

Solute Transport in Hydrosystems I

Philipp Selzer, Haibing Shao Dresden, 11.07.2025

<u>Outline</u>

- Continuity Equation
- Advection, Dispersion, and Diffusion
- Sorption Isotherms and Decay
- Derivation of Advection Dispersion Equation (ADE) for a sorbing compound and decay
- Qualitative exercise on solute transport

Governing Equations

Continuity equation for an extensive quantity with volumetric density ρ :

$$\frac{\partial}{\partial t} \int_{\Omega} \rho d\mathbf{x} + \oint_{\partial \Omega = S} \mathbf{n} \cdot \mathbf{f} d\mathbf{s} = \int_{\Omega} q d\mathbf{x} \quad \text{(Eq. 0)}$$

Or, in ordinary language:

Governing Equations

Recall the Divergence Theorem ("Satz von Gauß"):

$$\oint_{\partial\Omega} \mathbf{n} \cdot \mathbf{f} d\mathbf{s} = \int_{\Omega} \nabla \cdot \mathbf{f} d\mathbf{x}$$

So, our Eq. 0 becomes.

$$\frac{\partial}{\partial t} \int_{\Omega} \rho d\mathbf{x} + \int_{\Omega} \nabla \cdot \mathbf{f} d\mathbf{x} = \int_{\Omega} q d\mathbf{x}$$
 (Eq. 1)

Advection Dispersion Equation (ADE) in 1D

If write Eq. 1 in derivative form,

Our primary unknown is solute mass, where: volumetric density = concentration

$$\rho = c_w n_e$$

Our flux is composed of:

- 1) Advective flux
- 2) Diff./ Disp. flux

Advection (shift of location):

Flux of advection:
$$J_{adv} = qc_w$$
 Darcy's law /
$$q = -K\frac{\partial h}{\partial x}$$
 Linear average velocity:
$$v = \frac{q}{n_e}$$
 Specific discharge Effective porosity

Velocity of a conservative tracer.

Advection Dispersion Equation (ADE) in 1D

Dispersion

Diff./ Disp. Flux (Fick's 1st Law)

$$J_{diff} = -n_e D_p \frac{\partial c_w}{\partial x}$$

1D Think about:

Why negative sign?

$$J_{D_{eff}} = -n_e D_L \frac{\partial c_w}{\partial x}$$
 3D

Hydrodynamic Dispersion (hydromechanical spreading) Including diffusion:

$$D_L = \alpha_L v + D_p$$
 Pore diffusion coefficient
$$D_T = \alpha_T v + D_p$$

Longitudinal / transverse dispersivity

Note: Dispersivity values are often scale dependent!

$$\alpha_L=0.83(logL)^{2.414}$$
 Xu and Eckstein (1995)

Advection Dispersion Equation (ADE) in 1D

Diffusion

solute

Solute transport is from the left to the right; movement of the solutes is due to the concentration gradient (dC/dx).

Putting advection and dispersion into Eq. (2) then:

The governing equation for non-sorbing solute transport with homogeneous coefficients is:

$$\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} - D_{eff} \frac{\partial^2 c}{\partial x} = r$$

Diffusion (Molecular spreading)

- ➤ In shallow aquifers, it is typically orders of magnitudes lower than dispersion
- Does not dependent on flow
- It is largely temperature dependent.

