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Outline

➢ Continuity Equation

➢ Advection, Dispersion, and Diffusion 

➢ Sorption Isotherms and Decay 

➢ Derivation of Advection Dispersion Equation 

(ADE) for a sorbing compound and decay

➢ Qualitative exercise on solute transport
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Continuity equation for an extensive quantity with volumetric density ρ:

Or, in ordinary language:  

Rate of  

accumulation for 

unknown ρ within 

the volume Ω 

Net influx of ρ into 

the volume Ω 

through its 

surface S

Net rate of ρ 

production/ 

decay within 

the volume Ω

=+

(Eq. 0)

Governing Equations
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Recall the Divergence Theorem (“Satz von Gauß”): 

So, our Eq. 0 becomes.  

(Eq. 1)

Governing Equations
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Advection (shift of location):

Darcy’s law /

specific discharge:

Linear average velocity: Specific discharge 

Effective porosity

Velocity of a conservative tracer. 

Flux of advection:

If write Eq. 1 in derivative form, 

Our primary unknown is solute mass, 

where: volumetric density = concentration

Our flux is composed of: 
    1) Advective flux

    2) Diff./ Disp. flux

Source / Sink

Advection Dispersion Equation (ADE) in 1D

(Eq. 2)
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Hydrodynamic Dispersion (hydromechanical spreading) 

Including diffusion:

Diff./ Disp. Flux ( Fick’s 1st Law) 

1D

3D

Think about: 

Why negative sign? 

Dispersion

Longitudinal / transverse dispersivity 

Pore diffusion coefficient 

Note: Dispersivity values are often scale dependent! 

Xu and Eckstein (1995)

Xu and Eckstein (1995) Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. 
Ground Water 33, no. 6: 905-08

Advection Dispersion Equation (ADE) in 1D
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Diffusion (Molecular spreading)

Li Yuan-Hui, Sandra Gregory (1974) Diffusion of ions in sea water and in deep-sea sediments. 

Geochimica et Cosmochimica Acta, Volume 38, Issue 5, 703-714

➢ In shallow aquifers, it is typically orders of 
magnitudes lower than dispersion

➢ Does not dependent on flow 

➢ It is largely temperature dependent. 

Advection Dispersion Equation (ADE) in 1D

Putting advection and dispersion into Eq. (2) then:  

The governing equation for non-sorbing solute 

transport with homogeneous coefficients is:  
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Henry

Freundlich

Langmuir

1st-order decay

Sorption and Decay

• Soption isotherm describes the distribution of a 

particular chemical component in the aqueous 

and solid phase. 

• It is called an isotherm because it is measured 

at a constant temperature. 

• Because of different property of the solid phase 

and sorption component, the isotherm behaves 

differently and can be described by different 

mathematical equations. 

• Another important behavior of the chemical 

component is the decay process. Simplest 

decay process can be described as the first-

order decay. 

• The radioactive decay exactly follows this 

decay process. 

or
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Derivation of the advection

dispersion-reaction equation for

a sorbing compound and linear

decay from first principles 
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Exercise: Draw qualitatively 

1.0 m     
Q = 0.003 m3/day     NaCl = 0.1 M 

Effective Porosity = 0.3

Cross-sectional area: 

0.001 m2

Conc. over space at t1=1d and t2=2d 

Case (2) 

A shock source

0
x

C/C0

0
x

t0

t0

C/C0

t1 t2

t1 t2

Case (1)

A continuous source 
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0

C/C0

x

1.0

1.0 m     
Q = 0.003 m3/day     NaCl = 0.1 M 

Effective Porosity = 0.3

Cross Section Area: 

0.001 m2

??

Case (3): Assuming soil grain density is 2650 kg/m3 and Kd = 2.0 mL/g,  compute the 

retardation factor R? How does this retardation effect influence the concentration profile?

