"Regionale Grundwassersysteme"

Veranstaltung im Modul Hydrosystemanalyse

- Übung: 2D Grundwassermodelle

Prof. Dr. Olaf Kolditz Dr. Erik Nixdorf

12.07.2024

Regionale Grundwassersysteme - Aufbau

- 3 Teile, 2mal Vorlesung und 1mal Übung, Ende gegen 18:10
- I. V1: Grundwasserströmungsgleichung
 - I. Herleitung der Grundwassergleichung in der Potentialform
 - II. Diskussion der Parameter des Grundwasserleiters
 - III. Analytische Lösungen
 - V2: Grundwassermodellierung auf der Einzugsgebietsskala
 - Räumlich-zeitliche Dimensionalität und Diskretisierung
 - II. Randbedingungen und Quellterme
 - III. Auswahl des Computercodes --> OpenGeoSys
- IV. Übung mit OpenGeoSys und ParaView
 - I. Analytische Lösungen vs. OpenGeoSys

V. Klausurfragen...

Einleitung

- Die Übung soll Ihnen einen Eindruck vermitteln, wie Simulationen mit OpenGeoSys mit analytischen Ergebnissen überprüft werden können und wie ein zunehmender Grad an Komplexität die Simulationsergebnisse eines regionalen Grundwasserströmungsmodells beeinflusst
- 2 Übungsteile: 1) 2D Flächenmodell: Vergleich analytische/numerische Lösung: Grundwasserströmung mit Grundwasserneubildung
 2) 2D Profilmodell: Fließpfadanalyse
- Die Daten liegen wie immer auf der Cloud
- <u>https://nc.ufz.de/s/fmmJb6mz3DzTXGf</u> (pw: Grundwasser_2024)
- Diese Übung setzt voraus, dass sie Grundlagen über den Aufbaus der OpenGeoSys6 Eingangsdatei (*.prj Datei) sowie der Nutzung von ParaView besitzen

ModelInutzung: Kurz

OpenGeoSys Kontrollstruktur

- Zentraler Teil vom (kompilierten OGS) ist das Kommandozeilentool (ogs.exe)
- Gegenwärtig ist es in der Version 6.5.2 verfügbar (wir nutzen jedoch Version 6.4.1, bitte von der Cloud runterladen)
- OGS muss grundsätzlich 3 Dinge wissen um eine Simulation zu starten:
 - 1. Eine Beschreibung des Problems
 - 2. Ein FEM Netz auf dem das Problem gelöst wird
 - 3. Eine geometrische und mathematische Beschreibung der Randbedingungen

Kommandozeilen-Tool

OGS Kontrollstruktur

	<pre><?xml version="1.0" encoding="ISO-8859-1"?></pre>
曱	<opengeosysproject></opengeosysproject>
申	<meshes></meshes>
申	<processes></processes>
申	<media></media>
申	<time_loop></time_loop>
¢	<pre><parameters></parameters></pre>
申	<process_variables></process_variables>
¢	<nonlinear_solvers></nonlinear_solvers>
申	linear_solvers>
L	

Projektdatei zur Problembeschreibung ParaView

<?xml version="1.0"?> <VTKFile type="UnstructuredGrid" 0.1" <UnstructuredGrid> erOfCells=' <Piece NumberOfPoints="97 <PointData> </PointData> <CellData> Name="CellEntity <DataArray type= </CellData> <Points> </Un </VTKFil VTU Datei di as FEM Netz und die Geometrie beschreibt

> GML Datei zur Geometriebescheibung (outdated)

(1960 Hodel)(197 Development)(05:09794(2)(197 Tetranal)wetlandjepsezee
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)
 (197)

Kommandozeilentool

Unstrukturierte Gitter als VTU Dateien die

Simulationsergebnisse als Data-Array enthalten

6

OGS: Conceptual Structure

- Seit OGS version 6 wird das gesamte Modell Set-up mit einer einzigen Projektdatei (*.prj) koordiniert (früher: zahlreiche einzelne Dateien).
- Dies ist eine XML-Datei (Extensible Markup Language), die die jeweiligen Prozesse, Netze und Parameter hierarchisch mittels sogenannter "Tags" strukturiert.
 - Ein Start-Tag für den Beginn eines Prozesses usw.: <property>.
 - Ein End-Tag für das Ende eines Prozesses usw.: </property>, d.h. mit "/".
 - Diese können ähnlich wie HTML verschachtelt werden. Baumstruktur.
 - Teile der XML-Datei können über Verlinkungen eingebunden werden.
- Neben der *.prj-Datei können externe Dateien verlinkt werden, um das Berechnungsraster zu beschreiben (einschließlich Anfangsbedingungen usw.).
- Zusätzlich können externe Python-Skripte eingebunden werden, z.B. um eigene "dynamische" Randbedingungen zu erstellen.
- All Available tags sind in der Quellcode documentation beschrieben <u>https://doxygen.opengeosys.org/d3/d36/ogs_file_param_prj.html</u>