Diffusion of ions in sea water and in deep-sea sediments

705

Table 1. Tracer and self-diffusion coefficients of ions at infinite dilution

	D_{j}^{0} (10 ⁻⁶ cm ² /sec)				D_j^0 (10 ⁻⁶ cm ² /sec)			
Cation	0°C	18°C	25°C	Anion	0°C	18°C	25°C	
H ⁺	56.1	81.7	93.1	OH-	25.6	44.9	52.7	
Li ⁺	4.72	8.69	10.3	F-	-	$12 \cdot 1$	14.6	
Na ⁺	6.27	11.3	13.3	CI-	10.1	$17 \cdot 1$	20.3	
K^+	9.86	16.7	19.6	Br-	10.5	17.6	$20 \cdot 1$	
Rb^+	10.6	17.6	20.6	I-	10.3	17.2	20.0	
Cs ⁺	10.6	17.7	20.7	IO ₃ -	5.05	8.79	10.6	
NH_4^+	9.80	16.8	19.8	HS-	9.75	14.8	17.3	
Ag+	8.50	14.0	16.6	S^{2-}		6.95		
Tl+	10.6	17.0	$20 \cdot 1$	HSO ₄ -			13.3	
Cu(OH)+			8.30	SO ₄ 2-	5.00	8.90	10.7	
$Zn(OH)^+$			8.54	SeO ₄ 2-	4.14	8.45	9.46	
Be ²⁺		3.64	5.85	NO ₂ -	_	15.3	19-1	
Mg ²⁺	3.56	5.94	7.05	NO ₃	9.78	$16 \cdot 1$	19.0	
Ca ²⁺	3.73	6.73	7.93	HCO ₃ -			11.8	
Sr ²⁺	3.72	6.70	7.94	CO ₃ 2—	4.39	7.80	9.55	
Ba ²⁺	4.04	7.13	8.48	H ₂ PO ₄ -		7.15	8.46	
Ra ²⁺	4.02	7.45	8.89	HPO42-			7.34	

Li Yuan-Hui, Sandra Gregory (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta, Volume 38. Issue 5, 703-714

Jinear -- Freundlich --- Langmuir 2 1 0 2 4 6 8 10

Henry

$$s = K_d c_w$$

Freundlich

$$s = Kc_w^n$$

Langmuir

$$s = \frac{s_{max}c_w}{c_w + K}$$

$$\frac{\partial c}{\partial t} = -\lambda c_w$$
 or

Sorption and Decay

- Soption isotherm describes the distribution of a particular chemical component in the aqueous and solid phase.
- It is called an isotherm because it is measured at a constant temperature.
- Because of different property of the solid phase and sorption component, the isotherm behaves differently and can be described by different mathematical equations.
- Another important behavior of the chemical component is the decay process. Simplest decay process can be described as the firstorder decay.
- The radioactive decay exactly follows this decay process.

$$\frac{\partial c}{\partial t} = -R\lambda c_w$$

Derivation of the advection dispersion-reaction equation for a sorbing compound and linear decay from first principles

Exercise: Draw qualitatively

Exercise

Case (3): Assuming soil grain density is 2650 kg/m³ and Kd = 2.0 mL/g, compute the retardation factor R? How does this retardation effect influence the concentration profile? Case (4): What if there is a 1st order decay on the transported contaminant with (λ = 0.7 1/day)

Modelling Reactive Transport Process with OpenGeoSys with Decay-Chain Benchmark as an Example

Dr. Philipp Selzer / Dr. Haibing Shao philipp.selzer@ufz.de

Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany

Prepared for the Lecture "Modellierung von Hydrosystemen"

in TU Dresden on 30.06.2023

Overview

- Overview of Reactive Transport Process Features
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

Overview

- Overview of Reactive Transport Process
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

How is Reactive Transport simulated by the Component Transport Process?

The component transport process can handle

- Fully saturated condition
- Variable-density flow
- Component transport with advection, dispersion, sorption and decay
- Reactive transport

There are two sets of process variables

- Pressure
- Concentration of each component

ComponentTransport

Modelling Reactive Transport Process with different algorithms

OP – Operator Splitting

Transport stage

Reaction stage

Call Phreeqc to compute R^{min}

M _{c1c1}			
	M _{c2c2}		
		M _{c3c3}	
			M _{c4c4}

$$\begin{array}{c|c}
C_1 \\
C_2 \\
C_3 \\
C_4
\end{array} = \begin{array}{c|c}
b_1 \\
b_2 \\
b_3 \\
b_4
\end{array}$$

