

Modelling Reactive Transport Process with OpenGeoSys

with Decay-Chain Benchmark as an Example

Dr. Haibing Shao

haibing.shao@ufz.de

Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany

Prepared for the Lecture "Modellierung von Hydrosystemen"

in TU Dresden on 04.07.2024

- Overview of Reactive Transport Process Features
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

- Overview of Reactive Transport Process
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

How is Reactive Transport simulated by the Component Transport Process?

The component transport process can handle

- Fully saturated condition
- Variable-density flow
- Component transport with advection, dispersion, sorption and decay
- Reactive transport

There are two sets of process variables

- Pressure
- Concentration of each component

ComponentTransport

$$egin{aligned} rac{\partial \left(\phi
ho
ight) }{\partial t} +
abla \cdot \left(\mathbf{q}
ho
ight) + Q_p &= 0 \ \mathbf{q} &= -rac{\mathbf{k}}{\mu} (
abla p -
ho \mathbf{g}) \ \mathbf{q} &= -rac{\mathbf{k}}{\mu} (
abla p -
ho \mathbf{g}) \ rac{\partial \left(\phi R c_lpha
ight) }{\partial t} +
abla \cdot \left(\mathbf{q} c_lpha - \mathbf{D}
abla c_lpha
ight) + Q_{c_lpha} + \phi \lambda R c_lpha &= 0 \ D &= (\phi D_p + eta_T \| \mathbf{q} \|) \mathbf{I} + \left(eta_L - eta_T
ight) rac{\mathbf{q} \mathbf{q}^T}{\| \mathbf{q} \|} \ \lambda &= ln2/t_{1/2} \ R &= 1 +
ho_b K_D / \phi \end{aligned}$$

Modelling Reactive Transport Process with different algorithms

b₁

 b_2

b

 b_4

OP – **Operator Splitting**

Transport stage

Reaction stage

Call Phreeqc to compute \mathbf{R}^{\min}

GIA - Global Implicit Approach

<chemical_system chemical solver = "SelfContained">

<chemical_reactions>

<chemical_reaction>

<!-- 0 = -1 [Cm-247] + 1 [Am-243] -->

<stoichiometric_coefficients>-1 1 0 0 0 0</stoichiometric_coefficients>

<!-- t1_half_life = 1.56e7;

LOG(2) / t1_half_life / 3.1536e7 -->

<rate_constant>1.4089456993390242e-15</rate_constant> </chemical_reaction>

</chemical_reactions>

</chemical_system>

Available benchmarks with Reactive Transport Process

Find all RTP benchmarks here, along with the descriptions: <u>https://www.opengeosys.org/docs/benchmarks/reactive-transport/</u>

- Overview of Reactive Transport Process Features
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

The Decay-Chain Benchmark

Opalinus clay Bentonite Bentonite Bentonit (dearaded) (not dearaded) (dearaded (OPA) Container Not to scale 0.525 0.625 Meter [m] 1.00 C(0,t) = 1.0C(x,0) = 0No flux BC Dirichlet BC 1D Domain [200 m × 10⁶ y] Only diffusion + decay is considerred Uniform transport properties of OPA Porosity 0.12 Pore diffusion coefficient 1e-11

8

Source: Dr. Christoph Behrens (BGE)

The Decay-Chain Benchmark

After 10k years, the simulated results as follows, also verified against the analytical solution

- In this case each component has the same pore diffusion coefficient, i.e some travels faster than others.
- U-235 is the slowest decaying component in this chain, therefore its concentration will accumulate over time and get more than 1.0
- Decay of Cm-247 is also slow, therefore it diffuses the second far
- Ac-227 is the fastest decaying component (only 23 years of half-life), therefore it can barely travel some distance

Analytical Solution: Sun, Y., Petersen, J. N., & Clement, T. P. (1999). Journal of contaminant hydrology, 35(4), 429-440.