Case (4): What if there is a 1st order decay on the transported contaminant with ( λ = 0.7 

1/day )

Exercise 
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Modelling Reactive Transport Process with OpenGeoSys

with Decay-Chain Benchmark as an Example
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▪ Overview of Reactive Transport Process Features

▪ The Decay-Chain Benchmark

▪ Exercise: Set up the Decay-Chain prj File 

▪ Simulation and Visualization

Overview
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▪ Overview of Reactive Transport Process

▪ The Decay-Chain Benchmark

▪ Exercise: Set up the Decay-Chain prj File 

▪ Simulation and Visualization

Overview



How is Reactive Transport simulated by the Component Transport Process？

4

There are two sets of process variables

▪ Pressure 

▪ Concentration of each component

ComponentTransportThe component transport process can 

handle

▪ Fully saturated condition

▪ Variable-density flow 

▪ Component transport with advection, 

dispersion, sorption and decay

▪ Reactive transport
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GIA - Global Implicit Approach

Kc1c1

Kc2c2

Kc3c3

Kc4c4

Transport stage

Reaction stage

Mc1c1

Mc2c2

Mc3c3

Mc4c4

C1

C2

C3

C4

b1

b2

b3

b4

=

C1

C2

C3

C4

=

b1

b2

b3

b4

Kc1c1 Kc1c2

Kc2c2 Kc2c3

Kc3c3 Kc3c4

Kc4c4

C1

C2

C3

C4

b1

b2

b3

b4

=

Call Phreeqc to compute Rmin

<chemical_system chemical solver = “SelfContained”>

 <chemical_reactions>

 <chemical_reaction>

 <!-- 0 = -1 [Cm-247] + 1 [Am-243] -->

 <stoichiometric_coefficients>-1 1 0 0 0 0</stoichiometric_coefficients>

 <!-- t1_half_life = 1.56e7;

 LOG(2) / t1_half_life / 3.1536e7 -->

 <rate_constant>1.4089456993390242e-15</rate_constant>           

        </chemical_reaction>

    </chemical_reactions>

</chemical_system>

OP – Operator Splitting 

Modelling Reactive Transport Process with different algorithms
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https://www.opengeosys.org/docs/benchmarks/reactive-transport/Find all RTP benchmarks here, along with the descriptions:  

Available benchmarks with Reactive Transport Process
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▪ Overview of Reactive Transport Process Features

▪ The Decay-Chain Benchmark

▪ Exercise: Set up the Decay-Chain prj File 

▪ Simulation and Visualization

Overview
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• 1D Domain [200 m × 106 y]

• Only diffusion + decay is considerred

• Uniform transport properties of OPA

Porosity                             0.12

Pore diffusion coefficient   1e-11

Source: Dr. Christoph Behrens (BGE)

Cm-247

Am-243

Pu-239

U-235

Pa-231

Ac-227

T   = 15.6 million a1/2

T   = 7.4   k a1/2

T   = 24.1 k a1/2

T   = 70.4 million a1/2

T   = 32.8 k a1/2

T   = 21.8 a1/2

Dirichlet BC

C(0,t) = 1.0 C(x,0) = 0 No flux BC

The Decay-Chain Benchmark
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After 10k years, the simulated results as follows, 

also verified against the analytical solution

Analytical Solution:  Sun, Y., Petersen, J. N., & Clement, T. P. (1999). Journal of contaminant hydrology, 35(4), 429-440.

▪ In this case each component has the same 

pore diffusion coefficient, i.e some travels 

faster than others. 

