

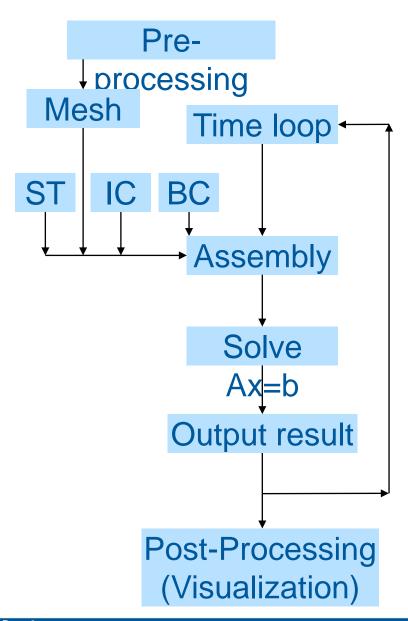
Lecture Modellierung von Hydrosystemen Mass Transport Process Part II

Haibing Shao Lecture room MEI-2122 TUBAF Freiberg, 05.07.2024

Table of Content

- > Finite element discretization in space
- > Finite difference discretization in time
- Linear equation assembly
- Impose the Boundary condition
- Peclet and Courant number (stability)

Basics of Finite Element Method



In simple words, we convert the PDE from

$$\frac{\partial c}{\partial t} + \nabla \cdot \left(-D \, \vec{\nabla c} + \vec{v} \, c \right) = s.$$

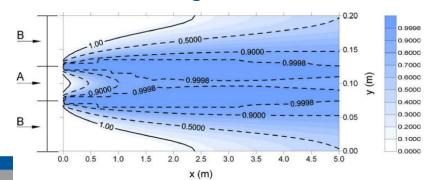
, using the topology:

, so that it is converted to linear equation

$$Ax = b$$
:

$$\begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \dots & \mathbf{a}_{2n} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \mathbf{a}_{m3} & \dots & \mathbf{a}_{mn} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_3 \\ \vdots \\ \mathbf{b}_m \end{bmatrix}$$

, and solve it, so that we get:

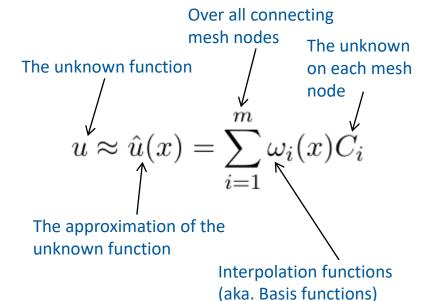


Finite element in space

The numerical method of FEM employs the Method of Weighted Residuals (MWR) to find the solution of a PDE.

MWR can be divided into 3 steps:

- Approximation of the unknown function by a trial solution;
- Definition of weighting functions;
- Derivation of a system of algebraic equations, and solve it to find the approximation solution.



$$\frac{\partial}{\partial t}u + \nabla \cdot \Phi^u = q^u$$

 $\frac{\partial}{\partial t}u + \nabla \cdot \Phi^u = q^u$ Let Φ^u be the flux vector of conservative quantithe source/sink term (see our first lecture about GROUNDWATER, ELOW process) Let Φ^u be the flux vector of conservative quantity u and q^u **GROUNDWATER FLOW process)**

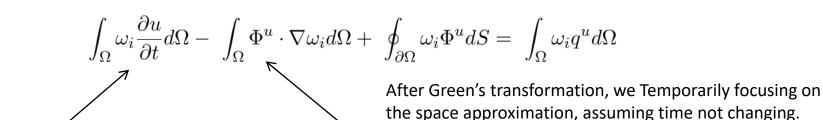
Applying the approximation, we get the weak form of the above equation as

$$\int_{\Omega} \omega_i \frac{\partial u}{\partial t} d\Omega + \int_{\Omega} \omega_i \nabla \Phi^u d\Omega = \int_{\Omega} \omega_i q^u d\Omega$$

