z))

]−1
r′(z)

r(z)
< 0 (27)

for 0 ≤ z ≤ Z.

Proof: See section A.1 in the appendix.

The main idea of this proposition is that the supply of infrastructure has to be spa-

tially differentiated in an adequate manner. More specifically, the optimal density of

infrastructure decreases from the CID to the periphery.19 The underlying reason for this

result is that in the neighbourhood of the CID, living space is scarcest: r(z) declines

19The exact relationship may change, if, e.g., congestion in commuting or different income classes are

considered.
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monotonically from the CID to the periphery. As a consequence of Proposition 1, the

further outside an individual lives, the more he/she substitutes consumption of goods by

consumption of living space in the optimum:

Corollary 1

If the utility level is the same for all urban residents, U(z) = U , consumption of goods

decreases from the CID to the periphery, while consumption of living space increases.

Population density decreases from the CID to the periphery.

Proof: see Appendix A.2.

One question of interest is, how optimal infrastructure supply changes, if the popu-

lation N of the city grows. It seems obvious that if the city expands, newly inhabited

areas should be supplied with infrastructure. But also in other areas infrastructure sup-

ply has to be adjusted to the change in population size. In particular, if some additional

assumptions are met, it can be shown that the optimal supply of infrastructure increases

everywhere in the city. The reason is that under these assumptions, while marginal costs

of infrastructure supply are constant, marginal utility of infrastructure increases, since

more people suffer from pollution. This argument holds for any place in the city, not just

for newly inhabited areas.

Proposition 2 (Adjustment of infrastructure to increasing population)

1. If the urban population increases, the optimal supply of infrastructure has to be

adjusted everywhere in the city, di(z)/dN 6= 0 for all z ∈ [0, Z].

2. Assume tc(z) = tc · z, F (L) = f · L, d(E) = δ · E, r = 0 and pi = 0. Then,

the optimal supply of infrastructure increases everywhere in the city, if the urban

population increases, di(z)/dN > 0 for all z ∈ [0, Z].

Proof: see Appendix A.3

5 Urban environmental policy in a decentralised econ-

omy

Now we turn to the problem of how to implement the socially optimal allocation in a

decentralised economy. We shall proceed in three steps: first, we shall determine the
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laissez-faire allocation without government intervention (Section 5.1). Second, we shall

investigate the situation where the urban government supplies the pollution-reducing

infrastructure and imposes a Pigouvian tax on consumption (Section 5.2). Third, we shall

consider a setting, in which the government imposes a Pigouvian tax on emissions and

households provide the pollution-reducing infrastructure. The government will subsidise

infrastructure in order to achieve an optimal provision of infrastructure (Section 5.3).

Whether the setting investigated in Section 5.2 or in Section 5.3 is relevant to a spe-

cific context depends on whether the households can observe their consumption of goods

only or if they can monitor their polluting emissions: if households cannot monitor their

emissions, only the urban government can supply infrastructure efficiently. Since house-

holds cannot choose emissions independently of consumption, the Pigouvian tax is on

consumption rather than on emissions. If, on the other hand, households can monitor

their emissions, infrastructure can be provided by private households. In this case, the

Pigouvian tax is on emissions, because households can choose the emission level per unit

of consumption by choosing the infrastructure density i(z).

5.1 Laissez-faire

The laissez-faire equilibrium is the allocation in which households maximise utility –

given their income y(z) – by choosing the consumption of goods and living space as well

as their place of residence, and firms maximise profits. In equilibrium all markets clear,

and the ‘spatial equilibrium condition’ holds, i.e. all individuals enjoy the same utility.