▪ U-235 is the slowest decaying component in 

this chain, therefore its concentration will 

accumulate over time and get more than 1.0

▪ Decay of Cm-247 is also slow, therefore it 

diffuses the second far

▪ Ac-227 is the fastest decaying component 

(only 23 years of half-life), therefore it can 

barely travel some distance

The Decay-Chain BenchmarkThe Decay-Chain Benchmark
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▪ Overview of Reactive Transport Process Features

▪ The Decay-Chain Benchmark

▪ Exercise: Set up the Decay-Chain prj File 

▪ Simulation and Visualization

Overview
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https://www.opengeosys.org/docs/

Exercise: Set up the Decay-Chain prj File

https://www.opengeosys.org/docs/
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https://www.opengeosys.org/docs/benchmarks/reactive-transport/decaychain/

▪ This exercise is based on this 

benchmark

Exercise: Set up the Decay-Chain prj File
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In the source code folder

\Tests\Data\Parabolic\ComponentTransport\ReactiveTransport\DecayChain\GlobalImplicitApproach

▪ 3 mesh files with *.vtu

▪ *.prj project configuration file 

▪ *.PVD is the Paraview index 

file referring to all result files

▪ 4 *.vtu files containing the 

simulation results from time 

step #0, #10, #100 and #1000

Exercise: Set up the Decay-Chain prj File
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▪ The prj file is the model configuration 

file in XML format

▪ You can expand / collapse each section 

by clicking on the + and – symbol

▪ The order of the section does not matter

▪ When error pops up while reading the

configuration, messages will be

recorded in the log file or on screen

▪ The key words are always surrounded by the “Klammer” structure

▪ <!-- … --> means comments, which will not be read into the program

▪ You need to change the content when seeing the TODOs

▪ There are 10 TODOs in total

Exercise: Set up the Decay-Chain prj File
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There are 3 mesh files here

▪ The entire domain

▪ Upstream boundary nodes

▪ The reaction domain (TODO#1)

We have to set the process type to

▪ ComponentTransport (TODO#2)

The process variables include the 

concentration of each component 

(TODO#3)

▪ [Cm-247]

▪ [Am-243] 

▪ [Pu-239] 

▪ [U-235] 

▪ [Pa-231] 

▪ [Ac-227]

Exercise: Set up the Decay-Chain prj File :: Mesh and Processes
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We devide the media into 3 phases

▪ AqueousLiquid 

(the only phase in DecayChain)

▪ Solid

▪ Gas

For each component in Aq. phase

▪ Pore diffusion coefficient

▪ Retardation Factor set to 1 (no 

sorption)

▪ Decay Rate (set to 0 in this case)

Please repeat it for all components

Exercise: Set up the Decay-Chain prj File :: Media Properties



Exercise: Set up the Decay-Chain prj File :: Media Properties

17

This section is the property of water

▪ Density (1000 kg/m3)

▪ Viscosity (0.001 Pa sec)

This section is about the porous media 

properties

▪ Permeability

(refer to the kappa in the parameters list)

▪ Porosity

(refer to the value in the parameters list)

▪ Longitudinal and transversal dispersivity 

(0 = no dispersion)
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A parameter can be defined as 

▪ A constant value

▪ Time dependent 

▪ Space dependent

Give the following values in the 

parameters list (TODO #6 and #7)

▪ Set permeability to 1.157e-12 m2/s

▪ Set porosity to 0.12

https://www.opengeosys.org/docs/benchmarks/liquid-flow/time-

dependent-heterogeneous-source-term-and-boundary-conditions/

Exercise: Set up the parameters (TODO #6 and #7)



Exercise: Set up the Decay-Chain prj File :: Types of Boundary Conditions
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▪ Dirichlet → Given Value of Primary Variable

▪ Neumann → Given Flux Value

▪ Robin → Given Flux calculated by Primary Variable

For solving the elliptic problem

https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-robin/

https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-neumann/

https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-neumann/

▪ More complex BC via Python script

https://www.opengeosys.org/docs/benchmarks/python-bc/elder/



Exercise: Set up the Decay-Chain prj File :: Initial and Boundary Conditions
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For pressure, We set both initial and boundary conditions to 1 bar (1e5 Pa), 

p(x,t) = 1e5 Pa

▪ Since there is no 

difference in pressure, 

there will be no advection. 