In order to get rid of the special derivative of flux term, we apply the Green's theorem

$$\int_{\Omega} \omega_i \frac{\partial u}{\partial t} d\Omega - \int_{\Omega} \Phi^u \cdot \nabla \omega_i d\Omega + \oint_{\partial \Omega} \omega_i \Phi^u dS = \int_{\Omega} \omega_i q^u d\Omega$$

Finite element in space



Approximation of unknown u

$$\hat{u}(t,x) = \sum_{j} \omega_{j}(x)u_{j}(t)$$

Approximation of the flux of unknown u

$$\hat{\Phi}(t,x) = \sum_{j} \omega_j(x) \Phi_j(t)$$

"When time is infinitely short, how much flowing-in should equal to

how much flowing-out"

So that the above equation becomes

"shape-shape"

$$\sum_i \frac{du_j}{dt} \int_{\Omega} \omega_i \omega_j d\Omega - \sum_i \Phi^u \cdot \int_{\Omega} \omega_j \nabla \omega_i d\Omega + \oint_{\partial\Omega} \omega_i \Phi^u dS = \int_{\Omega} \omega_i q^u d\Omega$$

$$M_{ij} = \int_{\Omega} \omega_i \omega_j d\Omega \qquad K_{ij} = \int_{\Omega} \omega_j \nabla \omega_i d\Omega$$
 This part is applied on element Mass Matrix This part should zero out. This part should zero out.

"shape-dshape"

Page 5

Shape functions (1D line element)

First let's explore how the shape function is calculated for a 1D line element.

A simple approximation of the unknown functio u(x) can be obtained by linear approximation.

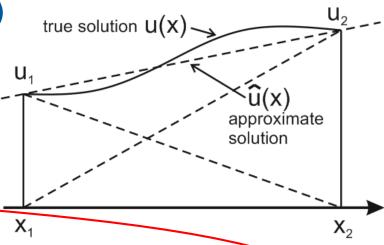
$$\hat{u}(x) = a_1 + a_2 x$$

On the two ends of the line element, we assume that our unknown function produces u1 and u2 at position x1 and x2.

$$u_1 = a_1 + a_2 x_1$$

 $u_2 = a_1 + a_2 x_2$

Write in a linear algebra form



$$\left(\begin{array}{c} u_1 \\ u_2 \end{array}\right) = \left[\begin{array}{cc} 1 & x_1 \\ 2 & x_2 \end{array}\right] \left(\begin{array}{c} a_1 \\ a_2 \end{array}\right)$$

Make an inversion of the expression, we get the a1 and a2 value dependency on u1 and u2.

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \frac{1}{x_2 - x_1} \begin{bmatrix} x_2 & -x_1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \frac{1}{x_2 - x_1} \begin{bmatrix} x_2 & -x_1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \quad \text{Wirte back to the standard form} \qquad \begin{aligned} a_1 &= \frac{1}{x_2 - x_1} (x_2 u_1 - x_1 u_2) \\ a_2 &= \frac{1}{x_2 - x_1} (-u_1 + u_2) \end{aligned} \quad \text{Insert back here}$$

Then we get the expression of approximated solution based on the location

$$\hat{u}(x) = \underbrace{\frac{x_2 - x}{x_2 - x_1}} u_1 + \underbrace{\frac{x - x_1}{x_2 - x_1}} u_2 = N_1(x)u_1 + N_2(x)u_2$$

N1(x) and N2(x) are the so-called shape functions.