- Overview of Reactive Transport Process Features
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

Exercise: Set up the Decay-Chain prj File

https://www.opengeosys.org/docs/

e → G	O A https://www.opengeosys.org/docs/	合	Q. Search	S 🕹 🔕 🖬
	OpenGeoSys	Releases Docs Publications Discourse	Q. Search this site	
	Oper	nGeoSys documentation over	rview	
	User Guide Download, install and run an OGS benchmark in 5 minutes! No development setup required.	Developer Guide You want to contribute to the OpenGeoSys project or implement a custom feature? In the Developer Guide you will find everything to get you started into OpenGeoSys development. Experienced developers will find a comprehensive list of advanced development topics.	Benchmarks Basic benchmarks are explained and input files are provided to get you started in using OGS.	
	Tools & Workflows	Data Explorer Manual 🖉	Source code documentation ²⁸	
	Helpful tools for pre- and postprocessing as well as complete model setup workflows.	Manual for the graphical user interface for OpenGeoSys, the Data Explorer.	The OGS source code documentation is automatically generated right from the code itself via Doxygen and is a nice reference while coding.	
	Styleguide ²²			

3

Exercise: Set up the Decay-Chain prj File

https://www.opengeosys.org/docs/benchmarks/reactive-transport/decaychain/

Exercise: Set up the Decay-Chain prj File

In the source code folder \Tests\Data\Parabolic\ComponentTransport\ReactiveTransport\DecayChain\GlobalImplicitApproach

- 3 mesh files with *.vtu
- *.prj project configuration file
- *.PVD is the Paraview index file referring to all result files
- 4 *.vtu files containing the simulation results from time step #0, #10, #100 and #1000

ReactiveTransport > DecayChain > GlobalImplicitApproach	ب< 5	Search Globallmp	olicitApproach
▲ Name	Date modified	Туре	Size
MPI	10/24/2022 11:05 AM	File folder	
💧 🥤 🗋 1d_decay_chain.vtu	7/26/2022 9:34 AM	VTU File	43 KB
1d_decay_chain_ReactiveDomain.vtu	7/26/2022 9:34 AM	VTU File	56 KB
🔨 🥼 1d_decay_chain_upstream.vtu	7/26/2022 9:34 AM	VTU File	2 KB
🎽 📋 1d_decay_chain_GIA.prj	10/24/2022 11:05 AM	PRJ File	21 KB
	10/24/2022 11:05 AM	PVD File	1 KB
1d_decay_chain_GIA_ts_0_t_0.000000.vtu	10/24/2022 11:05 AM	VTU File	15 KB
Id_decay_chain_GIA_ts_10_t_31536000000.000000.vtu	10/24/2022 11:05 AM	VTU File	53 KB
d_decay_chain_GIA_ts_100_t_31536000000.000000.vtu	10/24/2022 11:05 AM	VTU File	52 KB
└ 🗋 1d_decay_chain_GIA_ts_1000_t_3153600000000.000000.vtu	10/24/2022 11:05 AM	VTU File	52 KB

Exercise: Set up the Decay-Chain pri File

- The pri file is the model configuration file in XML format
- You can expand / collapse each section by clicking on the + and – symbol
- The order of the section does not matter
- When error pops up while reading the configuration, messages will be recorded in the log file or on screen

<property>

```
<name>pore diffusion</name>
```

```
<type>Constant</type>
```

<value><!--TODO #4 Set this to 1e-11, unit is m2/s--></value>

```
</property>
```

🔚 1d_decay_chain_GIA_TODO.prj 🗵						
1	<pre><?xml version="1.0" encoding="ISO-8859-1"?></pre>					
2	₽ <opengeosysproject></opengeosysproject>					
3	<pre>meshes></pre>					
8	<pre> <pre></pre></pre>					
25	🗄 <media></media>					
190	<pre>time_loop></pre>					
244	<pre>chemical_system chemical_solver="SelfContained"></pre>					
299	<pre></pre>					
326	<pre>d <process_variables></process_variables></pre>					
419	<pre></pre>					
427	<pre>d <linear_solvers></linear_solvers></pre>					
443	<pre>test_definition></pre>					
481	L					
482						