Hence, the transport is 

only controlled by 

diffusion and decay. 



Exercise: Set up the Decay-Chain prj File :: Initial and Boundary Conditions
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For concentration, we set initial condition to 0 and boundary condition to 1, 

C(0,t) = 1.0 C(x,0) = 0

▪ Values set for each component

▪ Initial condition set to 0

▪ Boundary condition applied on a 

subset of the domain (just the 

boundary node in this case)

▪ Boundary condition set to 1



Exercise: Set up the Decay-Chain prj File :: Decay Reactions
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▪ The order of participating components are 

following the order of process variables

▪ The stoichiometry is filling in following each 

reactions

▪ Rate of reaction is first order type

▪ Rate constant is according to the half-life 

of this radionuclide



Exercise: Set up the Decay-Chain prj File :: Decay Reactions (TODO #8 and TODO #9)
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▪ What is the stoichiometric coefficients of the last reaction?

▪ How much is the reaction rate constant for this reaction?  



Exercise: Set up the Decay-Chain prj File :: Time Stepping Scheme
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▪ A FixedTimeStepping scheme is set here

▪ Other stepping schemes are: 

▪ Each step is set to be 100 years

▪ Repeating 1000 times gives 100 k years



Exercise: Linear Solver
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▪ LIS solver

▪ Eigen solve (default)

▪ PETSC solver

The linear solver is internally calling 

one of the following external lib:

▪ In Eigen solver, one can choose different solver type and 

also preconditioners

▪ PETSC solver is prepared for parallel computing with MPI 

library (distributed memory type)

▪ Another choice of linear solve is the PADISO solver provided 

by Intel MKL lib

The following sparse linear solvers in 

Eigen library has been included: 

▪ CG

▪ BiCGSTAB

▪ IDRS

▪ IDRSTABL

▪ SparseLU

▪ PardisoLU

▪ GMRES



Exercise: Non-Linear Solvers
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• This is the relative tolerance for each component

• The maximum num of iterations is set to 10

PICARD NEWTON

Source: Mehl (2006) doi: 10.1111/j.1745-6584.2006.00207.x

https://doi.org/10.1111/j.1745-6584.2006.00207.x


Exercise: Set up the Decay-Chain prj File :: Output Control (TODO #10)
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▪ The output file will always start with this prefix

▪ Followed by the time step and time info

▪ Here we define when we want to output

➢ T = 0 is always printed out 

(initial condition, 0th step)

➢ Then output after 10 steps (10th step)

➢ Then after 90 steps (100th step)

➢ Then after 900 steps (1000th step)

▪ Under the keyword <variables>, we specify all 

variables that will appear in the vtu result files
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▪ Overview of Reactive Transport Process Features

▪ The Decay-Chain Benchmark

▪ Exercise: Set up the Decay-Chain prj File 

▪ Simulation and Visualization

Overview



Different Approaches of Simulation
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▪ Unzip the package into a folder called “ogs”

▪ Run simulation

Syntax: ogs.exe   path_to_the_project_file

▪ When simulation starts, time-series data files will be generated (.pvd file + .vtu files)

▪ Download OGS software package from the web

https://www.opengeosys.org/releases/



Different Approaches of Simulation
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▪ Display output messages

Syntax: ogs.exe   path_to_the_project_file > 

log.txt

▪ Visualization



Visualizing the simulation results

31

▪ Load the PVD file in Paraview

▪ Remember to “Apply” the View

▪ Add a “Plot over Line” Filter

▪ Just need to see from 0 to 30 m

▪ The results include from 0 to 

100k years

▪ Choose which components to 

display (6 of them)

▪ Try to see the Spreadsheet View

▪ Try to export the data to CSV file



~The End~
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Advective-Dispersive Transport for a Point Source