In the laissez-faire case, the urban government’s role is to rent out living space to urban

residents and to redistribute revenues (net of expenditures to rent undeveloped land)

equally among the inhabitants of the city. Let w be the wage rate and r(z) be the rent

on living space. Then, the income of a household living at place z ∈ [0, Z] is the sum of

wage earnings and the share of redistributed rents,

y(z) = w (1− tc(z)) +
1

N

Z∫
0

(r(z)− r) dz. (28)

Profit maximisation of firms implies that the value of the marginal product of labour

equals the wage rate w, i.e. p F ′(L) = w. The optimisation problem of a household living
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at z is

max
x(z), s(z)

x(z)α s(z)1−α − d(E) s.t. y(z) = p x(z) + r(z) s(z). (29)

The Lagrangian is Llf = x(z)α s(z)1−α − d(E) + λlf(z) [y(z)− p x(z)− r(z) s(z)], and the

first order conditions are

α x(z)α−1 s(z)1−α = λlf(z) p (30)

(1− α) x(z)α s(z)−α = λlf(z) r(z). (31)

Multiplying (30) with x(z) and (31) with s(z) and adding both equations leads to

λlf(z) =
x(z)α s(z)1−α

p x(z) + r(z) s(z)
=

x(z)α s(z)1−α

y(z)
, (32)

which is the marginal utility of income y(z) (Mas-Colell et al. 1995:54f).

The resulting demand functions are x(z) = α y(z)/p for goods and s(z) = (1−α) y(z)/r(z)

for living space. Inserting these demand functions into the utility function (1) yields the

indirect utility function

vlf(z) = αα (1− α)1−α y(z)

pα r(z)1−α
− d(E). (33)

The spatial equilibrium condition requires that the indirect utility is the same at all

locations z ∈ [0, Z], i.e. none of the identical households has an incentive to move. We

rewrite this condition in the following way:

vlf(z) = U ⇔ vlf ′(z) = 0

⇔ y′(z)

y(z)
= (1− α)

r′(z)

r(z)
⇔ r′(z) = y′(z)

r(z)

(1− α) y(z)
= y′(z) n(z). (34)

Here, we have inserted the demand for living space and used condition n(z) = 1/s(z).

Equation (34) determines the spatial differentiation of rent for living space in the laissez-

faire equilibrium. Inserting Equation (28) yields

r′(z) = −n(z) w t′c(z). (35)

Exactly the same condition is derived by differentiating Equation (24), which gives the

marginal costs of living space in the Pareto optimum, with respect to space and inserting

the condition for the firm’s profit maximum, w = p F ′(L). This observation reflects the

fact that the market for living space is undistorted.
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5.2 Public supply of infrastructure

Turning to the investigation of urban environmental policy, we start with the case that

the urban government provides pollution reducing infrastructure. It is assumed to do

this optimally, i.e. according to Equation (26). In addition, the government imposes a

Pigouvian tax τ(z) on polluting consumption, which we allow to be spatially differenti-

ated. Denoting the household’s income with y(z) and the rent for living space with r(z),

the household’s optimisation problem reads

max
x(z), s(z)

x(z)α s(z)1−α − d(E) subject to y(z) = (p + τ(z)) x(z) + r(z) s(z).

The first order conditions for this problem yield:

(1− α) x(z)

(1− α) s(z)
=

r(z)

p + τ(z)
(36)

By comparing this equation to (25), we find that the condition for the household’s opti-

mum is equal to the condition for the Pareto optimum, if the rent r(z) for living space is

as given by Equation (24) and the tax rate τ(z) on consumption is

τ(z) = γ(i(z)) D′, (37)

where the social marginal damage from pollution D′ is given by Equation (23).

The tax rate τ(z), Equation (37), depends on the place where the respective unit is

consumed because it depends on the amount of infrastructure provided there. Differen-

tiating (37) with respect to space, using γ′(i(z)) < 0 (Condition 5) and Proposition 1,

yields the result that the optimal tax rate increases from the CID to the periphery, i.e.

τ ′(z) > 0. In other words, the tax rate equals the marginal social damage of one unit

of consumption, which depends on the amount of infrastructure available at the place

where the unit of the goods is consumed. At places where infrastructure density is high,

marginal damage is comparatively low and vice versa. Hence, the tax rate is highest in the

city centre, where infrastructure density is highest, and declines towards the periphery,

where infrastructure is is provided at a lower level.

