EVALUATING THE VALUE OF YOUNG WATER FRACTIONS FOR UFZ HELMHOLTZ Centre for Environmental Research **DETERMINING WATER TRANSIT TIMES IN DIVERSE CATCHMENTS**

Paper number: H12K-0824

Arianna Borriero¹, Rohini Kumar², Tam. V. Nguyen¹, Jan H. Fleckenstein^{1,3}, and Stefanie R. Lutz⁴ ^[1] Helmholtz-Centre for Environmental Research - UFZ, *Leipzig*, *Germany*

- ^[2] Helmholtz-Centre for Environmental Research UFZ, *Leipzig*, *Germany*
- ^[3] University of Bayreuth, *Bayreuth*, *Germany*
- ^[4] Utrecht University, Utrecht, the Netherlands

1. PROBLEM STATEMENT

- The time spent by a water parcel in a catchment from its entry, as precipitation (P), to its exit, as streamflow (Q), is called water transit time (TT)
- TT is typically modelled with observations of tracers concentrations naturally occurring in the water (e.g. δ^{18} O)
- However, modelling is subject to uncertainty, and tracer sampling can be laborious, costly and limited to wellequipped areas only

2. MOTIVATION

Hello I'm Arianna, an Environmental Engineer pursuing a PhD in Hydrogeology. My research interests lie in modeling water quantity under extreme events, which can have a severe impact on pollutants export. My goal as a young scientist is to contribute to society and scientific community in developing water management strategies.

arianna.borriero@ufz.de

Water TTs describe hydrological functioning and pollutants mobilization in catchments

These aspects are crucial to implement the best strategies for water protection and management

Precipitation

3. OUR QUESTION

4. OUR SOLUTION

- 95PPU of TT from SAS functions
- 95PPU of TT constrained with F_{vw}^{sb}
- ensemble mean of TT constrained with F_{vw}^{s}

- $\mathbf{F_{vw}}^{sb}$ than small $\mathbf{F_{vw}}^{sb}$

Can we use alterative methods to infer water TTs by reducing model uncertainty and overcoming economic/management issues of sampling?

Young water fraction (F_{vw}) , the fraction of water precipitated in the past 2-3 months F_{vw} can be estimated from sparse and irregular observed tracer data spanning short periods of time

From 2° and 3° : simulated water TT constrained with F_{yw}^{sb} (i) have a narrower uncertainty than water TT simulated with SAS functions, (ii) are more highly dynamic and (iii) with a mean TT of 1,6 years across the 23 sites

Relatively large of F_{yw}^{sb} (≥ 0.1) yield TTs with less uncertainty compared to small F_{vw}^{sb} (≤ 0.04) due to the difficulty in determining very old TT with $\delta^{18}O$

7. TAKE HOME MESSAGES

Information on F_{vw} largely reduces uncertainty in simulated water TTs To reduce model uncertainty, it is advisable to rely on relatively large

Practical and cost-effective use of F_{vw}^{sb} can be exploited to tackle issues in ungauged basins and boost the understanding of water quality status