GIA - Global Implicit Approach

		•	· · ·			
K _{c1c1}	K _{c1c2}			C ₁		b ₁
	K _{c2c2}	K _{c2c3}		C_2	_	b ₂
		K _{c3c3}	K _{c3c4}	C ₃	_	b ₃
			K _{c4c4}	C ₄		b ₄

```
<chemical_system chemical solver = "SelfContained">
        <chemical_reactions>
        <chemical_reaction>
        <!-- 0 = -1 [Cm-247] + 1 [Am-243] -->
            <stoichiometric_coefficients>-1 1 0 0 0 0 </stoichiometric_coefficients>
        <!-- t1_half_life = 1.56e7;
            LOG(2) / t1_half_life / 3.1536e7 -->
        <rate_constant>1.4089456993390242e-15</rate_constant>
        </chemical_reaction>
        </chemical_reactions>
    </chemical_system>
```

Available benchmarks with Reactive Transport Process

Find all RTP benchmarks here, along with the descriptions: https://www.opengeosys.org/docs/benchmarks/reactive-transport/

Overview

- Overview of Reactive Transport Process Features
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

The Decay-Chain Benchmark

- 1D Domain [200 m × 10⁶ y]
- Only diffusion + decay is considerred
- Uniform transport properties of OPA
 Porosity 0.12
 Pore diffusion coefficient 1e-11

Source: Dr. Christoph Behrens (BGE)

The Decay-Chain Benchmark

After 10k years, the simulated results as follows, also verified against the analytical solution

- In this case each component has the same pore diffusion coefficient, i.e some travels faster than others.
- U-235 is the slowest decaying component in this chain, therefore its concentration will accumulate over time and get more than 1.0
- Decay of Cm-247 is also slow, therefore it diffuses the second far
- Ac-227 is the fastest decaying component (only 23 years of half-life), therefore it can barely travel some distance

Overview

- Overview of Reactive Transport Process Features
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

https://www.opengeosys.org/docs/

https://www.opengeosys.org/docs/benchmarks/reactive-transport/decaychain/

In the source code folder \Tests\Data\Parabolic\ComponentTransport\ReactiveTransport\DecayChain\GlobalImplicitApproach

- The prj file is the model configuration file in XML format
- You can expand / collapse each sectionby clicking on the + and symbol
- The order of the section does not matter
- When error pops up while reading the configuration, messages will be recorded in the log file or on screen

```
Id_decay_chain_GIA_TODO.prj 🗵
        <?xml version="1.0" encoding="ISO-8859-1"?>
      □<OpenGeoSysProject>
           <meshes>
           cesses>
 25
           <media>
190
           <time loop>
           <chemical system chemical solver="SelfContained">
244
299
           <parameters>
           cess variables>
326
419
           <nonlinear solvers>
427
           <linear solvers>
443
           <test definition>
481
      L</OpenGeoSysProject>
482
```

- The key words are always surrounded by the "Klammer" structure
- <!-- ... --> means comments, which will not be read into the program
- You need to change the content when seeing the TODOs
- There are 10 TODOs in total

Exercise: Set up the Decay-Chain prj File :: Mesh and Processes

Id decay chain GIA TODO.pri ⊠ xml version="1.0" encoding="ISO-8859-1"?> □<OpenGeoSysProject> <meshes> <mesh>1d decay chain.vtu</mesh> <mesh>1d decay chain upstream.vtu</mesh> 6 <mesh><!-- TODO #1 Fill in here the file name for reactive domain --></mesh> </meshes> 8 cesses> 9 cess> <name>hc</name> <type><!-- TODO #2 The process type is ComponentTransport --></type> 11 <integration order>2</integration order> cess variables> 14 <concentration><!-- TODO #3 Type here component name [Cm-247] --> </concentration> <concentration><!-- TODO #3 Type here component name [Am-243] --> 15 </concentration> <concentration><!-- TODO #3 Type here component name [Pu-239] --> 16 </concentration> <concentration><!-- TODO #3 Type here component name [U-235] --> 17 </concentration> <concentration><!-- TODO #3 Type here component name [Pa-231] --> 18 </concentration> 19 <concentration><!-- TODO #3 Type here component name [Ac-227] --> </concentration> sure>pressure</pressure></pressure> </pre <specific body force>0</specific body force> 23 </process> </processes> 24 25 <media>