To implement the optimum as a spatial equilibrium, we also need to ensure that the

spatial equilibrium condition holds, i.e. that the indirect utility of the representative

individual everywhere is the same. The indirect utility function reads:

vpub(z) = αα (1− α)1−α y(z) (p + τ(z))−α r(z)−(1−α) − d(E). (38)
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The spatial equilibrium condition requires

vpub ′
(z) = 0

⇔ y′(z)

y(z)
= α

τ ′(z)

p + τ(z)
+ (1− α)

r′(z)

r(z)

⇔ y′(z) = τ ′(z) x(z) + r′(z) s(z) = τ ′(z) x(z)− w t′c(z). (39)

Here, we have inserted the demand functions for goods and living space as well as Con-

dition (35). It can immediately be seen that with the same incomes as in the laissez-faire

equilibrium, given by (28), this equation does not hold: in contrast to the laissez-faire

equilibrium, the price of the consumption commodity is not independent of space, be-

cause τ ′(z) > 0. Hence, a redistribution of incomes is necessary. Together with the results

derived above, this determines the optimal environmental policy in the case of publicly

supplied infrastructure.

Proposition 3 (Environmental policy with public provision of infrastructure)

Three policy instruments are needed to reach a first best in a decentralised economy with

a public infrastructural provision:

1. a spatially differentiated supply of infrastructure according to (27),

2. a spatially differentiated tax on consumption with rate τ(z), where τ(z) increases

monotonically with the distance from the CID, dτ(z)/dz > 0 for 0 ≤ z ≤ Z,

3. a redistribution of incomes from individuals living near the city centre to individuals

living further outside. More precisely, incomes have to be y(z) = w (1−tc(z))+Θ(z)

with

Θ′(z) = τ ′(z) x(z) > 0. (40)

Proof: Only Part 3. remains to be proven. It follows from comparing y′(z) = −w t′c(z)+

Θ′(z) with the spatial equilibrium condition (39). 2

Hence, the optimal environmental policy requires three instruments, and all of them

have to be spatially differentiated: the density of infrastructure declines from the CID to

the periphery, the tax rate increases with the distance from the CID, and there is a redis-

tribution of incomes from the centre to the periphery. All these spatial differentiations
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– which are jointly endogenously determined – result from including pollution-reducing

infrastructure in the model. If the possibility of a spatially distributed supply of infra-

structure is neglected, i.e. if γ(i(z)) ≡ const, the tax rate τ is uniform all over the city

and a spatially differentiated redistribution of incomes would be unnecessary.

The supply of infrastructure i(z) and the redistribution Θ(z) of incomes are deter-

mined by the differential equations (27) and (40), respectively, together with the resource

constraints and the condition that the rent r(Z) for living space at the border of the city

equals the rural rent r, r(Z) = r. Given i(z) and Θ(z), the tax on consumption may be

calculated from (37).20

5.3 Private supply of infrastructure

In this section, we shall consider the setting in which infrastructure is provided by private

households. We will introduce two policy instruments of the urban government, a tax

θ(z) on polluting emissions and a subsidy σ(z) on the private supply of pollution-reducing

infrastructure. Both instruments are allowed to be spatially differentiated in the first

place. In this setting, the household chooses the amount of polluting emissions e(z)

indirectly by choosing the infrastructure supply i(z). The optimisation problem of a

household residing at z is

max
x(z), s(z), i(z)

x(z)α s(z)1−α − d(E) subject to (41)

y(z) = p x(z) + r(z) s(z) + (pi + w − σ(z)) i(z) + θ(z) e(z)

e(z) = γ(i(z)) x(z)

The first order conditions for the households optimum lead to the following equations:

(1− α) x(z)

α s(z)
=

r(z)

p + θ(z) γ(i(z))
(42)

σ(z)− θ(z) γ′(i(z)) x(z) = pi + w (43)

The comparison of condition (42) with (25) yields:

θ(z) = θ = p D′, (44)

20However, it is not possible to derive a closed form solution in general.
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i.e. θ(z) equals the social marginal damage of one unit of pollution, which is constant

throughout the city. Hence, the Pigouvian tax θ(z) = θ is the same for all households.