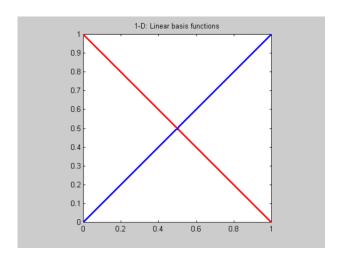
Shape functions (1D line element, higher orders)

Linear

Approximation
$$\hat{u}(x) = a_1 + a_2 x$$

Shape Function
$$N_1(x) = \frac{x_2 - x}{x_2 - x_1}$$

$$N_2(x) = \frac{x - x_1}{x_2 - x_1}$$



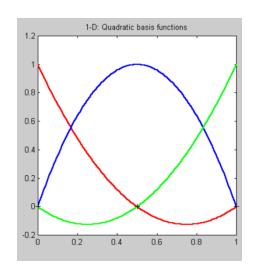
Quadradic

$$\hat{u}(x) = a_1 + a_2 x + a_3 x^2$$

$$N_1(x) = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}$$

$$N_2(x) = \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)}$$

$$N_3(x) = \frac{(x-x_1)(x-x_2)}{(x_3-x_2)(x_3-x_1)}$$



Shape functions (2D line triangle element)

Approximation:

$$\hat{u}(x,y) = a_1 + a_2 x + a_3 y$$

The interpolation writes as

$$u_1 = a_1 + a_2x_1 + a_3y_1$$

$$u_2 = a_1 + a_2x_2 + a_3y_2$$

$$u_3 = a_1 + a_2x_3 + a_3y_3$$

Write it in the matrix-vector form

$$\left\{ \begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array} \right\} = \left[\begin{array}{ccc} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{array} \right] \left\{ \begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right\}$$

Inversion of the above relationship will give

$$\left\{\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right\} = \frac{1}{2A} \left[\begin{array}{cccc} x_2y_3 - x_3y_2 & x_3y_1 - x_1y_3 & x_1y_2 - x_2y_1 \\ y_2 - y_3 & y_3 - y_1 & y_1 - y_2 \\ x_3 - x_2 & x_1 - x_3 & x_2 - x_1 \end{array}\right] \left\{\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right\}$$

With A the surface area of the triangle

$$A = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

So again our shape function act like

$$\hat{u}(x,y) = N_1(x,y)u_1 + N_2(x,y)u_2 + N_3(x,y)u_3$$

They can be explicitly calculated as

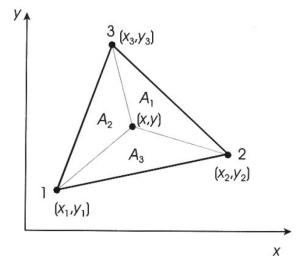
$$N_1(x,y) = \frac{1}{2A} [(x_2y_3 - x_3y_2) + (y_2 - y_3)x + (x_3 - x_2)y]$$

$$N_2(x,y) = \frac{1}{2A} [(x_3y_1 - x_1y_3) + (y_3 - y_1)x + (x_1 - x_3)y]$$

$$N_3(x,y) = \frac{1}{2A} [(x_1y_2 - x_2y_1) + (y_1 - y_2)x + (x_2 - x_1)y]$$

Or in the matrix vector form

$$\left\{\begin{array}{c} N_1 \\ N_2 \\ N_3 \end{array}\right\} = \frac{1}{2A} \left[\begin{array}{cccc} x_2 y_3 - x_3 y_2 & y_2 - y_3 & x_3 - x_2 \\ x_3 y_1 - x_1 y_3 & y_3 - y_1 & x_1 - x_3 \\ x_1 y_2 - x_2 y_1 & y_1 - y_2 & x_2 - x_1 \end{array}\right] \left\{\begin{array}{c} 1 \\ x \\ y \end{array}\right\}$$



Finite difference in time

We start from the mass transport governing equation

$$\frac{\partial C}{\partial t} + \nabla (-D \cdot \nabla C) + v \cdot \nabla C = Q \quad \Big\} \quad \begin{array}{l} \text{Source and Rink Term, i.e.} \\ \text{decay and reaction} \\ \end{array}$$
 Change over time
$$\quad \text{Dispersion/Diffusion} \quad \text{Advection}$$
 Spatial discretization