OGS: Conceptual Structure

144				
145				
146	4		1 (RAL To pack Drogoon-Flagge gibt on g T upperhieds Matheden um diege an andere Drogoons gu kompeln (g P Foodback
147	7	- T		bi) de nach ridzess klasse gibt es z.i. Verschiede wethouen, um diese an andere ridzesse zu koppeln (z.b. reeuback
14/				zwischen wasserströmung und störftransport). Viele Prozessklassen benötigen diesen rag nicht explizit, da jeweils
148				nur ein Modus verfugbar ist. ansonsten sind möglich: 'use_monolithic_scheme' (monolitsches Verfahren = alles in
149				einem) oder 'staggered' (Operator-Splitting-Verfahren). Was jeweils einzustellen ist, hängt man wieder von
150	-			der Situation ab (vergleiche Benchmarks)>
151				
152		<	coupl	ing_scheme>staggered das ist ein Beispiel
153				
154				
155				
156				
157	L.	<	1 (B5) Im Tag 'process variables' werden die zu berechnenden primären Variablen deklariert. Diese sogenannten primären
158	T			Variablen werden im Rahmen der numerischen Berechnung durch OGS selbst benötigt. Es ist wichtig, hier alle
159				notwendigen Variablen zu nennen welche in der Simulation aktiv benötigt werden aber auch nicht mehr Fehlen
160				Tarishlan so schlägt die Simulation im basten Fall fahl
161				variablen, so schlage die Simulation im besten fall fent.
101				Die Versichland Können aus Deutschehen als Die sinder Deutschehen wicht er debei erschefigigente Wenne wird er D
102				Die variabien hangen vom Prozesstyp ab. Für einige Prozessvariabien gibt es dabei vorderinierte rags wie z.c.
163				concentration oder pressure'. Manchmai wird aber auch der generalisierte Tag 'process_variable' verwendet
164				(Achtung, ohne "s", also Einzahl).
165				
166				- LIQUID_FLOW -> Tag 'process_variable'
167				- RichardsFlow -> Tag 'process_variable'
168				- ComponentTransport -> Tags 'concentration' und 'pressure'
169				- HT -> Tags 'temperature' und 'pressure'
170				- THERMO HYDRO MECHANICS -> Tags 'displacement', 'temperature' und 'pressure'
171				usw.
172				
173				Die jeweiligen Variablen-Tag-Namen findet man unter https://doxygen.opengeosys.org/ nach Auswahl der entsprechenden Prozess-
174				
175				Resonders bei dem Tag 'process variable' muss man vorber wissen was dahintersteckt. In den meisten Fällen bei den
176				Drozase-Klassen in der Hudrofachloris handelt as sich um sins Variable des Drasseura-Tune, aber nicht immer Ales aufnassen!
177				riesses alassa in der nyake, geströgte handere es sten am eine variaste des riessare typs, aber nicht immer. Also aufpassen:
170				Die suischer der Were erstehen Werichlandene sind fast sühlten einere ehen en der en Wede der Debei defisionen Desertem
170				Die zwischen den inge gesetzten variabtennamen sind frei wanibar, mussen aber zu den am Ende der Datel definierten Parameteri
179				epenso zu den ggrs. in den mesns derinierten Namen.
180				
181				Eine Ausnahme stellen Konzentrationen von chemischen Elementen bei verwendung von PhreeqC. Dann müssen die Benennungen den V(
182				von PhreeqC folgen. Eine weitere Besonderheit von PhreeqC ist hier, dass nicht alle Elemente in OGS definiert werden müssen,
183	-			nur solche, welche abseits der Reaktion aktiv transportiert werden sollen>
184				
185	Ę	<	proce	ss_variables>
186			<c< td=""><td>oncentration>Cs <!-- das ist ein Beispiel--></td></c<>	oncentration>Cs das ist ein Beispiel
187			<r< td=""><td>ressure>pressure <!-- das ist ein Beispiel--></td></r<>	ressure>pressure das ist ein Beispiel
188	¢		</td <td> oder Letztere Pressure-Variable alternativ in generalisierter Form.</td>	oder Letztere Pressure-Variable alternativ in generalisierter Form.
<				· · · · · · · · · · · · · · · · · · ·