Inserting Equation (44) into (43) and comparing this equation to the condition for the

optimal supply of pollution-reducing infrastructure, Equation (26), yields

σ(z) =
(n(z)− 1)

n(z)
(pi + w). (45)

The necessity of subsidising infrastructure results from the fact that infrastructure is a

public means of abating emissions, i.e. it serves not only one household, but all n(z)

households residing in [z, z + dz]. To ensure the optimal supply of this local public good,

a subsidy is required, as given by Equation (45).

The subsidy (45) varies at different places in the city. As stated in Corollary 1, the

optimal population density declines from the city centre to the periphery. Thus, the

subsidy declines as well. As a consequence, in the case of privately supplied infrastruc-

ture, a similar redistribution of incomes is necessary as in the case of public supply of

infrastructure (cf. Proposition 3).

The three instruments of environmental policy in the case of private supply of infra-

structure are summarised in the following result.

Proposition 4 (Environmental policy with private supply of infrastructure)

Three policy instruments are needed to achieve a first best in a decentralised economy

with a private provision of infrastructure:

1. a spatially differentiated subsidy on infrastructure (Equation 45),

2. a spatially homogenous tax on emissions (Equation 44), and

3. a redistribution of incomes such that incomes are y(z) = w [1− tc(z)] + Θ(z) with

Θ′(z) = −pi + w

n(z)
i(z)

n′(z)

n(z)
> 0. (46)

Proof: see Appendix A.4

6 Conclusions and discussion

Pollution-reducing infrastructure has been incorporated in the model as a public means

of pollution abatement. As modelled here, pollution-reducing infrastructure serves to
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dispose a part of the by-products from consumption of goods properly, i.e. such that only

the remainder contributes to the damaging emissions. Thereby, infrastructure is a public

means of pollution abatement, as one unit of infrastructure serves all households living

in the immediate neighbourhood.

Providing infrastructure in order to improve urban environmental quality is most im-

portant in the context of rapidly growing cities in developing countries. We have shown

that infrastructural provision has to be changed throughout the city if population in-

creases, not just in newly inhabited areas. In order to investigate this issue in more

detail, however, an extension to a dynamic model would be necessary, which would then

also be capable of describing infrastructure – more realistically – in terms of capital goods.

We assumed homogenous environmental pollution in the city, in particular, one unit

of emissions contributes to the same extent to environmental pollution, irrespective of

where it is emitted. Hence, the Pigouvian tax on emissions is the same all over the city.

However, how much emissions are generated by one unit of consumption depends on

the infrastructure at the place, where the respective unit is consumed. Vice versa, the

optimal supply of infrastructure at each place depends on the amount of consumption

and the population density there. Given the structure of the city with a CID in the centre

and commuting costs increasing with the distance from the CID, infrastructure density

should be highest in the CID and decline monotonically towards the periphery. Hence,

environmental policy by means of pollution-reducing infrastructure has to be spatially

differentiated. There are two possibilities of providing infrastructure.

First, the urban government can build infrastructure. In that case, the household’s

only opportunity of abating emissions is by reducing consumption. Hence, the tax on

emissions is effectively a tax on consumption, which depends on the location at which

the respective unit is consumed. As a result, the tax burden differs from one location

to another and a redistribution of incomes becomes necessary in order to implement the

optimum as a residential equilibrium.

Second, infrastructure may be provided by private households. In that case, households

may abate emissions by supplying pollution-reducing infrastructure, i.e. they can choose

emissions independently of consumption by choosing the infrastructure density. Since it

is a public means of abatement, private households undersupply infrastructure, unless a
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subsidy on infrastructure is paid.21 This subsidy has to be spatially differentiated and,

hence, a redistribution of incomes is necessary to implement the optimum as a residential

equilibrium.22

To summarise, if pollution-reducing infrastructure is recognised as a means of ur-

ban environmental policy, fiscal policy instruments have to be spatially differentiated,

too, and, moreover, adequate transfer payments are needed to implement the Pareto

optimum as residential market equilibrium. These sophisticated policies result from con-

sidering pollution-reducing infrastructure as a means of urban environmental policy and

jointly determining infrastructure supply and fiscal policy instruments. Given the obvi-

ous relevance of infrastructure for urban environmental quality, this approach may lead

to considerable welfare gains.
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A Appendix

A.1 Proof of proposition 1

Inserting n(z) = 1/s(z) into equation (26), we have

−γ′(i(z))
x(z)

s(z)
D′ = pi + p F ′(L)

(25)
⇐⇒ −γ′(i(z))

α

1− α

r(z)

p + γ(i(z)) D′ D
′ = pi + p F ′(L).