There are 3 mesh files here

- The entire domain
- Upstream boundary nodes
- The reaction domain (TODO#1)

We have to set the process type to

ComponentTransport (TODO#2)

The process variables include the concentration of each component (TODO#3)

- [Cm-247]
- [Am-243]
- [Pu-239]
- [U-235]
- [Pa-231]
- [Ac-227

Exercise: Set up the Decay-Chain prj File :: Media Properties

We devide the media into 3 phases

- AqueousLiquid (the only phase in DecayChain)
- Solid
- Gas

For each component in Aq. phase

- Pore diffusion coefficient
- Retardation Factor set to 1 (no sorption)
- Decay Rate (set to 0 in this case)

Please repeat it for all components

Exercise: Set up the Decay-Chain prj File :: Media Properties

```
Id decay chain GIA TODO.pri ☑
                            </components>
                            properties>
                                cproperty>
154
                                    <name>density</name>
                                    <type>Constant</type>
156
                                     <value>1e3</value>
                                </property>
158
                                cproperty>
159
                                     <name>viscosity</name>
                                    <type>Constant</type>
                                     <value>1e-3</value>
                                </property>
                            </properties>
164
                        </phase>
                    </phases>
166
                    properties>
167
                        cproperty>
                            <name>permeability</name>
                            <type>Parameter</type>
                            <parameter name>kappa</parameter name>
                        </property>
172
                        cproperty>
173
                            <name>porosity</name>
174
                            <tvpe>Parameter</tvpe>
                            <parameter name>porosity</parameter name>
176
                        </property>
                        property>
                            <name>longitudinal dispersivity</name>
179
                            <type>Constant</type>
                            <value>0</value>
                        </property>
                        property>
                            <name>transversal dispersivity</name>
184
                            <type>Constant</type>
                            <value>0</value>
186
                        </property>
```

This section is the property of water

- Density (1000 kg/m3)
- Viscosity (0.001 Pa sec)

This section is about the porous media properties

- Permeability(refer to the kappa in the parameters list)
- Porosity(refer to the value in the parameters list)
- Longitudinal and transversal dispersivity(0 = no dispersion)

Exercise: Set up the parameters (TODO #6 and #7)

Give the following values in the parameters list (TODO #6 and #7)

- Set permeability to 1.157e-12 m2/s
- Set porosity to 0.12

```
<parameter>
    <name>TimeDependentDirichlet right
    <type>TimeDependentHeterogeneousParameter</type>
    <time series>
        <pair>
            <time>0</time>
            <parameter name>bc right ts1</parameter name>
        </pair>
        <pair>
            <time>1180</time>
            <parameter name>bc right ts59</parameter name>
        </pair>
        <pair>
            <time>1200</time>
            <parameter name>bc right ts60</parameter name>
        </pair>
        <pair>
            <time>2000</time>
            <parameter name>bc right ts100</parameter name>
        </pair>
    </time series>
```

A parameter can be defined as

- A constant value
- Time dependent
- Space dependent

https://www.opengeosys.org/docs/benchmarks/liquid-flow/time-dependent-heterogeneous-source-term-and-boundary-conditions/

Exercise: Set up the Decay-Chain prj File :: Types of Boundary Conditions

For solving the elliptic problem $k \Delta h = 0$ in Ω

https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-neumann/

$$h=g_D\quad \text{ on }\Gamma_D,$$

Neumann → Given Flux Value

$$k \frac{\partial h}{\partial n} = g_N \quad \text{ on } \Gamma_N,$$

https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-neumann/

```
| Second S
```