OGS Conceptual Structure

- Die Projektdateien folgen normalerweise der folgenden Grundstruktur (mit bestimmten Modifikationen je nach der simulierten Prozessklasse), die Reihenfolge ist dabei unwichtig, nur die Baumstruktur muss eingehalten werden:
 - a) Verweis auf externe Dateien (Netz, Geometrien, Python-Skripte).
 - b) Beschreibung der zu simulierenden Prozesse
 - c) Beschreibung des Systems, in dem die Prozesse stattfinden (Feststoffeigenschaften, Fluideigenschaften usw.).
 - d) Zeitdiskretisierung (einschließlich Definition des Ausgabeformats).
 - e) Definition von Systemparametern (z.B. hydraulische Leitfähigkeit, Porosität, ...).
 - f) Definition von Beziehungen zur Vorbereitung von z.B. zeitvariablen Randbedingungswerten.
 - g) Definition von Prozessvariablen (Variablenwerte während der Simulation) und gleichzeitig Definition von Randbedingungswerten und -typen usw.
 - h) Einstellungen für den Gleichungslöser.

Teil I: Analytische vs Numerische Lösung

Gespannter Aquifer mit Neubildung

$$S\frac{\partial H}{\partial t} - div[KMgrad H] - Q_V = 0$$

- Grundwasserströmungsgleichung gespannter Aquifer:
- Lösung 1D mit Neubildung:

•
$$H = h_0 + \frac{h_1 - h_0}{L}x + \frac{N}{2KM}x(L - x)$$
 (1)

Übung OGS: Grundwasserneubildung

- Aufsetzen Grundwasserneubildung auf das Modell (10x1x1m)
 - Neubildung N: 100mm/a ~~3.18e-9 m³/(m^{2*}s)
 - Homogener Untergrund: $K = 9.81 * 10^{-7} \frac{m}{c}$
 - Setzen als Neumannrandbedingung auf die Modelloberkante
 - Links/Rechts Dirichlet Randbedingungen (1.1m links, 1m rechts)

Numerische Berechnung der GW-Oberfläche

- Grundlegende Modellgeometrie und Mesh
- Wir diskretisieren unser Problem in 2D mit einer Länge in x von 10m und y=1m.
- Zellen: 0.1 m x 0.1 m, also 100 Zellen in x-Richtung und 10 Zellen in y-Richtung
- Für die Erzeugung einfacher(strukturierter) 2D FEM Netze gibt es ein kleines Kommandozeilentool @https://www.opengeosys.org/docs/tools/meshing/structured-mesh-generation/

<u>Befehl zum Erzeugen dieses Meshes über die OGS-Tools wäre:</u> generateStructuredMesh -o domain.vtu -e quad --lx 10 --ly 1 --nx 100 --ny 10

Verständnisfragen

- Schauen sie sich die Projektdatei (neubildung_planar.prj) im Ordner planar_model/Projektdatei an
- Einige Verständnisfragen hierzu:
 - Wie viele Mesh-Dateien werden geladen?
 - Welche Prozess-Klasse wird betrachtet?
 - Welche Randbedingungen werden angesetzt?
 - An welcher Stelle wird die Grundwasserneubildung realisiert?
 - Wie lange wird simuliert? Wie viele Zeitschritte werden ausgegeben?
 - Wieviel Dimensionen hat das Modell (1D, 2D, 3D)?

Übung OGS: Grundwasserneubildung

- Wir simulieren ein OGS 2D Modell, welches die Draufsicht auf den Aquifer darstellt (Order: planar_model) →quasi 1D Strömungsproblem
- Füllen sie die Lücken "<!-- --> " in der Projektdatei neubildung_planar.prj
- Da die Prozess Variable des LIQUID_FLOW der Druck ist, wird das Pascal'sches Gesetz angewandt

Planares Modell

- Erstellen Sie ein Verzeichnis namens run_planar_model
- Kopieren Sie ogs.exe und die ausgefüllte Projektdatei in dieses Verzeichnis
- Kopieren Sie die Netze domain.vtu, pl_left.vtu und pl_right.vtu in das Verzeichnis
- Öffnen Sie ein Terminal (cmd.exe), ggf. im Administrator Modus
- Gehen Sie mit dem Befehl cd in das Verzeichnis
- Geben Sie ein: ogs.exe neubildung_planar.prj -l debug

Postprozessierung: Anzeige des Hydraulischen Potentials

Laden sie die Datei domain.pvd in ParaView

Time:	0	*	0	*	(max is 1)

- Unter Nutzung des Time Slider can das Ergebnis f
 ür jeden Simulationszeitschritt visualisiert werden
 →
 Station
 är im Beispiel = 1 Zeitschritt
- Der Druck wird in das hydraulische Potential ("head") über einen Filter (Calculator) umgerechnet (h=p/(rho*g)