- The key words are always surrounded by the "Klammer" structure
- <!-- ... --> means comments, which will not be read into the program

14

You need to change the content when seeing the TODOs

There are 10 TODOs in total

Exercise: Set up the Decay-Chain prj File :: Mesh and Processes

Exercise: Set up the Decay-Chain prj File :: Media Properties

We devide the media into 3 phases

- AqueousLiquid (the only phase in DecayChain)
- Solid
- Gas

For each component in Aq. phase

- Pore diffusion coefficient
- Retardation Factor set to 1 (no sorption)
- Decay Rate (set to 0 in this case)

Please repeat it for all components

🔚 1d_de	🔚 1d_decay_chain_GIA_TOD0.pj 🖸					
25	¢.	<pre>^ cmedia></pre>				
26	¢.	<medium id="0"></medium>				
27	ė.	<pre><pre>cphases></pre></pre>				
28	- ¢	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>				
29		<type>AqueousLiquid</type>				
30	¢.	<components></components>				
31	白	<component></component>				
32		<name>[Cm-247]</name>				
33	ļ.	<pre><pre>cproperties></pre></pre>				
34	ļ.	<pre><pre>cproperty></pre></pre>				
35		<name>pore_diffusion</name>				
36		<type>Constant</type>				
37		<pre><value><!--TODO #4 Set this to le-11, unit is m2/s--></value></pre>				
38	-					
39	- É	<property></property>				
40		<name>retardation_factor</name>				
41		<type>Constant</type>				
42		<value><!--TODO #5 Set this to 1, i.e. no retardation--></value>				
43	F					
44	F	<property></property>				
45		<name>decay_rate</name>				
46		<type>Constant</type>				
47		<value>0</value>				
48	-					
49						
50	F					

Exercise: Set up the Decay-Chain prj File :: Media Properties

Exercise: Set up the parameters (TODO #6 and #7)

306

Give the following values in the parameters list (TODO #6 and #7)

- Set permeability to 1.157e-12 m2/s
- Set porosity to 0.12

```
<parameters>
<parameters
<parameter>
<parameter>
cvalues><!--TODO #6 Set permeability kappa to 1.157e-12--></values>
</parameter>
<parameter>
<parameter>
<parameter>
cvalue>constant</type>
cvalue><!--TODO #7 Set porosity to 0.12--></value>
</parameter>
```

```
<parameter>
                   <name>TimeDependentDirichlet right</name>
                   <type>TimeDependentHeterogeneousParameter</type>
                   <time series>
                       <pair>
                           <time>0</time>
                           <parameter name>bc right ts1</parameter name>
                       </pair>
                       <pair>
214
                           <time>1180</time>
                           <parameter name>bc right ts59</parameter name>
216
                       </pair>
                       <pair>
                           <time>1200</time>
219
                           <parameter name>bc right ts60</parameter name>
                       </pair>
                       <pair>
                           <time>2000</time>
                           <parameter name>bc right ts100</parameter name>
224
                       </pair>
                   </time series>
226
              </parameter>
```

A parameter can be defined as

- A constant value
- Time dependent
- Space dependent

https://www.opengeosys.org/docs/benchmarks/liquid-flow/timedependent-heterogeneous-source-term-and-boundary-conditions/