<geometry>left</geometry>

https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-robin/

<type>Robin</type>
<alpha>alpha</alpha>
<u_0>u_0</u_0>
</boundary condition>

<boundary condition>

■ Robin → Given Flux calculated by Primary Variable

$$rac{\partial h}{\partial n} = lpha(h_0 - h(x)) \quad ext{ on } \Gamma_R,$$

https://www.opengeosys.org/docs/benchmarks/python-bc/elder/

More complex BC via Python script

<geometrical set>line 1 geometry/geometrical set>

Exercise: Set up the Decay-Chain prj File :: Initial and Boundary Conditions

For pressure, We set both initial and boundary conditions to 1 bar (1e5 Pa),

Since there is no
difference in pressure,
there will be no advection.
Hence, the transport is
only controlled by
diffusion and decay.

Exercise: Set up the Decay-Chain prj File :: Initial and Boundary Conditions

For concentration, we set initial condition to 0 and boundary condition to 1,

Exercise: Set up the Decay-Chain prj File:: Decay Reactions

The stoichiometry is filling in following each

The order of participating components are

			Components						
			Cm-247	Am-243	Pu-239	U-235	Pa-231	Ac-227	
		0 = -1 [Cm-247] + 1 [Am-243]	-1	1	0	0	0	0	
	SI	0 = -1 [Am-243] + 1 [Pu-239]	0	-1	1	0	0	0	
	tior	0 = -1 [Pu-239] + 1 [U-235]	0	0	-1	1	0	0	
	Reactions	0 = -1 [U-235] + 1 [Pa-231]	0	0	0	-1	1	0	
	~	0 = -1 [Pa-231] + 1 [Ac-227]	0	0	0	0	-1	1	
		0 = -1 [Ac-227] + 1 [n]	0	0	0	0	0	-1	

Rate of reaction is first order type

$$Rate = \frac{d[C]}{dt} = k[C]$$

Rate constant is according to the half-life of this radionuclide

Exercise: Set up the Decay-Chain prj File :: Decay Reactions (TODO #8 and TODO #9)

- What is the stoichiometric coefficients of the last reaction?
- How much is the reaction rate constant for this reaction?

		Components						
		Cm-247	Am-243	Pu-239	U-235	Pa-231	Ac-227	
	0 = -1 [Cm-247] + 1 [Am-243]	-1	1	0	0	0	0	
Reactions	0 = -1 [Am-243] + 1 [Pu-239]	0	-1	1	0	0	0	
	0 = -1 [Pu-239] + 1 [U-235]	0	0	-1	1	0	0	
	0 = -1 [U-235] + 1 [Pa-231]	0	0	0	-1	1	0	
	0 = -1 [Pa-231] + 1 [Ac-227]	0	0	0	0	-1	1	
	0 = -1 [Ac-227] + 1 [n]	0	0	0	0	0	-1	

Exercise: Set up the Decay-Chain prj File :: Time Stepping Scheme

Exercise: Linear Solver

The linear solver is internally calling one of the following external lib:

- LIS solver
- Eigen solve (default)
- PETSC solver

The following sparse linear solvers in

Eigen library has been included:

CG

SparseLU

428

429

430

431

432

433

434

435 436

437

438

439

440 441

442

- BiCGSTAB
- PardisoLU

IDRS

- GMRES
- IDRSTABL

```
<linear solvers>
   <linear solver>
       <name>general linear solver
       >-i cq -p jacobi -tol 1e-16 -maxiter 20000
       <eigen>
          <solver type>BiCGSTAB</solver type>
          <max iteration step>10000</max iteration step>
          <error tolerance>1e-14
      </eigen>
       <petsc>
          <prefix>hc</prefix>
          <parameters>-hc ksp type bcgs -hc pc type bjacobi -hc ksp rtol 1e-8
          -hc ksp max it 20000</parameters>
      </petsc>
   </linear solver>
</linear solvers>
```