∂c
∂t

+ v
∂c
∂x

− Deff
∂2c
∂x

= −λc
Initial condition:

c(t0, x) =
m

Ane
δ(x)

with
m = "solute mass"
A = "cross-sectional area perpendicular to x"

δ(x) = "Dirac delta function"
Boundary conditions:

lim
x→±∞

c(t , x) = 0

Gaussian distribution with mean: x = vt and
variance: σ2 = 2Deff t

c(x , t) =
m

Ane

1√
4πDeff t

exp

(
− (x − vt)2

4Deff t

)
exp (−λt)
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Characteristic times and dimensionless numbers

Table: Characteristic time scales in advective-dispersive-reactive transport

Process Symbol Definition
Advection τadv

x
v

Dispersion τdisp
x2

Deff

1st-Order-Decay τreac
1
λ

Table: Dimensionless numbers used in transport computations

Name Symbol Meaning Definition
Peclét number Pe characteristic time of diffusion/dispersion

characteristic time of advection
vx

Deff

Damköhler number I DaI
characteristic time of advection
characteristic time of reaction

λx
v

Damköhler number II DaII
characteristic time of diffusion/dispersion

characteristic time of reaction
λx2

Deff

Courant number II Cr real time
characteristic time of advection

tv
x

Neumann number II Ne real time
characteristic time of diffusion/dispersion

tDeff
x2 = Cr

Pe
Be aware: If you use rates instead of characteristic times, the "meaning" is flipped, but the "Definition" stays the same
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Advective-Dispersive Transport for a Rectangular Source

∂c
∂t

+ v
∂c
∂x

− Deff
∂2c
∂x

= −λc

Initial condition:

c(t0, x) =


0 for x < −w

2

cini for − w
2 ≤ x ≤ w

2

0 for x > w
2

Boundary conditions:

lim
x→±∞

c(t , x) = 0

erfc(x) = 1 − erf(x) = 1 − 2
π

x∫
0

exp
(
−ξ2)dξ

c(x , t) =
cini

2

(
erf

(
x + w

2 − vt
√

4Defft

)
− erf

(
x − w

2 − vt
√

4Defft

))
exp (−λt)
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One-Dimensional Transport in a Semi-Infinite Domain I

∂c
∂t

+ v
∂c
∂x

− Deff
∂2c
∂x

= −λc

⇒ Constant-Concentration Boundary Condition (Ogata & Banks, 1961)

Initial condition: Boundary conditions:

c(t0, x) = 0 lim
x→∞

c(t , x) = 0

c(t , x0) = c0

c(x , t) =
c0

2
exp

(
xv

2Deff

)(
exp

(
− xvγ

2Deff

)
erfc

(
x − vtγ√

4Deff t

)
+ exp

(
xvγ
2Deff

)
erfc

(
x + vtγ√

4Deff t

))

with γ =
√

1 + 4λD
v2
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One-Dimensional Transport in a Semi-Infinite Domain II

∂c
∂t

+ v
∂c
∂x

− Deff
∂2c
∂x

= −λc

⇒ Constant-Flux Boundary Condition (Kinzelbach, 1992)

Initial condition: Boundary conditions:

c(t0, x) = 0
lim

x→∞
c(t , x) = 0

J(t , x0) = ne

(
cv − Deff

∂c
∂x

)
x=0

= Jin(t)

c(x , t) =
cin

2
exp

(
xv

2Deff

)(
exp

(
− xvγ

2Deff

)
erfc

(
x − vtγ√

4Deff t

)
− exp

(
xvγ
2Deff

)
erfc

(
x + vtγ√

4Deff t

))

with γ =
√

1 + 4λD
v2
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Comparison of Solutions

Solution for the Riemann problem with
initial condition:

c(t0, x) == ciniH(−x) =


cini for x < 0
cini
2 for x = 0

0 for x > 0

c(x , t) =
cini

2
erfc

(
x − vt√
4Deff t

)
exp (−λt)
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Exercises
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