

Lecture Modellierung von Hydrosystemen Mass Transport Process Part I

Haibing Shao

Dresden, 05.07.2024

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

<u>Outline</u>

Advection – Diff. / Disp. – Equation (ADE)

Dispersion and Diffusion

Sorption Isotherms and Decay

Exercise on the mass transport simulation

Governing Equations

If you can only remember one equation, then the Reynolds Transport Theorem.

$$\frac{\partial}{\partial t} \int_{\Omega} \psi d\Omega = \bigoplus_{\substack{\longrightarrow \\ \partial \Omega}} \Phi^{\psi} \cdot d\mathbf{S} + \int_{\Omega} q^{\psi} d\Omega \quad (Eq. 0)$$
Or, you can remember a story.
$$\begin{cases} \mathsf{Rate of} \\ \mathsf{accumulation} \\ \mathsf{for unknown } \Psi \\ \mathsf{within the} \\ \mathsf{volume } \Omega \end{cases} = \begin{cases} \mathsf{Net influx of } \Psi \mathsf{into} \\ \mathsf{through its} \\ \mathsf{surface S} \end{cases} + \begin{cases} \mathsf{Net rate of } \Psi \\ \mathsf{production} \\ \mathsf{within the} \\ \mathsf{volume } \Omega \end{cases}$$

Governing Equations

Because of the Gauss Divergence Theorem.

$$\oint_{\partial\Omega} \Phi^{\psi} \cdot dS = \oint_{\Omega} \nabla \cdot \Phi^{\psi} d\Omega$$

So, our Eq. 0 becomes.

$$\frac{\partial}{\partial t} \int_{\Omega} \psi d\Omega = -\int_{\Omega} \nabla \cdot \Phi^{\psi} d\Omega + \int_{\Omega} q^{\psi} d\Omega \quad \text{(Eq. 1)}$$

Advection Dispersion Equation (ADE)

Advection Dispersion Equation (ADE)

Dispersion

Diff./ Disp. Flux (Fick's 1st Law) $F_{dis/diff} = -D \frac{dC}{dx} \qquad \text{1D}$ $F_{dis/diff} = -D \bigtriangledown (C) \qquad \text{3D}$

Think about:

Why negative sign?

Hydrodynamic Dispersion (Mechanical spreading)

 $D_L = lpha_L v_i + D^*$ Diffusion coefficient $D_T = lpha_T v_i + D^*$ Longitudinal / transverse dispersivity

Note: Dispersivity values are often scale dependent!

$$\alpha_L = 0.83 (logL)^{2.414}$$

Xu and Eckstein (1995)

Xu and Eckstein (1995) Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 33, no. 6: 905-08

Advection Dispersion Equation (ADE)

Diffusion

o solute

Solute transport is from the left to the right; movement of the solutes is due to the concentration gradient (dC/dx).

Diffusion (Molecular spreading)

- It is orders magnitudes lower than dispersion effect.
- Does not dependent on the flow process.
- It is largely temperature dependent.

Diffusion of ions in sea water and in deep-sea sediments

705

Table 1. Tracer and self-diffusion coefficients of ions at infinite dilution

Putting advection and dispersion into Eq. (2).

We get the governing equation for the mass transport process:

$$\frac{\partial C}{\partial t} + v_x \frac{\partial C}{\partial x} - D \frac{\partial^2 C}{\partial x^2} = Q$$

an an an an ann an an an an an an an an	D_j^0 (10 ⁻⁶ cm ² /sec)				D_j^0 (10 ⁻⁶ cm ² /sec)		
Cation	0°C	18°C	$25^{\circ}C$	Anion	0°C	18°C	$25^{\circ}C$
H ⁺	56.1	81.7	93.1	OH-	25.6	44.9	52.7
Li^+	4.72	8.69	10.3	F-		$12 \cdot 1$	14.6
Na^+	6.27	11.3	13.3	Cl-	10.1	17.1	20.3
\mathbf{K}^+	9.86	16.7	19.6	Br-	10.5	17.6	20.1
Rb^+	10.6	17.6	20.6	I-	10.3	17.2	20.0
Cs ⁺	10.6	17.7	20.7	IO3-	5.05	8.79	10.6
NH_4^+	9.80	16.8	19.8	HS-	9.75	14.8	17.3
Ag^+	8.50	14.0	16.6	S^{2-}		6.95	
$T\tilde{l}^+$	10.6	17.0	20.1	HSO4			13-3
$Cu(OH)^+$			8.30	SO_4^{2-}	5.00	8.90	10.7
$Zn(OH)^+$			8.54	SeO ₄ ²	4.14	8.45	9.46
Be ²⁺		3.64	5.85	NO_2^{-}	_	15.3	19-1
Mg^{2+}	3.56	5.94	7.05	NO3	9.78	$16 \cdot 1$	19.0
Ca ²⁺	3.73	6.73	7.93	HCO3-			11.8
Sr^{2+}	3.72	6.70	7.94	CO32-	4.39	7.80	9.55
Ba^{2+}	4.04	7.13	8.48	H ₂ PO ₄ -		7.15	8.46
Ra^{2+}	4.02	7.45	8.89	HPO42-			7.34

Advection Dispersion Equation (ADE) – Analytical Solutions

For the governing Equation with only dispersion / diffusion,

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Analytical solution (Crank 1956)

$$C(x,t) = C_0 \ erfc(\frac{x}{2\sqrt{Dt}})$$

$$erfc(B) = 1 - erf(B)$$

$$erf(B) = \frac{2}{\sqrt{\pi}} \int_0^B e^{-t^2} dt$$

Use a checking table, Or in Excel and other soft., it is provided.

For the Advection - Dispersion / Diffusion equation,

$$\frac{\partial C}{\partial t} + v_x \frac{\partial C}{\partial x} - D \frac{\partial^2 C}{\partial x^2} = Q$$

Analytical solution (Ogata 1970)

$$C(x,t) = \frac{C_0}{2} \left[erfc(\frac{L - v_x t}{2\sqrt{D_L t}}) + exp(\frac{v_x L}{D_L})erfc(\frac{L + v_x t}{2\sqrt{D_L t}}) \right]$$

Complementary Error function

Henry

$$C^* = K_D C$$

Freundlich

$$C^* = K_1 C^{K_2}$$

Langmuir

$$K^* = \frac{K_1 C}{1 + K_2 C}$$

1st-order decay

$$\frac{\partial C}{\partial t} = -\lambda C$$

- Soption isotherm describes the distribution of a particular chemical component in the aqueous and solid phase.
- It is called as isotherm because it is measured at a constant temperature.
- Because of different property of the solid phase and sorption component, the isotherm behaves differently and can be described by different mathematical equations.
- Another important behavior of the chemical component is the decay process. Simplest decay process can be described as the firstorder decay.
- The radioactive decay exactly follows this decay process.

Exercise

Exercise

Case (3): Assuming soil grain density is 2000 kg/m3, Kd = 2.0 mL/g, how much is the retardation factor R? How does this retardation effect influence the concentration profile? Case (4): What if there is a 1st order decay on the transported contaminant with ($\lambda = 0.7$ 1/day)