- In Eigen solver, one can choose different solver type and also preconditioners
- PETSC solver is prepared for parallel computing with MPI library (distributed memory type)
- Another choice of linear solve is the PADISO solver provided by Intel MKL lib

Exercise: Non-Linear Solvers

NEWTON

Source: Mehl (2006) doi: 10.1111/j.1745-6584.2006.00207.x

- The maximum num of iterations is set to 10
- This is the relative tolerance for each component

Exercise: Set up the Decay-Chain prj File :: Output Control (TODO #10)

- The output file will always start with this prefix
- Followed by the time step and time info
- Here we define when we want to output
 - ➤ T = 0 is always printed out (initial condition, 0th step)
 - Then output after 10 steps (10th step)
 - Then after 90 steps (100th step)
 - > Then after 900 steps (1000th step)
- Under the keyword <variables>, we specify all variables that will appear in the vtu result files

```
215
               <output>
                   <type>VTK</type>
217
                   <prefix>1d decay chain GIA</prefix>
                   <suffix> ts {:timestep} t {:time}</suffix>
219
                   <timesteps>
220
                       <pair>
                           <repeat>1</repeat>
                           <each steps>10</each steps>
223
                       </pair>
224
                       <pair>
225
                           <repeat>1</repeat>
226
                           <each steps><!--TODO #10 We want the</pre>
227
                            100-th step to be printed out--></each steps>
                       </pair>
229
                       <pair>
230
                           <repeat>1</repeat>
231
                           <each steps><!--TODO #10 We want the</pre>
232
                            1000-th step to be printed out--></each steps>
233
                       </pair>
234
                   </timesteps>
                   <variables>
235
236
                       <variable>[Cm-247]</variable>
                       <variable>[Am-243]</variable>
238
                       <variable>[Pu-239]</variable>
239
                       <variable>[U-235]</variable>
240
                       <variable>[Pa-231]
241
                       <variable>[Ac-227]</variable>
242
                       <variable>pressure
243
                   </variables>
244
              </output>
245
          </time loop>
```

Overview

- Overview of Reactive Transport Process Features
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

Different Approaches of Simulation

- Download OGS software package from the web https://www.opengeosys.org/releases/
- Unzip the package into a folder called "ogs"
- Run simulation

Syntax: ogs.exe path_to_the_project_file

C:\work\CloudStation\2023_conferences_and_trips\20230630_TU_Dresden\DecayChain_DONE>..\ogs\bin\ogs.exe 1d_decay_chain_GIA.prj

When simulation starts, time-series data files will be generated (.pvd file + .vtu files)

Different Approaches of Simulation

Display output messages

```
C:\Windows\System32\cmd.exe
      time] Iteration #1 took 0.0438331 s.
     [time] Assembly took 0.0194844 s.
    [time] Applying Dirichlet BCs took 0.0014799 s.
     *** Eigen solver computation
    -> solve with Eigen iterative linear solver BiCGSTAB (precon ILUT)
        iteration: 0/10000
       residual: 3.322583e-24
    [time] Linear solver took 0.0128669 s.
    Convergence criterion, component 0: |dx|=0.0000e+00, |x|=2.4515e+06,
                                                                           |dx|/|x|=0.0000e+00
    Convergence criterion, component 1: |dx|=0.0000e+00, |x|=1.3593e+01,
                                                                           |dx|/|x|=0.0000e+00
    Convergence criterion, component 2: |dx|=0.0000e+00, |x|=9.3455e+00,
                                                                           |dx|/|x|=0.0000e+00
    Convergence criterion, component 3: |dx|=0.0000e+00, |x|=1.3881e+01,
                                                                           |dx|/|x|=0.0000e+00
    Convergence criterion, component 4: |dx|=0.0000e+00, |x|=1.9006e+01,
                                                                           |dx|/|x|=0.0000e+00
    Convergence criterion, component 5: |dx|=0.0000e+00, |x|=1.1422e+01,
                                                                           |dx|/|x|=0.0000e+00
    Convergence criterion, component 6: |dx|=0.0000e+00, |x|=3.0790e+00, |dx|/|x|=0.0000e+00
    [time] Iteration #2 took 0.0381688 s.
    [time] Solving process #0 took 0.0828339 s in time step #1000
    [time] Time step #1000 took 0.0864828 s.
    [time] Output of timestep 1000 took 0.0085149 s.
 o: The whole computation of the time stepping took 1000 steps, in which
       the accepted steps are 1000, and the rejected steps are 0.
 Fo: [time] Execution took 98.7813 s.
    OGS terminated on 2023-06-29 14:33:51+0200.
```