- Make a difference of previous and current time step value for primary unknown.
- For the time discretization part, we use forward Euler method:
- For all C values in the spatial discretization part, we apply linear interpolation btw previous and current values:

 C^n – previous time step value C^{n+1} – current time step value

$$\frac{\partial C}{\partial t} = \frac{C^{n+1} - C^n}{\Delta t}$$

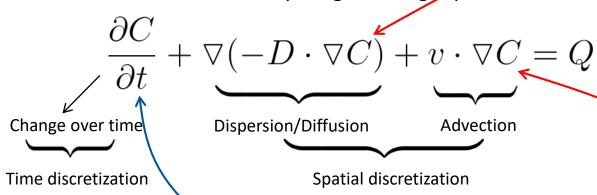
$$C = (1 - \theta)C^n + \theta C^{n+1}$$

 θ = 1 : C taken from the current time step, AKA implicit scheme.

 θ = 0 : C taken from the previous time step, AKA explicit scheme.

Finite difference in time

We start from the mass transport governing equation



Source and Rink Term, i.e. decay and reaction

- Make a difference of previous and current time step value for primary unknown.
- For the time discretization part, we use forward Euler method:
- For all C values in the spatial discretization part, we apply linear interpolation btw previous and current values:

 C^n – previous time step value C^{n+1} – current time step value

$$\frac{\partial C}{\partial t} = \frac{C^{n+1} - C^n}{\Delta t}$$

$$C = (1 - \theta)C^n + \theta C^{n+1}$$

Handle the time derivative

$$\frac{\partial C}{\partial t} + \nabla(-D \cdot \nabla C) + v \cdot \nabla C = Q$$

$$\frac{C^{n+1} - C^n}{\Delta t} + \nabla(-D \cdot \nabla((1-\theta)C^n + \theta C^{n+1})) + v \cdot \nabla((1-\theta)C^n + \theta C^{n+1}) = Q$$

We know all the previous time step value, so keep known things to the RHS and unknown things to the other.

$$= \frac{\frac{1}{\Delta t}C^{n+1} + \nabla(-D \cdot \nabla\theta C^{n+1}) + v \cdot \nabla(\theta C^{n+1})}{\frac{1}{\Delta t}C^n - (\nabla(-D \cdot \nabla(1-\theta)C^n) + v \cdot \nabla((1-\theta)C^n)) + Q}$$

Handle the space derivative

$$\frac{1}{\Delta t}C^{n+1} + \nabla(-D \cdot \nabla\theta C^{n+1}) + v \cdot \nabla(\theta C^{n+1})$$

$$= \frac{1}{\Delta t}C^n - (\nabla(-D \cdot \nabla(1-\theta)C^n) + v \cdot \nabla((1-\theta)C^n)) + Q$$

$$\operatorname{Mass \, Term} \qquad \frac{1}{\Delta t} C^{n+1} \Rightarrow \int_{\Omega^e} \mathbf{N} \cdot C^{n+1} \cdot \mathbf{N} d\Omega \Rightarrow \int_{\Omega^e} \mathbf{N} \cdot \mathbf{N} d\Omega \cdot C^{n+1}$$

$$\begin{array}{ll} \text{Dispersion/} & & \nabla (-D \cdot \nabla (\theta C^{n+1})) \Rightarrow \int_{\Omega^e} \nabla \mathbf{N} \cdot (-D) \nabla \mathbf{N^T} d\Omega^e \cdot \theta C^{n+1} \\ \text{Diffusion} & & \end{array}$$

$$\text{Advection} \qquad v \cdot \nabla(\theta C^{n+1}) \Rightarrow \int_{\Omega^e} \mathbf{N} \cdot (\theta v C^{n+1}) \nabla \mathbf{N^T} d\Omega^e \Rightarrow \int_{\Omega^e} \mathbf{N} \cdot (v) \nabla \mathbf{N^T} d\Omega^e \cdot \theta C^{n+1}$$