Exercise: Set up the Decay-Chain prj File :: Types of Boundary Conditions

https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-neumann/ For solving the elliptic problem $k \Delta h = 0$ 92 <boundary condition> <geometrical set>square 1x1 geometry</geometrical set> 93 94 <geometry>bottom</geometry> Dirichlet \rightarrow Given Value of Primary Variable 95 <type>Dirichlet</type> 96 <parameter>p Dirichlet</parameter> </boundary condition> $h = q_D$ on Γ_D , 97 https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-neumann/ 98 <boundary condition> 99 <geometrical set>square 1x1 geometry</geometrical set> Neumann \rightarrow Given Flux Value <geometry>right</geometry> <type>Neumann</type> $k \frac{\partial h}{\partial n} = g_N \quad \text{on } \Gamma_N,$ <parameter>p neumann</parameter> </boundary condition> https://www.opengeosys.org/docs/benchmarks/elliptic/elliptic-robin/ <boundary condition> Robin \rightarrow Given Flux calculated by Primary Variable <geometrical set>line 1 geometry</geometrical set> <geometry>left</geometry> $rac{\partial h}{\partial n} = lpha(h_0-h(x)) \quad ext{ on } \Gamma_R,$ <type>Robin</type> <alpha>alpha</alpha> <u 0>u 0</u 0> </boundary condition> https://www.opengeosys.org/docs/benchmarks/python-bc/elder/ More complex BC via Python script 169 <boundary condition> <geometrical set>elder</geometrical set> <geometry>whole domain boundary</geometry> 171 <type>**Python**</type> 173 <bc object>bc c</bc object> </boundary condition> 174 19

Exercise: Set up the Decay-Chain prj File :: Initial and Boundary Conditions

Exercise: Set up the Decay-Chain prj File :: Initial and Boundary Conditions

Exercise: Set up the Decay-Chain prj File :: Decay Reactions

Exercise: Set up the Decay-Chain prj File :: Decay Reactions (TODO #8 and TODO #9)

- What is the stoichiometric coefficients of the last reaction?
- How much is the reaction rate constant for this reaction?

		Components					
		Cm-247	Am-243	Pu-239	U-235	Pa-231	Ac-227
Reactions	0 = -1 [Cm-247] + 1 [Am-243]	-1	1	0	0	0	0
	0 = -1 [Am-243] + 1 [Pu-239]	0	-1	1	0	0	0
	0 = -1 [Pu-239] + 1 [U-235]	0	0	-1	1	0	0
	0 = -1 [U-235] + 1 [Pa-231]	0	0	0	-1	1	0
	0 = -1 [Pa-231] + 1 [Ac-227]	0	0	0	0	-1	1
	0 = -1 [Ac-227] + 1 [n]	0	0	0	0	0	-1
		1				1	

Exercise: Set up the Decay-Chain prj File :: Time Stepping Scheme

24

Exercise: Linear Solver

The linear solver is internally calling one of the following external lib:

- LIS solver
- Eigen solve (default)
- PETSC solver

The following sparse linear solvers in Eigen library has been included:

- CG •
- BiCGSTAB
- IDRS

- SparseLU
- PardisoLU
 - GMRES
- IDRSTABL

- In Eigen solver, one can choose different solver type and also preconditioners
- PETSC solver is prepared for parallel computing with MPI library (distributed memory type)
- Another choice of linear solve is the PADISO solver provided by Intel MKL lib

Exercise: Non-Linear Solvers

Exercise: Set up the Decay-Chain prj File :: Output Control (TODO #10)

- Overview of Reactive Transport Process Features
- The Decay-Chain Benchmark
- Exercise: Set up the Decay-Chain prj File
- Simulation and Visualization

Different Approaches of Simulation

- Download OGS software package from the web https://www.opengeosys.org/releases/
- Unzip the package into a folder called "ogs"
- Run simulation
 - Syntax: ogs.exe path_to_the_project_file

29

C:\work\CloudStation\2023_conferences_and_trips\20230630_TU_Dresden\DecayChain_DONE>..\ogs\bin\ogs.exe 1d_decay_chain_GIA.prj

When simulation starts, time-series data files will be generated (.pvd file + .vtu files)