Visualization

Syntax: ogs.exe path_to_the_project_file >

log.txt

 $\hbox{$\tt C:\work\CloudStation\2023_conferences_and_trips\20230630_TU_Dresden\DecayChain_DONE>..\logs\bin\logs.exe~1d_decay_chain_GIA.prj~>~log.txt} \\$

Visualizing the simulation results

- Load the PVD file in Paraview
- Remember to "Apply" the View
- Add a "Plot over Line" Filter
- Just need to see from 0 to 30 m
- The results include from 0 to 100k years
- Choose which components to display (6 of them)
- Try to see the Spreadsheet View
- Try to export the data to CSV file

~The End~

Solute Transport in Hydrosystems II, Dresden, Germany

Some Analytical Solutions for Solute Transport in 1D

Applicant: Dr. Philipp Selzer¹

¹Department of Environmental Informatics, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

July 2, 2025

Advective-Dispersive Transport for a Point Source

$$\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} - D_{\text{eff}} \frac{\partial^2 c}{\partial x} = -\lambda c$$

Initial condition:

$$c(t_0,x)=\frac{m}{An_e}\delta(x)$$

with

m = "solute mass"

A = "cross-sectional area perpendicular to x"

 $\delta(x) =$ "Dirac delta function"

Boundary conditions:

Gaussian distribution with mean: x = vt and variance: $\sigma^2 = 2D_{eff}t$

$$\lim_{x \to \pm \infty} c(t, x) = 0$$

$$c(x, t) = \frac{m}{An_e} \frac{1}{\sqrt{4\pi D_{eff} t}} \exp\left(-\frac{(x - vt)^2}{4D_{eff} t}\right) \exp\left(-\lambda t\right)$$

Characteristic times and dimensionless numbers

Table: Characteristic time scales in advective-dispersive-reactive transport

Process	Symbol	Definition
Advection	$ au_{ extit{adv}}$	$\frac{x}{v_{z}}$
Dispersion	$ au_{ extit{disp}}$	$\frac{x^2}{D_{eff}}$
1st-Order-Decay	$ au_{reac}$	$\frac{1}{\lambda}$

Table: Dimensionless numbers used in transport computations

Name	Symbol	Meaning	Definition
Peclét number	Pe	characteristic time of diffusion/dispersion characteristic time of advection	$\frac{vx}{D_{\text{eff}}}$
Damköhler number I	Da _l	characteristic time of advection	$\frac{\lambda x}{v}$
Damköhler number II	Da _{ll}	characteristic time of diffusion/dispersion characteristic time of reaction	$\frac{v}{\lambda x^2} \over D_{eff} \over t v}$
Courant number II	Cr	real time characteristic time of advection	X
Neumann number II	Ne	real time characteristic time of diffusion/dispersion	$\frac{tD_{eff}}{x^2} = \frac{Cr}{Pe}$

Be aware: If you use rates instead of characteristic times, the "meaning" is flipped, but the "Definition" stays the same