Handle the space derivative

$$\frac{1}{\Delta t}C^{n+1} + \nabla(-D \cdot \nabla\theta C^{n+1}) + v \cdot \nabla(\theta C^{n+1})$$

$$= \frac{1}{\Delta t}C^n - (\nabla(-D \cdot \nabla(1-\theta)C^n) + v \cdot \nabla((1-\theta)C^n)) + Q$$

$$\operatorname{Mass \, Term} \qquad \frac{1}{\Delta t} C^{n+1} \Rightarrow \int_{\Omega^e} \mathbf{N} \cdot C^{n+1} \cdot \mathbf{N} d\Omega \Rightarrow \underbrace{\int_{\Omega^e} \mathbf{N} \cdot \mathbf{N} d\Omega} \cdot C^{n+1}$$

Mass Matrix

Dispersion/ Diffusion

$$\nabla(-D \cdot \nabla(\theta C^{n+1})) \Rightarrow \int_{\Omega^e} \nabla \mathbf{N} \cdot (-D) \nabla \mathbf{N}^{\mathbf{T}} d\Omega^e \cdot \theta C^{n+1}$$

Dispersion Matrix

$$\text{Advection} \qquad v \cdot \nabla (\theta C^{n+1}) \Rightarrow \int_{\Omega^e} \mathbf{N} \cdot (\theta v C^{n+1}) \nabla \mathbf{N^T} d\Omega^e \Rightarrow \underbrace{\int_{\Omega^e} \mathbf{N} \cdot (v) \nabla \mathbf{N^T} d\Omega^e}_{ } \cdot \theta C^{n+1}$$

Advection Matrix

Handle the space derivative

$$\frac{1}{\Delta t}C^{n+1} + \nabla(-D \cdot \nabla\theta C^{n+1}) + v \cdot \nabla(\theta C^{n+1})$$

$$= \frac{1}{\Delta t}C^n - (\nabla(-D \cdot \nabla(1-\theta)C^n) + v \cdot \nabla((1-\theta)C^n)) + Q$$

$$\Rightarrow \int_{\Omega^e} \mathbf{N} \cdot \mathbf{N} d\Omega \cdot C^{n+1}$$

Mass Matrix

$$\Rightarrow \int_{\Omega^e} \nabla \mathbf{N} \cdot (-D) \nabla \mathbf{N}^{\mathbf{T}} d\Omega^e \cdot \theta C^{n+1}$$

Dispersion Matrix

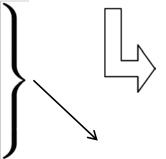
$$\Rightarrow \int_{\Omega^e} \mathbf{N} \cdot (v) \nabla \mathbf{N}^{\mathbf{T}} d\Omega^e \cdot \theta C^{n+1}$$

Advection Matrix

$$Ax = b$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & & \\ & & & & & & \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ x_3 \\ \vdots \\ b_m \end{bmatrix}$$

$$\frac{1}{\Delta t}M \cdot C^{n+1} + Disp \cdot \theta C^{n+1} + Adv \cdot \theta C^{n+1}$$
$$= \frac{1}{\Delta t}M \cdot C^n + Disp \cdot (1-\theta)C^n + Adv \cdot (1-\theta)C^n + Q$$



$$\frac{1}{\Delta t}M \cdot C^{n+1} + (Disp + Adv) \cdot \theta C^{n+1}$$

$$= \frac{1}{\Delta t}M \cdot C^n + (Disp + Adv) \cdot (1 - \theta)C^n + Q$$

Linear equation

assembly

$$(\frac{1}{\Delta t}M + \theta K)C^{n+1}$$

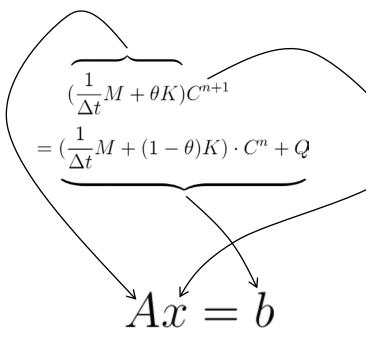
$$= (\frac{1}{\Delta t}M + (1 - \theta)K) \cdot C^{n} + Q$$