Different Approaches of Simulation

Display output messages

C:\Windows\System32\cmd.exe

-		
Info: Info: Info: Info:	[time] Iteration #1 took 0.0438331 s. [time] Assembly took 0.0194844 s. [time] Applying Dirichlet BCs took 0.0014799 s.	
info: info: info: info:	<pre>*** Eigen solver computation -> solve with Eigen iterative linear solver BiCGSTAB (precon ILUT) iteration: 0/10000 residual: 3.322583e-24</pre>	
info:	[time] Linear solver took 0.0128669 s.	
Info: Info: Info:	Convergence criterion, component 0: dx =0.0000e+00, x =2.4515e+06, Convergence criterion, component 1: dx =0.0000e+00, x =2.3593e+01, Convergence criterion. component 2: dx =0.0000e+00, x =0.3455e+00.	dx / x =0.0000e+0 dx / x =0.0000e+0 dx / x =0.0000e+0
nfo: nfo:	Convergence criterion, component 3: dx =0.0000e+00, x =1.3881e+01, Convergence criterion, component 4: dx =0.0000e+00, x =1.9006e+01,	dx / x =0.0000e+0 dx / x =0.0000e+0
into: info: info:	Convergence criterion, component 5: dx =0.0000e+00, x =1.1422e+01, Convergence criterion, component 6: dx =0.0000e+00, x =3.0790e+00, [time] Iteration #2 took 0.0381688 s.	dx / x =0.0000e+0 dx / x =0.0000e+0
Info:	[time] Solving process #0 took 0.0828339 s in time step #1000 [time] Time step #1000 took 0.0864828 s.	
info:	The whole computation of the time stepping took 1000 steps, in which the accepted steps are 1000, and the rejected steps are 0.	
info:	[time] Execution took 98.7813 s. 065 terminated on 2023-06-29 14:33:51+0200	

Syntax: ogs.exe path_to_the_project_file >

log.txt

Visualization

30

C:\work\CloudStation\2023_conferences_and_trips\20230630_TU_Dresden\DecayChain_DONE>..\ogs\bin\ogs.exe 1d_decay_chain_GIA.prj > log.txt

Visualizing the simulation results

- Load the PVD file in Paraview
- Remember to "Apply" the View
- Add a "Plot over Line" Filter
- Just need to see from 0 to 30 m
- The results include from 0 to 100k years
- Choose which components to display (6 of them)
- Try to see the Spreadsheet View
- Try to export the data to CSV file

M ParaView 5.6.0 64-bit		- 🗆 X			
File Edit View Sources Filters Tools Catalyst Macros Help					
D 🖗 🛱 🛱 🕐 🗖 🖉 🖉	Ime: 3.1536e+12 ▼ 3 ÷ (max is 3)				
	Representation	Z ♀ ♀ ↓ ↓ ↓ ○ ⑧ * ↓			
] 🖩 🗞 🛱 🏶 🖗 🖗 🖉 🖉 🎯					
Pipeline Browser & ×	Layout #1 × +				
builtin:		LineChartView1 🔲 🗄 🗗 🗗 🗙			
 Id_decay_chain_GIA.pvd Id_decay_chain_GIA.pvd 	1.3	— (Ac-227) — (Am-243) — (Cm-247) — (Ра-231) — (Ра-239) — (U-236)			
Properties Information Properties 5 ×	0.9-				
Papely Reset Papel Search (use Esc to dear text) Image: Control of the second seco	-8.0				
Properties (PlotOverLin D D D D D	0.7-				
Line Parameters	0.6-				
Length: 30					
Show Line	0.5-				
Point1 0 0 0					
Point2 30 0 0 Note: Use 'P' to place alternating points on mesh or	0.4-				
'Ctrl+P' to snap to the closest mesh point. Use '1'/'Ctrl +1' for point 1 and '2'/'Ctrl+2' for point 2.					
X Axis Y Axis Z Axis	0.3-				
Center on Bounds					
Desch Ken					
1000					
📼 Display (XYChartRepre 🖄 🗈 🔇 🔒					
Attribute Type Point Data	0 2 4 6 8 10 12 14 16 18 20 2	2 2'4 2'6 2'8 30			
	34 I				

~The End~