Differentiating with respect to z and rearranging yields

⇒ −γ′′(i(z))

γ′(i(z))
i′(z)− r′(z)

r(z)
+

γ′(i(z)) i′(z) D′

p + γ(i(z)) D′ = 0

⇔
[

γ′(i(z)) D′

p + γ(i(z)) D′ −
γ′′(i(z))

γ′(i(z))

]
i′(z) =

r′(z)

r(z)
(47)

The right hand side of this equation is negative, because

r(z)
(24)
= r + p F ′(L)

Z∫
z

n(z̃) t′c(z̃) dz̃ > 0

and

r′(z) = p F ′(L) n(z) t′c(z) < 0,

as t′c(z) < 0. To prove the proposition, we finally show that

γ′(i(z)) D′

p + γ(i(z)) D′ −
γ′′(i(z))

γ′(i(z))
> 0.

We therefore use Condition (5):

d

di(z)

[
γ′(i(z))

γ(i(z))

]
≥ 0 (48)

⇔
[
[γ′(i(z))]

2 − γ′′(i(z)) γ(i(z))
]

D′ ≤ 0

⇒
[
[γ′(i(z))]

2 − γ′′(i(z)) γ(i(z))
]

D′ < p γ′′(i(z))

⇔ [γ′(i(z))]
2

D′ < γ′′(i(z)) [p + γ(i(z)) D′]

⇔ γ′(i(z)) D′

p + γ(i(z)) D′ >
γ′′(i(z))

γ′(i(z))
(49)

as γ′(i(z)) < 0 (the last conclusion) and γ′′(i(z)) > 0 (the conclusion from the first to

the second line). 2
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A.2 Proof of Corollary 1

Consumption per unit of space declines from the neighborhood of the CID to the periph-

ery,

d

dz

x(z)

s(z)

(25)
=

d

dz

r(z)

p + γ(i(z)) D′(E)
=

r′(z) (p + γ(i(z)))− r(z) γ′(i(z)) i′(z)

(p + γ(i(z)))2
< 0, (50)

as i′(z) < 0 (Proposition 1).

Given that the utility is the same all over the city, we have

dU(z)

dz
= x(z)α s(z)1−α

[
α

x′(z)

x(z)
+ (1− α)

s′(z)

s(z)

]
= 0.

⇔ x′(z)

x(z)
= − 1− α

α

s′(z)

s(z)
.

On the other hand, (50) yields

d

dz

x(z)

s(z)
=

x(z)

s(z)

[
x′(z)

x(z)
− s′(z)

s(z)

]
< 0.

Combining both equations leads to the result s′(z)/s(z) > 0 and x′(z)/x(z) < 0. Using

the condition n(z) = 1/s(z), we have the last result n′(z)/n(z) < 0. 2

A.3 Proof of proposition 2

Differentiate (47) with respect to N , considering the endogenous variables as functions

of N . This yields:[
γ′(i(z)) D′

p + γ(i(z)) D′ −
γ′′(i(z))

γ′(i(z))

]
di(z)

dN
− 1

r(z)

dr(z)

dN

+

[
γ(i(z))

p + γ(i(z)) D′ −
1

D′

]
dD′

dN
= p F ′′(L)

dL

dN

⇔[
γ′(i(z)) D′

p + γ(i(z)) D′ −
γ′′(i(z))

γ′(i(z))