Advective-Dispersive Transport for a Rectangular Source

$$\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} - D_{eff} \frac{\partial^2 c}{\partial x} = -\lambda c$$

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = 1 - \frac{2}{\pi} \int_{0}^{x} \exp(-\xi^2) d\xi$$

Initial condition:

$$c(t_0,x) = egin{cases} 0 & ext{for } x < -rac{w}{2} \ c_{ini} & ext{for } -rac{w}{2} \leq x \leq rac{w}{2} \ 0 & ext{for } x > rac{w}{2} \end{cases}$$

Boundary conditions:

$$\lim_{x \to \pm \infty} c(t,x) = 0$$

$$c(x,t) = \frac{c_{ini}}{2} \left(\text{erf} \left(\frac{x + \frac{w}{2} - vt}{\sqrt{4D_{efft}}} \right) - \text{erf} \left(\frac{x - \frac{w}{2} - vt}{\sqrt{4D_{efft}}} \right) \right) \exp\left(-\lambda t\right)$$

One-Dimensional Transport in a Semi-Infinite Domain I

$$\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} - D_{\text{eff}} \frac{\partial^2 c}{\partial x} = -\lambda c$$

⇒ Constant-Concentration Boundary Condition (Ogata & Banks, 1961)

Initial condition:

Boundary conditions:

$$c(t_0,x) = 0 \qquad \lim_{x \to \infty} c(t,x) = 0 \\ c(t,x_0) = c_0 \\ c(x,t) = \frac{c_0}{2} \exp\left(\frac{xv}{2D_{eff}}\right) \left(\exp\left(-\frac{xv\gamma}{2D_{eff}}\right) \operatorname{erfc}\left(\frac{x-vt\gamma}{\sqrt{4D_{eff}t}}\right) + \exp\left(\frac{xv\gamma}{2D_{eff}}\right) \operatorname{erfc}\left(\frac{x+vt\gamma}{\sqrt{4D_{eff}t}}\right) \right)$$
 with $\gamma = \sqrt{1 + 4\frac{\lambda D}{v^2}}$

One-Dimensional Transport in a Semi-Infinite Domain II

$$\frac{\partial c}{\partial t} + v \frac{\partial c}{\partial x} - D_{\text{eff}} \frac{\partial^2 c}{\partial x} = -\lambda c$$

⇒ Constant-Flux Boundary Condition (Kinzelbach, 1992)

Initial condition:

Boundary conditions:

$$c(t_0,x) = 0$$

$$\lim_{x \to \infty} c(t,x) = 0$$

$$J(t,x_0) = n_{\rm e} \left(cv - D_{\rm eff} \frac{\partial c}{\partial x} \right)_{x=0} = J_{\rm in}(t)$$

$$c(x,t) = \frac{c_{\rm in}}{2} \exp\left(\frac{xv}{2D_{\rm eff}}\right) \left(\exp\left(-\frac{xv\gamma}{2D_{\rm eff}}\right) \operatorname{erfc}\left(\frac{x-vt\gamma}{\sqrt{4D_{\rm eff}t}}\right) - \exp\left(\frac{xv\gamma}{2D_{\rm eff}}\right) \operatorname{erfc}\left(\frac{x+vt\gamma}{\sqrt{4D_{\rm eff}t}}\right) \right)$$
 with $\gamma = \sqrt{1 + 4\frac{\lambda D}{v^2}}$

Comparison of Solutions

Solution for the Riemann problem with initial condition:

$$c(t_0,x) == c_{ini}H(-x) = egin{cases} c_{ini} & ext{for } x < 0 \ rac{c_{ini}}{2} & ext{for } x = 0 \ 0 & ext{for } x > 0 \end{cases}$$

$$c(x,t) = \frac{c_{ini}}{2} \operatorname{erfc}\left(\frac{x - vt}{\sqrt{4D_{eff}t}}\right) \exp\left(-\lambda t\right)$$

Exercises