$$Ax = b$$

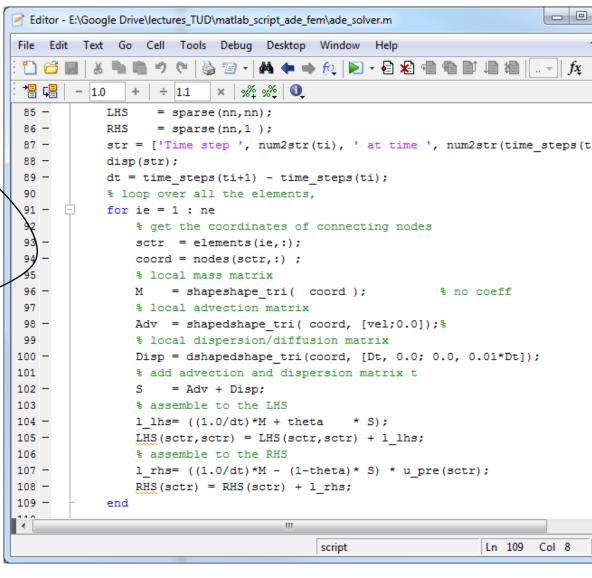
$$\begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \dots & \mathbf{a}_{2n} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \mathbf{a}_{m3} & \dots & \mathbf{a}_{mn} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \\ \vdots \\ \mathbf{b}_m \end{bmatrix}$$

```
- 0
Editor - E:\Google Drive\lectures TUD\matlab script ade fem\ade solver.m
        Text Go Cell Tools Debug Desktop Window Help
                         ॄ 唱
                           × | %% %% | 01_
        - 1.0
                   ÷ 1.1
 85 -
                   = sparse(nn,nn);
            RHS
                   = sparse(nn,1);
            str = ['Time step ', num2str(ti), ' at time ', num2str(time steps(t:
 88
            disp(str);
            dt = time steps(ti+1) - time steps(ti);
 89
            % loop over all the elements,
 91
            for ie = 1 : ne
                % get the coordinates of connecting nodes
 93
                sctr = elements(ie,:);
 94
                coord = nodes(sctr,:) ;
 95
                % local mass matrix
                     = shapeshape tri( coord );
 96
                                                     % no coeff
 97
                % local advection matrix
 98 -
                Adv = shapedshape tri( coord, [vel;0.0]);%
                % local dispersion/diffusion matrix
100 -
                Disp = dshapedshape tri(coord, [Dt, 0.0; 0.0, 0.01*Dt]);
101
                % add advection and dispersion matrix t
102 -
                     = Adv + Disp;
103
                % assemble to the LHS
104 -
                1 lhs= ((1.0/dt)*M + theta
105 -
                LHS(sctr,sctr) = LHS(sctr,sctr) + 1 lhs;
106
                % assemble to the RHS
107 -
                1 rhs= ((1.0/dt)*M - (1-theta)* S) * u pre(sctr);
108 -
                RHS(sctr) = RHS(sctr) + 1 rhs;
109 -
            end
                                                                Ln 109 Col 8
                                          script
```

Linear equation assembly



$$\begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \dots & \mathbf{a}_{2n} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \dots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \mathbf{a}_{m3} & \dots & \mathbf{a}_{mn} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \\ \vdots \\ \mathbf{b}_m \end{bmatrix}$$