]
di(z)

dN
=

1

r(z)

dr(z)

dN
+

p

p + γ(i(z)) D′
dD′

dN
+ p F ′′(L)

dL

dN

The expression in brackets on the left hand side is positive, as has been shown in the

previous section A.1. We will proceed by showing that the right hand side is positive,

too, provided tc(z) = tc · z, F (L) = f · L, d(E) = δ · E, r = 0 and pi = 0.
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We start with showing dr(z)/dN > 0. From the definition (24), we have

dr(z)

dN
=

d

dN

r + p F ′(A)

Z∫
z

n(z̃) t′c(z̃) dz̃

 = p · f · tc ·
d

dN

Z∫
z

n(z̃) dz̃

If the population of the city increases, it is certainly not optimal to move any person

further outside. It is neither optimal to locate all the new inhabitants beyond the former

border of the city. As a consequence, the population density n(z) is non-decreasing in N

everywhere in the city. On the other hand, since it carries opportunity costs to increase

the population density, the city will expand, i.e. dZ/dN > 0. As a consequence, we have

dr(z)/dN > 0.

The next step is to prove dD′/dN > 0. Using the definition (23), we have:

dD′

dN
=

d

dN

[
p F ′(L) L

x(z)α s(z)1−α
d′(E)

]
= p · f · δ · d

dN

[
L

x(z)α s(z)1−α

]
.

Certainly, the total labor supply L increases, if N increases. It remains to be shown that

x(z)α s(z)1−α decreases, if N increases. We therefore show that the average consumption

of goods x̄ and the average flat size s̄ decrease. As a consequence, average utility decreases

with increasing urban population N in the optimum.

The average consumption of goods is

x̄ =
F (L)−∆

N
=

F (L)− r
p
Z − pi

p

Z∫
0

i(z) dz

N
=

F (L)

N
, (51)

because r = 0 and pi = 0 by assumption. Since the average worker lives further away

from the city center, and therefore the average commuting time increases if N increases,

the average output per worker decreases. Thus, dx̄/dN < 0.

The average size of living space is s̄ = Z
N

. We have shown above, that Z increases

with N , but since some of the new urban inhabitants move further to the city center, the

average lot size will decrease. Thus, ds̄/dN < 0.

A.4 Proof of proposition 4

Parts 1. and 2. of the proposition have been proven above. Here, we prove part 3. Given

the subsidy (45) on infrastructure, a household residing at z has a net income

ynet(z) = y(z)− pi + w

n(z)
i(z).
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Inserting this, the indirect utility is

vpriv(z) = αα (1− α)1−α ynet(z) (p + γ(i(z)) p D′)−α r(z)−(1−α) − d(E)

= αα (1− α)1−α

(
y(z)− pi + w

n(z)
i(z)

)
(p + γ(i(z)) p D′)−α r(z)−(1−α) − d(E).

Hence, the spatial equilibrium condition reads:

y′(z)

y(z)− pi+w
n(z)

i(z)
= α

γ′(z) i′(z) p D′

p + γ(i(z)) p D′ + (1− α)
r′(z)

r(z)
+

pi + w

n(z)

i′(z)− i(z) n′(z)
n(z)

y(z)− pi+w
n(z)

i(z)

Multiplying both sides with the net income leads to

y′(z) = γ′(i(z)) i′(z) p D′ x(z) + r′(z) s(z) + (pi + w)
i′(z)

n(z)
− (pi + w)

i(z)

n2(z)
n′(z)

= (γ′(i(z)) n(z) p D′ x(z) + pi + w)
i′(z)

n(z)
+ r′(z) s(z)− (pi + w)

i(z)

n2(z)
n′(z)

= r′(z) s(z)− pi + w

n(z)
i(z)

n′(z)

n(z)
= −w t′c(z)− pi + w

n(z)
i(z)

n′(z)

n(z)
. (52)

Here we have inserted Condition (26) for the optimal supply of infrastructure to derive

the second equality and used Equation (35) for the last conclusion. By Corollary 1, we

have n′(z)/n(z) < 0. The comparison of y′(z) = −w t′c(z) + Θ′(z) with Condition (52)

proves

Θ′(z) = −pi + w

n(z)
i(z)

n′(z)

n(z)
> 0. (53)
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