Vergleich mit der analytischen Lösung

- Lade analytical_solution.csv in ParaView
- Anwendung TableToPoints zur Visualisierung der analytischen Ergebnisse im Render View
- Die analytischen und numerischen Ergebnisse werden mit dem ResampleWithDataset Filter zu einem Datensatz zusammengefasst
- Wähle das TableToPoints Objekt als SourceDataArray und Calculator1 Objekt als DestinationMesh
- Beachte, dass die Toleranz auf 0.05 gesetzt und Snap to Cell with Closest Point ausgewählt ist
- Anwendung von PlotOverLine um einen vergleichenden Graphen im Wertebereich 0<x<10 und 0.5<y<0.5 zu erstellen

Übung OGS: Grundwasserneubildung

- Vergleichen sie das Ergebnisse mit der analytischen Lösung
- Grundwasserscheide im Modellgebiet ist ein Extremwert $\rightarrow \frac{dH}{dx} = 0$
- $x_0 = \frac{L}{2} + \left(\left(\frac{h_1 h_0}{L} \right) KM \right) \frac{1}{N}$
- Einsetzen der Parameter ergibt f
 ür die innere Grundwasserscheide die Position x₀ = 1.92m

Übung OGS: Profilmodell

- Wir überführen das planare Modell in ein Profilmodell (Ordner profil_model) und setzen die Neubildung auf das obere Linienelement
- Im Profilmodell gibt es auch eine Geschwindigkeitskomponente in Y-Richtung →2D Strömungsproblem
- Ersetze die Lücken ("<!-- --> ") in neubildung_profil.prj
- Externe Software (z.B. <u>www.xmlvalidation.com</u>) kann genutzt werden um formelle Fehler in der prj Datei zu finden
- Kopiere alle vtu Netzdateien und die prj-Datei in den zu erstellenden Ordner run_profil_model
- ogs.exe in den Ordner kopieren und im Terminal ogs.exe neubildung_profil.prj ausführen

C:\Users\Erik\Desktop\Lehre\Zheda\exercise_material\E2_2\datasets\confined_recharge_profil results_to_compare>ogs.exe confined_recharge_profile.prj -l debug info: This is OpenGeoSys-6 version 6.4.1.

Übung: Berechnung der GW-Geschwindigkeit

- Lade *domain.pvd* in **ParaView**
- Erstelle einen Parameter velocity vector mit einem Calculator
- Wichtig!: Die Sekundärvariable velocity im LIQUID_FLOW Prozess beschreibt nicht die Fließgeschwindigkeit des Fluids im Porösen Medium
- Stattdessen repräsentiert der Wert das Produkt aus hydraulischen Gradienten und Leitfähigkeit

$$q = -Ki = -\kappa \frac{\rho_F}{\mu_F} g \nabla H = -\frac{\kappa}{\mu_F} \nabla p$$

 $v_f = \frac{v_f}{r}$

 Daraus kann die GW-Geschwindigkeit über die Porosität φ berechnet werden:

•	Nutze den Glyph and Countour filter zur
	Visualisierung der Geschwindigkeitsvektoren
	0 0

Properties Info	ormation			
operties				Ø 🗙
		Reset	# Delete	?
Search (use Esc	to dear tex	xt)		(\$
Properties	(Calculato	or1)		
Attribute Type	• Point I	Data		-
Coordinate Res	ults			
Result Normals				
Result TCoords				
esult Array Name	fluid_veloc	ity		
(v_X*iHat+v_Y*jH	at)/0.25			
				1 📫 🕸

Properties	Information			
roperties				6
	/	O Reset	# Delete	?
Search (use	Esc to clear t	text)		1
Propert	ies (Glyph1)		
Glyph Source				
Glyph Type An	row			•
Tip Resolution		-0	50	
Tip Radius			0.3	
Tip Length		0	0.35	
Shaft Resolution	n - 🗆 🗕		10	
Shaft Radius	\bigcirc		0.1	
Invert				
Orientation				
Orientation Arra	ay 🔹 flu	iid_velocity		-
Scale				
Scale Array	Ø No	scale array		•
Scale Factor)	0.2	×, C
Glyph Transfe	orm			

Second Task: Profile model

- Das Profilmodell ermöglicht die Untersuchung des Fließweges entlang der Wasserscheide sowie den Einfluss der undurchlässigen unteren Randbedingung auf das Strömungsfeld.
- Letzterer Einfluss führt dazu, dass der Fluss in der Querschnittsansicht zu einem echten 2D-Strömungsfeld wird, das von der präsentierten analytischen Lösung nicht abgedeckt wird!