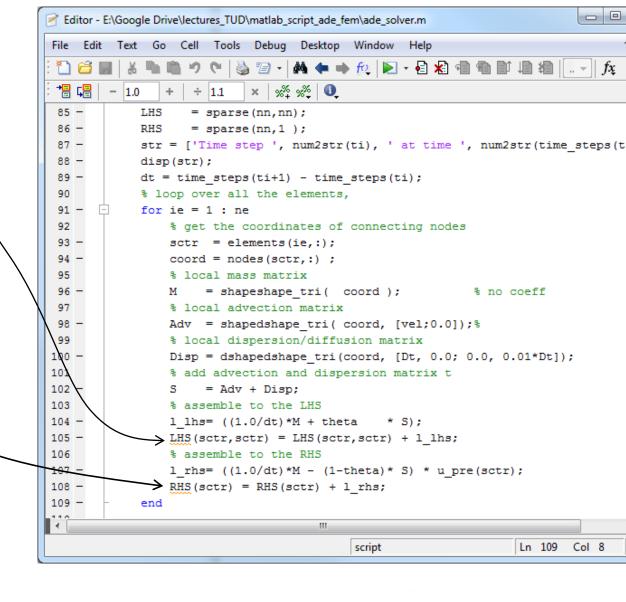
Linear equation assembly __

$$(\frac{1}{\Delta t}M + \theta K)C^{n+1}$$

$$= (\frac{1}{\Delta t}M + (1 - \theta)K) \cdot C^{n} + Q$$

$$Ax = b$$

$$\begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \dots & \mathbf{a}_{2n} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \dots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \mathbf{a}_{m3} & \dots & \mathbf{a}_{mn} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \\ \vdots \\ \mathbf{b}_m \end{bmatrix}$$



Impose Boundary Condition

$$Ax = b$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_m \end{bmatrix}$$

Assuming we know the boundary value on one of the node, how can we solve the linear equation in a way that we get the desired value on this node?

The procedure is as follows:

- 1) Record the index of boundary node, say "i".
- 2) RHS vector minus the multiplication of fixed boundary node value with the i-th column of LHS matrix.
- 3) Record the i-th row and column entry value in LHS as TMP.
- 4) Make i-th row of LHS all zeros.
- 5) Make i-th column of LHS all zeros.
- Overwrite i-th value in RHS vector as TMP times fixed boundary value
- 7) Overwrite i-th row and column entry value in LHS matrix as xii.

Impose Boundary Condition

Taking the following linear equation as an example (represent a 1D Groundwater flow):

$$\begin{pmatrix}
1/2 & -1/2 & 0 & 0 & 0 \\
-1/2 & 3/2 & -1 & 0 & 0 \\
0 & -1 & 4/3 & -1/3 & 0 \\
0 & 0 & -1/3 & 2/3 & -1/3 \\
0 & 0 & 0 & -1/3 & 1/3
\end{pmatrix}
\begin{pmatrix}
h_1 \\
h_2 \\
h_3 \\
h_4 \\
h_5
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}$$

After imposing boundary nodes?

What result do you get by solving this linear equation system?

Peclet Number

Peclet number is defined as the ratio of the rate of advection to the rate of dispersion/diffusion.

$$Pe = \frac{vL}{D}$$

Courant Number

AKA Courant-Friedrichs-Lewy condition

$$1D Cr = \frac{v_x \Delta t}{\Delta x} \le Cr_{max}$$

$$2D Cr = \frac{v_x \Delta t}{\Delta x} + \frac{v_y \Delta t}{\Delta y} \le Cr_{max}$$

- Peclet number is dimensionless.
- Peclet number reflects the ratio of advection versus diffusion. If less than one, then diffusion dominated. If more than one, then advection dominated.
- Typically, the characteristic length L refers to the length of an element.
- For the accurate solution of finite element method, the Pe number has to be kept to be less than 2.

- Courant number is also dimensionless
- Cr_max is typically constrained to be 2, i.e. in a given time step, one particle should not travel beyond the neighbouring element.
- Necessary condition when using explicit time integration scheme with the finite difference method.